1
|
Wang ZH, Ye XQ, Wu XT, Wang ZZ, Huang JH, Chen XX. A new gene family (BAPs) of Cotesia bracovirus induces apoptosis of host hemocytes. Virulence 2023; 14:2171691. [PMID: 36694288 PMCID: PMC9908294 DOI: 10.1080/21505594.2023.2171691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Polydnaviruses (PDVs), obligatory symbionts with parasitoid wasps, function as host immune suppressors and growth and development regulator. PDVs can induce host haemocyte apoptosis, but the underlying mechanism remains largely unknown. Here, we provided evidence that, during the early stages of parasitism, the activated Cotesia vestalis bracovirus (CvBV) reduced the overall number of host haemocytes by inducing apoptosis. We found that one haemocyte-highly expressed CvBV gene, CvBV-26-4, could induce haemocyte apoptosis. Further analyses showed that CvBV-26-4 has four homologs from other Cotesia bracoviruses and BV from wasps in the genus Glyptapanteles, and all four of them possessed a similar structure containing 3 copies of a well-conserved motif (Gly-Tyr-Pro-Tyr, GYPY). Mass spectrometry analysis revealed that CvBV-26-4 was secreted into plasma by haemocytes and then degraded into peptides that induced the apoptosis of haemocytes. Moreover, ectopic expression of CvBV-26-4 caused fly haemocyte apoptosis and increased the susceptibility of flies to bacteria. Based on this research, a new family of bracovirus genes, Bracovirus apoptosis-inducing proteins (BAPs), was proposed. Furthermore, it was discovered that the development of wasp larvae was affected when the function of CvBV BAP was obstructed in the parasitized hosts. The results of our study indicate that the BAP gene family from the bracoviruses group is crucial for immunosuppression during the early stages of parasitism.
Collapse
Affiliation(s)
- Ze-Hua Wang
- Institute of Insect Science, Zhejiang University, Hangzhou, China,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China,Regional Development and Governance Center, Hangzhou, China
| | - Xi-Qian Ye
- Institute of Insect Science, Zhejiang University, Hangzhou, China,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiao-Tong Wu
- Institute of Insect Science, Zhejiang University, Hangzhou, China,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Zhi-Zhi Wang
- Institute of Insect Science, Zhejiang University, Hangzhou, China,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jian-Hua Huang
- Institute of Insect Science, Zhejiang University, Hangzhou, China,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xue-Xin Chen
- Institute of Insect Science, Zhejiang University, Hangzhou, China,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China,CONTACT Xue-Xin Chen
| |
Collapse
|
2
|
Wang ZH, Zhou YN, Ye XQ, Wu XT, Yang P, Shi M, Huang JH, Chen XX. CLP gene family, a new gene family of Cotesia vestalis bracovirus inhibits melanization of Plutella xylostella hemolymph. INSECT SCIENCE 2021; 28:1567-1581. [PMID: 33155403 DOI: 10.1111/1744-7917.12883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/19/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Polydnaviruses (PDVs) are obligatory symbionts of parasitoid wasps and play an important role in suppressing host immune defenses. Although PDV genes that inhibit host melanization are known in Microplitis bracovirus, the functional homologs in Cotesia bracoviruses remain unknown. Here, we find that Cotesia vestalis bracovirus (CvBV) can inhibit hemolymph melanization of its host, Plutella xylostella larvae, during the early stages of parasitization, and that overexpression of highly expressed CvBV genes reduced host phenoloxidase activity. Furthermore, CvBV-7-1 in particular reduced host phenoloxidase activity within 12 h, and the injection of anti-CvBV-7-1 antibody increased the melanization of parasitized host larvae. Further analyses showed that CvBV-7-1 and three homologs from other Cotesia bracoviruses possessed a C-terminal leucine/isoleucine-rich region and had a similar function in inhibiting melanization. Therefore, a new family of bracovirus genes was proposed and named as C-terminal Leucine/isoleucine-rich Protein (CLP). Ectopic expression of CvBV-7-1 in Drosophila hemocytes increased susceptibility to bacterial repression of melanization and reduced the melanotic encapsulation of parasitized D. melanogaster by the parasitoid Leptopilina boulardi. The formation rate of wasp pupae and the eclosion rate of C. vestalis were affected when the function of CvBV-7-1 was blocked. Our findings suggest that CLP genes from Cotesia bracoviruses encoded proteins that contain a C-terminal leucine/isoleucine-rich region and function as melanization inhibitors during the early stage of parasitization, which is important for successful parasitization.
Collapse
Affiliation(s)
- Ze-Hua Wang
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Yue-Nan Zhou
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Xi-Qian Ye
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Xiao-Tong Wu
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Pei Yang
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Min Shi
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Jian-Hua Huang
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Xue-Xin Chen
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Wang ZH, Zhou YN, Yang J, Ye XQ, Shi M, Huang JH, Chen XX. Genome-Wide Profiling of Diadegma semiclausum Ichnovirus Integration in Parasitized Plutella xylostella Hemocytes Identifies Host Integration Motifs and Insertion Sites. Front Microbiol 2021; 11:608346. [PMID: 33519757 PMCID: PMC7843510 DOI: 10.3389/fmicb.2020.608346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/17/2020] [Indexed: 11/23/2022] Open
Abstract
Polydnaviruses (PDVs), classified into two genera, bracoviruses (BVs) and ichnoviruses (IVs), are large, double-stranded DNA viruses, which are beneficial symbionts of parasitoid wasps. PDVs do not replicate in their infected lepidopteran hosts. BV circles have been demonstrated to be integrated into host genomic DNA after natural parasitization. However, the integrations of IV circles in vivo remain largely unknown. Here, we analyzed the integration of Diadegma semiclausum ichnovirus (DsIV) in the genomic DNA of parasitized Plutella xylostella hemocytes. We found that DsIV circles are present in host hemocytes with non-integrated and integrated forms. Moreover, DsIV integrates its DNA circles into the host genome by two distinct strategies, conservatively, and randomly. We also found that four conserved-broken circles share similar motifs containing two reverse complementary repeats at their breaking sites, which were host integration motifs (HIMs). We also predicted HIMs of eight circles from other ichnoviruses, indicating that a HIM-mediated specific mechanism was conserved in IV integrations. Investigation of DsIV circle insertion sites of the host genome revealed the enrichment of microhomologies between the host genome and the DsIV circles at integration breakpoints. These findings will deepen our understanding of the infections of PDVs, especially IVs.
Collapse
Affiliation(s)
- Ze-Hua Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Yue-Nan Zhou
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Jing Yang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Xi-Qian Ye
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Min Shi
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Jian-Hua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Xue-Xin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China.,State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Ye XQ, Shi M, Huang JH, Chen XX. Parasitoid polydnaviruses and immune interaction with secondary hosts. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:124-129. [PMID: 29352983 DOI: 10.1016/j.dci.2018.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/02/2018] [Accepted: 01/12/2018] [Indexed: 05/26/2023]
Abstract
Polydnaviruses (PDVs) are obligatory symbionts with parasitoid wasps. The PDV virions are produced solely in wasp (the primary host) calyx cells. They are injected into caterpillar hosts (the secondary host) during parasitoid oviposition, where they express irreplaceable actions to ensure survival and development of wasp larvae. Some of PDV gene products suppress host immune responses while others alter host growth, metabolism or endocrine system. Here, we treat new findings on PDV gene products and their action on immunity within secondary hosts.
Collapse
Affiliation(s)
- Xi-Qian Ye
- State Key Lab of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Min Shi
- State Key Lab of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jian-Hua Huang
- State Key Lab of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xue-Xin Chen
- State Key Lab of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
5
|
Kumar S, Gu X, Kim Y. A viral histone H4 suppresses insect insulin signal and delays host development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 63:66-77. [PMID: 27216029 DOI: 10.1016/j.dci.2016.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 05/18/2016] [Accepted: 05/18/2016] [Indexed: 06/05/2023]
Abstract
Parasitization by an endoparasitoid wasp, Cotesia plutellae, alters host development of Plutella xylostella by extending larval period and preventing metamorphosis. Insulin signal plays a crucial role in mediating insect development and controlling blood sugar level in insects. In this study, three insulin-like peptide genes (PxILP1-3) were predicted from the genome of P. xylostella. However, only PxILP1 was confirmed to be expressed in P. xylostella. Starvation suppressed the expression level of PxILP1 and up-regulated plasma trehalose level. RNA interference against PxILP1 mimicked starvation effect and extended the larval period of P. xylostella. Parasitized larvae exhibited significantly lower levels of PxILP1 expression compared to nonparasitized larvae. Injection of wasp-symbiotic polydnavirus C. plutellae bracovirus (CpBV) also suppressed PxILP1 expression and extended the larval period. Injection of a viral segment (CpBV-S30) containing a viral histone H4 (CpBV-H4) also suppressed PxILP1 expression. Co-injection of CpBV-S30 and double-stranded RNA (dsCpBV-H4) specific to CpBV-H4 rescued the suppression of PxILP1 expression. Injection of CpBV-S30 significantly extended larval development. Co-injection of CpBV-S30 with dsCpBV-H4 rescued the delay of larval development. Injection of a bovine insulin to parasitized larvae prevented parasitoid development. These results indicate that parasitism of C. plutellae can down-regulate host insulin signaling with the help of parasitic factor CpBV-H4.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Bioresource Sciences, Andong National University, Andong 36729, South Korea
| | - Xiaojun Gu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yonggyun Kim
- Department of Bioresource Sciences, Andong National University, Andong 36729, South Korea.
| |
Collapse
|
6
|
Kim Y, Hepat R. Baculoviral p94 homologs encoded in Cotesia plutellae bracovirus suppress both immunity and development of the diamondback moth, Plutellae xylostella. INSECT SCIENCE 2016; 23:235-244. [PMID: 25973570 DOI: 10.1111/1744-7917.12237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/22/2015] [Indexed: 06/04/2023]
Abstract
Polydnaviruses (PDVs) are a group of insect DNA viruses, which exhibit a mutual symbiotic relationship with their specific host wasps. Moreover, most encapsidated genes identified so far in PDVs share homologies with insect-originated genes, but not with virus-originated genes. In the meantime, PDVs associated with 2 wasp genera Cotesia and Glytapanteles encode some genes presumably originated from other viruses. Cotesia plutellae bracovirus (CpBV) encodes 4 genes homologous to baculoviral p94: CpBV-E94k1, CpBV-E94k2, CpBV-E94k3, and CpBV-E94k4. This study was conducted to predict the origin of CpBV-E94ks by comparing their sequences with those of baculoviral orthologs and to determine the physiological functions by their transient expressions in nonparasitized larvae and subsequent specific RNA interference. Our phylogenetic analysis indicated that CpBV-E94ks were clustered with other E94ks originated from different PDVs and shared high similarity with betabaculoviral p94s. These 4 CpBV genes were expressed during most developmental stages of the larvae of Plutella xylostella parasitized by C. plutellae. Expression of these 4 E94ks was mainly detected in hemocytes and fat body. Subsequent functional analysis by in vivo transient expression showed that all 4 viral genes significantly inhibited both host immune and developmental processes. These results suggest that CpBV-E94ks share an origin with betabaculoviral p94s and play parasitic roles in suppressing host immune and developmental processes.
Collapse
Affiliation(s)
- Yonggyun Kim
- Department of Bioresource Sciences, Andong National University, Andong, 760-749, Korea
| | - Rahul Hepat
- Department of Bioresource Sciences, Andong National University, Andong, 760-749, Korea
| |
Collapse
|
7
|
Autographa californica multiple nucleopolyhedrovirus ORF11 is essential for budded-virus production and occlusion-derived-virus envelopment. J Virol 2014; 89:373-83. [PMID: 25320313 DOI: 10.1128/jvi.01742-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED ORF11 (ac11) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a highly conserved gene with unknown function. To determine the role of ac11 in the baculovirus life cycle, an ac11 knockout mutant of AcMNPV, Ac11KO, was constructed. Northern blot and 5' rapid amplification of cDNA ends (RACE) analyses revealed that ac11 is an early gene in the life cycle. Microscopy, titration assays, and Western blot analysis revealed that budded viruses (BVs) were not produced in Ac11KO-transfected Sf9 cells. However, quantitative PCR (qPCR) analysis demonstrated that the deletion of ac11 did not affect viral DNA replication. Furthermore, electron microscopy revealed that there was no nucleocapsid in the cytoplasm or plasma membrane of Ac11KO-transfected cells, which demonstrates that the defect in BV production in Ac11KO-transfected cells is due to the inefficient egress of nucleocapsids from the nucleus to the cytoplasm. In addition, electron microscopy observations showed that the nucleocapsids in the nucleus were not enveloped to form occlusion-derived viruses (ODVs) and that their subsequent embedding into occlusion bodies (OBs) was also blocked in Ac11KO-transfected cells, demonstrating that ac11 is required for ODV envelopment. These results therefore demonstrate that ac11 is an early gene that is essential for BV production and ODV envelopment. IMPORTANCE Baculoviruses have been extensively used not only as specific, environmentally benign insecticides but also as helper-independent protein expression vectors. Although the function of baculovirus genes in viral replication has been studied by using gene knockout technology, the functions of more than one-third of viral genes, which include some highly conserved genes, are still unknown. In this study, ac11 was proven to play a crucial role in BV production and ODV envelopment. These results will lead to a better understanding of baculovirus infection cycles.
Collapse
|
8
|
Antiviral activity of the inducible humoral immunity and its suppression by eleven BEN family members encoded in Cotesia plutellae bracovirus. Comp Biochem Physiol A Mol Integr Physiol 2014; 179:44-53. [PMID: 25223710 DOI: 10.1016/j.cbpa.2014.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 08/29/2014] [Accepted: 09/04/2014] [Indexed: 11/21/2022]
Abstract
Upon parasitization by some endoparasitoids, polydnaviruses (PDVs) play a crucial role in inducing host immunosuppression. This study reports a novel immunosuppressive activity against humoral immune responses by BEN family genes encoded in Cotesia plutellae bracovirus (CpBV). A total of 11 BEN family members are encoded in 10 different CpBV DNA segments. When the CpBV segments were individually injected, specific BEN genes were expressed and suppressed the expression of antimicrobial peptide (AMP) and prophenoloxidase genes following bacterial challenge. The suppressive activities of the BEN genes were reversed by injection of the double-stranded RNA (dsRNA) specific to each BEN gene. The suppression of the AMP gene expressions by the BEN genes was also confirmed using an inhibition zone assay against Gram-positive and Gram-negative bacterial growth. The significance of the suppressive activity of BEN genes against humoral immune responses was analyzed in terms of suppression of antiviral activity by the host humoral immunity. When CpBV was incubated with the plasma obtained from the larvae challenged with bacteria, the immunized plasma severely impaired the expression activity of the viral genes. However, an expression of BEN gene significantly rescued the viral gene expression by suppressing humoral immune response. These results suggest that BEN family genes of CpBV play a crucial role in defending the antiviral response of the parasitized Plutella xylostella by inhibiting humoral immune responses.
Collapse
|
9
|
Tao XY, Choi JY, Wang Y, Roh JY, Lee JH, Liu Q, Park JB, Kim JS, Kim W, Je YH. Functional characterization of Autographa californica multiple nucleopolyhedrovirus ORF43 and phenotypic changes of ORF43-knockout mutant. J Microbiol 2013; 51:515-21. [DOI: 10.1007/s12275-013-3058-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/01/2013] [Indexed: 11/29/2022]
|
10
|
The Autographa californica multiple nucleopolyhedrovirus ORF78 is essential for budded virus production and general occlusion body formation. J Virol 2013; 87:8441-50. [PMID: 23698311 DOI: 10.1128/jvi.01290-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ORF78 (ac78) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a baculovirus core gene of unknown function. To determine the role of ac78 in the baculovirus life cycle, an AcMNPV mutant with ac78 deleted, Ac78KO, was constructed. Quantitative PCR analysis revealed that ac78 is a late gene in the viral life cycle. After transfection into Spodoptera frugiperda cells, Ac78KO produced a single-cell infection phenotype, indicating that no infectious budded viruses (BVs) were produced. The defect in BV production was also confirmed by both viral titration and Western blotting. However, viral DNA replication was unaffected, and occlusion bodies were formed. An analysis of BVs and occlusion-derived viruses (ODVs) revealed that AC78 is associated with both forms of the virions and is an envelope structural protein. Electron microscopy revealed that AC78 also plays an important role in the embedding of ODV into the occlusion body. The results of this study demonstrate that AC78 is a late virion-associated protein and is essential for the viral life cycle.
Collapse
|
11
|
Kim J, Hepat R, Lee D, Kim Y. Protein tyrosine phosphatase encoded in Cotesia plutellae bracovirus suppresses a larva-to-pupa metamorphosis of the diamondback moth, Plutella xylostella. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:60-9. [PMID: 23651929 DOI: 10.1016/j.cbpa.2013.04.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/29/2013] [Accepted: 04/29/2013] [Indexed: 01/31/2023]
Abstract
Parasitization by an endoparasitoid wasp, Cotesia plutellae, inhibits a larva-to-pupa metamorphosis of the diamondback moth, Plutella xylostella. This study tested an inhibitory effect of C. plutellae bracovirus (CpBV) on the metamorphosis of P. xylostella. Parasitized P. xylostella exhibited significantly reduced prothoracic gland (PTG) development at the last instar compared to nonparasitized larvae. Expression of the ecdysone receptor (EcR) was markedly suppressed during the last instar larvae parasitized by C. plutellae. By contrast, expression of the insulin receptor (InR) significantly increased in the parasitized larvae. Microinjection of CpBV significantly inhibited the larva-to-pupa metamorphosis of nonparasitized larvae in a dose-dependent manner. Injection of CpBV also inhibited the expression of the EcR and increased the expression of the InR. Individual CpBV segments were transiently expressed in its encoded genes in nonparasitized larvae and screened to determine antimetamorphic viral gene(s). Out of 21 CpBV segments, two viral segments (CpBV-S22 and CpBV-S27) were proved to inhibit larva-to-pupa metamorphosis by transient expression assay. RNA interference of each gene encoded in the viral segments was applied to determine antimetamorphic gene(s). Protein tyrosine phosphatase, early expressed gene, and four hypothetical genes were selected to be associated with the antimetamorphic activity of CpBV. These results suggest that antimetamorphosis of P. xylostella parasitized by C. plutellae is induced by inhibiting PTG development and subsequent ecdysteroid signaling with viral factors of CpBV.
Collapse
Affiliation(s)
- Jiwan Kim
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Korea
| | | | | | | |
Collapse
|
12
|
Serbielle C, Dupas S, Perdereau E, Héricourt F, Dupuy C, Huguet E, Drezen JM. Evolutionary mechanisms driving the evolution of a large polydnavirus gene family coding for protein tyrosine phosphatases. BMC Evol Biol 2012; 12:253. [PMID: 23270369 PMCID: PMC3573978 DOI: 10.1186/1471-2148-12-253] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 12/11/2012] [Indexed: 11/20/2022] Open
Abstract
Background Gene duplications have been proposed to be the main mechanism involved in genome evolution and in acquisition of new functions. Polydnaviruses (PDVs), symbiotic viruses associated with parasitoid wasps, are ideal model systems to study mechanisms of gene duplications given that PDV genomes consist of virulence genes organized into multigene families. In these systems the viral genome is integrated in a wasp chromosome as a provirus and virus particles containing circular double-stranded DNA are injected into the parasitoids’ hosts and are essential for parasitism success. The viral virulence factors, organized in gene families, are required collectively to induce host immune suppression and developmental arrest. The gene family which encodes protein tyrosine phosphatases (PTPs) has undergone spectacular expansion in several PDV genomes with up to 42 genes. Results Here, we present strong indications that PTP gene family expansion occurred via classical mechanisms: by duplication of large segments of the chromosomally integrated form of the virus sequences (segmental duplication), by tandem duplications within this form and by dispersed duplications. We also propose a novel duplication mechanism specific to PDVs that involves viral circle reintegration into the wasp genome. The PTP copies produced were shown to undergo conservative evolution along with episodes of adaptive evolution. In particular recently produced copies have undergone positive selection in sites most likely involved in defining substrate selectivity. Conclusion The results provide evidence about the dynamic nature of polydnavirus proviral genomes. Classical and PDV-specific duplication mechanisms have been involved in the production of new gene copies. Selection pressures associated with antagonistic interactions with parasitized hosts have shaped these genes used to manipulate lepidopteran physiology with evidence for positive selection involved in adaptation to host targets.
Collapse
Affiliation(s)
- Céline Serbielle
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Faculté des Sciences et Techniques, Université F. Rabelais, Parc de Grandmont, 37200, Tours, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Ramjan Ali M, Kim Y. A novel polydnaviral gene family, BEN, and its immunosuppressive function in larvae of Plutella xylostella parasitized by Cotesia plutellae. J Invertebr Pathol 2012; 110:389-97. [PMID: 22609480 DOI: 10.1016/j.jip.2012.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/30/2012] [Accepted: 05/07/2012] [Indexed: 11/19/2022]
Abstract
A full genome sequence of the episomal form of Cotesia plutellae bracovirus (CpBV) suggests 11 BEN family genes. This study analyzed their expression and physiological function in the viral host, Plutella xylostella. All 11 BEN family genes were expressed during entire parasitization period of P. xylostella larvae. In addition, these BEN family genes were expressed in fat body, gut, epidermis, and hemocytes in final larval instar of parasitized P. xylostella. The 11 BEN family genes were transiently expressed in nonparasitized larvae by injection of each viral segment containing its corresponding BEN family gene. The transient expression of BEN family genes significantly suppressed hemocyte nodule formation in response to bacterial challenge. Subsequent injection of double-stranded RNA specific to each BEN family gene suppressed the expression of the BEN family gene and rescued the immunosuppression. These results indicate that 11 BEN family genes are expressed in larvae parasitized by C. plutellae and play crucial role in inducing immunosuppression. Homologous BEN family genes were found in other bracoviral genomes. We propose BEN domain-containing genes as a new functional gene family in polydnaviruses.
Collapse
Affiliation(s)
- Md Ramjan Ali
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| | | |
Collapse
|
14
|
Hepat R, Kim Y. Transient expression of a viral histone H4 inhibits expression of cellular and humoral immune-associated genes in Tribolium castaneum. Biochem Biophys Res Commun 2011; 415:279-83. [PMID: 22037579 DOI: 10.1016/j.bbrc.2011.10.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 10/10/2011] [Indexed: 02/05/2023]
Abstract
A viral histone H4 is encoded in a polydnavirus called Cotesia plutellae bracovirus (CpBV), which is symbiotic to an endoparasitoid wasp, C. plutellae. Compared to general histone H4s, the viral H4 possesses an extra N-terminal tail containing 38 amino acid residues, which has been presumed to control host gene expression in an epigenetic mode. To analyze the epigenetic control activity of CpBV-H4 on expression of immune-associated genes, it was transiently expressed in larvae of Tribolium castaneum that had been annotated in the immune genes from a full genome sequence. Subsequent alteration of gene expression pattern was compared with that of its mutant form deleting N-terminal tail (truncated CpBV-H4). In response to bacterial challenge, T. castaneum induces expression of 13 antimicrobial peptide (AMP) genes. When CpBV-H4 was expressed, the larvae failed to express 12 inducible AMP genes. By contrast, when truncated CpBV-H4 was transiently expressed, all AMP genes were expressed. Hemocyte nodule formation was significantly impaired by expression of CpBV-H4, in which expressions of tyrosine hydroxylase and dihydroxyphenylalanine decarboxylase were suppressed. However, expression of truncated CpBV-H4 did not give any significant adverse effect on the cellular immunity. The immunosuppression of CpBV-H4 was further supported by its activity of enhancing bacterial pathogenicity of an entomopathogenic bacterium, Xenorhabdus nematophila, against larvae transiently expressing CpBV-H4. These results suggest that CpBV-H4 suppresses both humoral and cellular immune responses of T. castaneum by altering a normal epigenetic control of immune-associated gene expression.
Collapse
Affiliation(s)
- Rahul Hepat
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| | | |
Collapse
|
15
|
Surakasi VP, Nalini M, Kim Y. Host translational control of a polydnavirus, Cotesia plutellae bracovirus, by sequestering host eIF4A to prevent formation of a translation initiation complex. INSECT MOLECULAR BIOLOGY 2011; 20:609-618. [PMID: 21699595 DOI: 10.1111/j.1365-2583.2011.01091.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Host translational control is a viral strategy to exploit host cellular resources. Parasitization by some endoparasitoids containing polydnaviruses inhibits the synthesis of specific host proteins at post-transcriptional level. Two host translation inhibitory factors (HTIFs) have been proposed in Cotesia plutellae bracovirus (CpBV). Parasitization by C. plutellae inhibited storage protein 1 (SP1) synthesis of Plutella xylostella at post-transcriptional level. One HTIF, CpBV15β, inhibited the translation of SP1 mRNA in an in vitro translation assay using rabbit reticulocyte lysate, but did not inhibit its own mRNA. To further analyse the discrimination of target and nontarget mRNAs of the inhibitory effect of HTIF, 5' untranslated regions (UTRs) of SP1 and CpBV15β mRNA were reciprocally exchanged. In the presence of HTIFs, the chimeric CpBV15β mRNA that contained SP1 5' UTR was not translated, whereas the chimeric SP1 mRNA that contained CpBV15β 5' UTR was translated. There was a difference in the 5' UTR secondary structures between target (SP1) and nontarget (CpBV15α and CpBV15β) mRNAs in terms of thermal stability. Different mutant 5' UTRs of SP1 mRNA were prepared by point mutations to modify their secondary structures. The constructs containing 5' UTRs of high thermal stability in their secondary structures were inhibited by HTIF, but those of low thermal stability were not. Immunoprecipitation with CpBV15β antibody coprecipitated eIF4A, which would be required for unwinding the secondary structure of the 5' UTR. These results indicate that the viral HTIF discriminates between host mRNAs according to their dependency on eIF4A to form a functional initiation complex for translation.
Collapse
Affiliation(s)
- V P Surakasi
- Department of Bioresource Sciences, Andong National University, Andong, Korea
| | | | | |
Collapse
|
16
|
Chen YF, Gao F, Ye XQ, Wei SJ, Shi M, Zheng HJ, Chen XX. Deep sequencing of Cotesia vestalis bracovirus reveals the complexity of a polydnavirus genome. Virology 2011; 414:42-50. [PMID: 21470650 DOI: 10.1016/j.virol.2011.03.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/26/2011] [Accepted: 03/10/2011] [Indexed: 01/05/2023]
Abstract
Here we completed the whole genome sequence of Cotesia vestalis bracovirus (CvBV) by deep sequencing and compared the genome features of CvBV to those of other polydnaviruses (PDVs). The genome is 540,215 base pairs divided into 35 genomic segments that range from 2.6 to 39.2kb. Comparison of CvBV with other PDVs shows that more segments are found, including new segments that have no corresponding segments in other phylogenetically related PDVs, which suggests that there might be still more segments not being sequenced in the present known PDVs. We identified eight gene families and five genes in CvBV, including new genes which were first found in PDVs. Strikingly, we identified a putative helicase protein displaying similarity to human Pif1 helicase, which has never been reported for other PDVs. This finding will bring new insights in research of these special viruses.
Collapse
Affiliation(s)
- Ya-Feng Chen
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Transient transcription of a putative RNase containing BEN domain encoded in Cotesia plutellae bracovirus induces an immunosuppression of the diamondback moth, Plutella xylostella. J Invertebr Pathol 2010; 105:156-63. [DOI: 10.1016/j.jip.2010.06.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 06/02/2010] [Accepted: 06/03/2010] [Indexed: 11/22/2022]
|
18
|
Kwon B, Song S, Choi JY, Je YH, Kim Y. Transient expression of specific Cotesia plutellae bracoviral segments induces prolonged larval development of the diamondback moth, Plutella xylostella. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:650-658. [PMID: 20138886 DOI: 10.1016/j.jinsphys.2010.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 01/29/2010] [Accepted: 01/29/2010] [Indexed: 05/28/2023]
Abstract
A polydnavirus, Cotesia plutellae bracovirus (CpBV), possesses a segmented and dispersed genome that is located on chromosome(s) of its symbiotic endoparasitic wasp, C. plutellae. When the host wasp parasitizes larvae of the diamondback moth, Plutella xylostella, at least 27 viral genome segments are delivered to the parasitized host along with the wasp egg. The parasitized P. xylostella exhibits significant immunosuppression and a prolonged larval development. Parasitized larvae take about 2 days longer than nonparasitized larvae to develop until the wandering stage of the final larval instar, and die after egress of the full grown wasp larvae. Developmental analysis using juvenile hormone and ecdysteroid analogs suggests that altering endocrine signals could induce the retardation of larval developmental rate in P. xylostella. In this study we used a transient expression technique to micro-inject individual CpBV genome segments, and tested their ability to induce delayed larval development of P. xylostella. We demonstrated that a CpBV segment was able to express its own encoded genes when it was injected into nonparasitized larvae, in which the expression patterns of the segment genes were similar to those in the larvae parasitized by C. plutellae. Twenty three CpBV genome segments were individually cloned and injected into the second instar larvae of P. xylostella and their effects assessed by measuring the time taken for host development to the cocooning stage. Three CpBV genome segments markedly interfered with the host larval development. When the putative genes of these segments were analyzed, it was found that they did not share any common genes. Among these segments able to delay host development, segment S27 was predicted to encode seven protein tyrosine phosphatases (CpBV-PTPs), some of which were mutated by insertional inactivation with transposons, while other encoded gene expressions were unaffected. The mutant segments were unable to induce prolonged larval development of P. xylostella. These results suggest that CpBV can induce prolonged larval development of P. xylostella, and that at least some CpBV-PTPs may contribute to the parasitic role probably by altering titers of developmental hormones.
Collapse
Affiliation(s)
- Bowon Kwon
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| | | | | | | | | |
Collapse
|
19
|
Barandoc KP, Park J, Kim Y. A SERI technique reveals an immunosuppressive activity of a serine-rich protein encoded in Cotesia plutellae bracovirus. BMB Rep 2010; 43:279-83. [PMID: 20423614 DOI: 10.5483/bmbrep.2010.43.4.279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polydnavirus genome is segmented and dispersed on host wasp chromosome. After replication, the segments form double- stranded circular DNAs and embedded in viral coat proteins. These viral particles are delivered into a parasitized host along with parasitoid eggs. A serine-rich protein (SRP) is predicted in a polydnavirus, Cotesia plutellae bracovirus (CpBV), genome in its segment no. 33 (CpBV-S33), creating CpBVSRP1. This study explored its expression and physiological function in the diamondback moth, Plutella xylostella, larvae parasitized by C. plutellae. CpBV-SRP1 encodes 122 amino acids with 26 serines and several predicted phosphorylation sites. It is persistently expressed in all tested tissues of parasitized P. xylostella including hemocyte, fat body, and gut. Its physiological function was analyzed by injecting CpBV-S33 and inducing its expression in nonparasitized P. xylostella by a technique called SERI (segment expression and RNA interference). The expression of CpBV-SRP1 significantly impaired the spreading behavior and total cell count of hemocytes of treated larvae. Subsequent RNA interference of CpBV-SRP1 rescued the immunosuppressive response. This study reports the persistent expression of CpBV-SRP1 in a parasitized host and its parasitic role in suppressing the host immune response by altering hemocyte behavior and survival.
Collapse
Affiliation(s)
- Karen P Barandoc
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Korea
| | | | | |
Collapse
|
20
|
Roh JY, Wang Y, Liu Q, Tao X, Choi JY, Shim HJ, Xu HG, Lee S, Woo SD, Jin BR, Je YH. Cloning of circular DNAs from microorganisms using a novel plasmid capture system. Mol Biotechnol 2009; 44:120-6. [PMID: 19838822 DOI: 10.1007/s12033-009-9215-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasmid capture system (PCS) facilitates cloning and manipulation of circular double-stranded DNA. We recently developed an improved PCS (PCS-LZ) to clone relatively large DNA molecules of 30-150 kb. The PCS-LZ donor consists of a mini-F replicon and a kanamycin resistance marker between Tn7 left and Tn7 right ends. Both the replicon and marker gene of the PCS-LZ donor are transferred into target plasmid DNAs by in vitro transposition, followed by replication in E. coli. Colonies are tested for lacZ expression by blue/white screening. Circular DNAs were obtained from plasmids of Bacillus thuringiensis, genome segments of Cotesia glomerata bracovirus and polymorphic genomes of Autographa californica nucleopolyhedrovirus. PCS-LZ is a powerful tool for use in genomic analysis and mutagenesis in microorganisms including invertebrate pathogens.
Collapse
Affiliation(s)
- Jong Yul Roh
- Department of Agricultural Biotechnology, Seoul National University, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cloning and molecular characterization of a novel rolling-circle replicating plasmid, pK1S-1, from Bacillus thuringiensis subsp. kurstaki K1. J Microbiol 2009; 47:466-72. [PMID: 19763421 DOI: 10.1007/s12275-009-0020-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 05/18/2009] [Indexed: 10/20/2022]
|
22
|
Choi JY, Kim YS, Wang Y, Kang JN, Roh JY, Shim HJ, Woo SD, Jin BR, Je YH. Improved baculovirus vectors expressing barnase using promoters from Cotesia plutellae bracovirus. Mol Cells 2009; 28:19-24. [PMID: 19711040 DOI: 10.1007/s10059-009-0096-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 05/22/2009] [Accepted: 05/25/2009] [Indexed: 11/29/2022] Open
Abstract
The goal of this study was to create a novel baculovirus expression system that does not require recombinant virus purification steps. Transfection of insect cells with transfer vectors containing barnase under control of the Cotesia plutellae bracovirus (CpBV) promoters ORF3004 or ORF3005 reduced cell growth. Co-transfection with bApGOZA DNA yielded no recombinant viruses and non-recombinant backgrounds. To further investigate the detrimental effects of barnase on insect cells, two recombinant bacmids harboring the barnase gene under control of the CpBV promoters, namely bAcFast-3004ProBarnase and bAcFast-3005ProBarnase, were constructed. While no viral replication was observed when only the recombinant bacmids were transfected, recombinant viruses were generated when the bacmids were co-transfected with the transfer vector, pAcUWPolh, through substitution of the barnase gene with the native polyhedrin gene by homologous recombination. Moreover, no non-recombinant backgrounds were detected from unpurified recombinant stocks using PCR analysis. These results indicate that CpBV promoters can be used to improve baculovirus expression vectors by means of lethal gene expression under the control of these promoters.
Collapse
Affiliation(s)
- Jae Young Choi
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sequence and gene organization of 24 circles from the Cotesia plutellae bracovirus genome. Arch Virol 2009; 154:1313-27. [DOI: 10.1007/s00705-009-0441-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 06/22/2009] [Indexed: 10/20/2022]
|
24
|
Bae S, Kim Y. IkB genes encoded in Cotesia plutellae bracovirus suppress an antiviral response and enhance baculovirus pathogenicity against the diamondback moth, Plutella xylostella. J Invertebr Pathol 2009; 102:79-87. [PMID: 19559708 DOI: 10.1016/j.jip.2009.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Revised: 06/18/2009] [Accepted: 06/22/2009] [Indexed: 12/21/2022]
Abstract
An endoparasitoid wasp, Cotesia plutellae, parasitizes larvae of the diamondback moth, Plutella xylostella, with its symbiotic polydnavirus, C. plutellae bracovirus (CpBV). This study analyzed the role of Inhibitor-kB (IkB)-like genes encoded in CpBV in suppressing host antiviral response. Identified eight CpBV-IkBs are scattered on different viral genome segments and showed high homologies with other bracoviral IkBs in their amino acid sequences. Compared to an insect ortholog (e.g., Cactus of Drosophila melanogaster), they possessed a shorter ankyrin repeat domain without any regulatory domains. The eight CpBV-IkBs are, however, different in their promoter components and expression patterns in the parasitized host. To test their inhibitory activity on host antiviral response, a midgut response of P. xylostella against baculovirus infection was used as a model reaction. When the larvae were orally fed the virus, they exhibited melanotic responses of midgut epithelium, which increased with baculovirus dose and incubation time. Parasitized larvae exhibited a significant reduction in the midgut melanotic response, compared to nonparasitized larvae. Micro-injection of each of the four CpBV genome segments containing CpBV-IkBs into the hemocoel of nonparasitized larvae showed the gene expressions of the encoded IkBs and suppressed the midgut melanotic response in response to the baculovirus treatment. When nonparasitized larvae were orally administered with a recombinant baculovirus containing CpBV-IkB, they showed a significant reduction in midgut melanotic response and an enhanced susceptibility to the baculovirus infectivity.
Collapse
Affiliation(s)
- Sungwoo Bae
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| | | |
Collapse
|
25
|
Bézier A, Herbinière J, Lanzrein B, Drezen JM. Polydnavirus hidden face: the genes producing virus particles of parasitic wasps. J Invertebr Pathol 2009; 101:194-203. [PMID: 19460382 DOI: 10.1016/j.jip.2009.04.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 04/15/2009] [Indexed: 12/27/2022]
Abstract
Very few obligatory relationships involve viruses to the remarkable exception of polydnaviruses (PDVs) associated with tens of thousands species of parasitic wasps that develop within the body of lepidopteran larvae. PDV particles, injected along with parasite eggs into the host body, act by manipulating host immune defences, development and physiology, thereby enabling wasp larvae to survive in a potentially harmful environment. Particle production does not occur in infected tissues of parasitized caterpillars, but is restricted to specialized cells of the wasp ovaries. Moreover, the genome enclosed in the particles encodes almost no viral structural protein, but mostly factors used to manipulate the physiology of the parasitized host. We recently unravelled the viral nature of PDVs associated with braconid wasps by characterizing a large set of nudivirus genes residing permanently in the wasp chromosome(s). Many of these genes encode structural components of the bracovirus particles and their expression pattern correlates with particle production. They constitute a viral machinery comprising a large number of core genes shared by nudiviruses and baculoviruses. Thus bracoviruses do not appear to be nudiviruses remnants, but instead complex nudiviral devices carrying DNA for the delivery of virulence genes into lepidopteran hosts. This highlights the fact that viruses should no longer be exclusively considered obligatory parasites, and that in certain cases they are obligatory symbionts.
Collapse
Affiliation(s)
- Annie Bézier
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 6035, Université François Rabelais, Parc de Grandmont, Tours, France
| | | | | | | |
Collapse
|
26
|
Choi JY, Kwon SJ, Roh JY, Yang TJ, Li MS, Park BS, Kim Y, Woo SD, Jin BR, Je YH. Analysis of promoter activity of selected Cotesia plutellae bracovirus genes. J Gen Virol 2009; 90:1262-1269. [PMID: 19264605 DOI: 10.1099/vir.0.009472-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In a previous study, we cloned 27 discrete genome segments of Cotesia plutellae bracovirus (CpBV) and provided the complete nucleotide sequences and annotation. Seven putative coding regions were predicted from one of the largest segments, CpBV-S30. The activity of promoters associated with six predicted ORFs from this segment were investigated using both transient and baculovirus expression assays with enhanced green fluorescent protein as a reporter gene. CpBV promoters showed activity earlier than the polyhedrin promoter and the activity of some of these promoters was superior to that of the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ie-1 promoter in the baculovirus expression assays. The promoter of ORF3004 showed the highest level of activity in insect cells, exhibiting 24 % of the activity obtained with the AcMNPV polyhedrin promoter in Sf9 cells. In Spodoptera exigua larvae, the ORF3006 promoter showed the highest activity, with about 35 % of the activity measured with the polyhedrin promoter. In addition, analysis of the ORF3006 promoter revealed that the region between -382 and -422 from the translation start point was critical for activity of this promoter. These results suggest that the CpBV-S30 promoters characterized here could be useful tools in a variety of biotechnological applications, such as gene expression analyses and insecticide development.
Collapse
Affiliation(s)
- Jae Young Choi
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Soo-Jin Kwon
- National Institute of Agricultural Biotechnology, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Jong Yul Roh
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Tae-Jin Yang
- National Institute of Agricultural Biotechnology, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Ming Shun Li
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Beom-Seok Park
- National Institute of Agricultural Biotechnology, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Yonggyun Kim
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| | - Soo-Dong Woo
- Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Byung Rae Jin
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea
| | - Yeon Ho Je
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
27
|
Transient expression of a polydnaviral gene, CpBV15β, induces immune and developmental alterations of the diamondback moth, Plutella xylostella. J Invertebr Pathol 2009; 100:22-8. [DOI: 10.1016/j.jip.2008.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/02/2008] [Accepted: 09/16/2008] [Indexed: 11/20/2022]
|
28
|
Huang F, Shi M, Chen YF, Cao TT, Chen XX. Oogenesis of Diadegma semiclausum (Hymenoptera: Ichneumonidae) and its associated polydnavirus. Microsc Res Tech 2008; 71:676-83. [PMID: 18454475 DOI: 10.1002/jemt.20594] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We present a detailed ultrastructural analysis of ovary and calyx cell differentiation of Diadegma semiclausum. Numerous gametangia in various developmental stages were examined with electron microscopy to characterize the ultrastructure features of oogenesis, the most important of which is the development of nurse cells. In the germarium, the undifferentiated germ cells diversify, and one of the central cells of the cluster differentiates into an oocyte while the remaining become nurse cells. Germ cells continue developing in the vitellarium until mature and then enter into the calyx region. The calyx epithelium contains typical ichneumonid polydnaviruses with the following characteristics: (1) the virus particles assemble in the nuclei of calyx cells where they acquire an initial (inner) membrane, then migrate through the cytoplasm and budd out into the lumen of the ovary, at which time they acquire a second envelope (outer membrane); (2) the particle has a genome comprising several DNA segments. However, this new polydnavirus (Diadegma semiclausum polydnavirus) in the genus ichnovirus was not attached to the surface of the egg chorion.
Collapse
Affiliation(s)
- Fang Huang
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | |
Collapse
|
29
|
Shi M, Chen YF, Huang F, Zhou XP, Chen XX. Characterization of a novel Cotesia vestalis polydnavirus (CvBV) gene containing a ser-rich motif expressed in Plutella xylostella larvae. BMB Rep 2008; 41:587-92. [DOI: 10.5483/bmbrep.2008.41.8.587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
30
|
Nalini M, Choi JY, Je YH, Hwang I, Kim Y. Immunoevasive property of a polydnaviral product, CpBV-lectin, protects the parasitoid egg from hemocytic encapsulation of Plutella xylostella (Lepidoptera: Yponomeutidae). JOURNAL OF INSECT PHYSIOLOGY 2008; 54:1125-1131. [PMID: 18606166 DOI: 10.1016/j.jinsphys.2008.04.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 04/18/2008] [Accepted: 04/21/2008] [Indexed: 05/26/2023]
Abstract
Immunosuppression is the main pathological symptom of the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae), parasitized by an endoparasitoid wasp, Cotesia plutellae (vestalis, Hymenoptera: Braconidae). C. plutellae bracovirus (CpBV), which is a symbiotic virus of C. plutellae, has been known to be the main parasitic factor in the host-parasitoid interaction. CpBV-lectin, encoded in the viral genome and expressed in P. xylostella during early parasitization stage, was suspected to play a role in immunoevasion of defense response. Here we expressed CpBV-lectin in Sf9 cells using a recombinant baculovirus for subsequent functional assays. The recombinant CpBV-lectin exhibited hemagglutination against vertebrate erythrocytes. Its hemagglutinating activity increased with calcium, but inhibited by adding EDTA, indicating its C-type lectin property. CpBV-lectin showed specific carbohydrate-binding affinity against N-acetyl glucosamine and N-acetyl neuraminic acid. The role of this CpBV-lectin in immunosuppression was analyzed by exposing hemocytes of nonparasitized P. xylostella to rat erythrocytes or FITC-labeled bacteria pretreated with recombinant CpBV-lectin, which resulted in significant reduction in adhesion or phagocytosis, respectively. The immunosuppressive activity of CpBV-lectin was further analyzed under in vitro encapsulation response of hemocytes against parasitoid eggs collected at 1- or 24-h post-parasitization. Hemocytic encapsulation was observed against 1-h eggs but not against 24-h eggs. When the 1-h eggs were pretreated with the recombinant CpBV-lectin, encapsulation response was completely inhibited, where CpBV-lectin bound to the parasitoid eggs, but not to hemocytes. These results suggest that CpBV-lectin interferes with hemocyte recognition by masking hemocyte-binding sites on the parasitoid eggs.
Collapse
Affiliation(s)
- Madanagopal Nalini
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| | | | | | | | | |
Collapse
|
31
|
Gad W, Kim Y. A viral histone H4 encoded by Cotesia plutellae bracovirus inhibits haemocyte-spreading behaviour of the diamondback moth, Plutella xylostella. J Gen Virol 2008; 89:931-938. [PMID: 18343834 DOI: 10.1099/vir.0.83585-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Histone H4 is highly conserved and forms a central-core nucleosome with H3 in eukaryotic chromatin. Its covalent modification at the protruding N-terminal region from the nucleosomal core can change the chromatin conformation in order to regulate gene expression. A viral H4 was found in the genome of Cotesia plutellae bracovirus (CpBV). The obligate host of the virus is an endoparasitoid wasp, C. plutellae, which parasitizes the diamondback moth, Plutella xylostella, and interrupts host development and immune reactions. CpBV has been regarded as a major source for interrupting the physiological processes during parasitization. CpBV H4 shows high sequence identity with the amino acid sequence of P. xylostella H4 except for an extended N-terminal region (38 aa). This extended N-terminal CpBV H4 contains nine lysine residues. CpBV H4 was expressed in P. xylostella parasitized by C. plutellae. Western blot analysis using a wide-spectrum H4 antibody showed two H4s in parasitized P. xylostella. In parasitized haemocytes, CpBV H4 was detected predominantly in the nucleus and was highly acetylated. The effect of CpBV H4 on haemocytes was analysed by transient expression using a eukaryotic expression vector, which was injected into non-parasitized P. xylostella. Expression of CpBV H4 was confirmed in the transfected P. xylostella by RT-PCR and immunofluorescence assays. Haemocytes of the transfected larvae lost their spreading ability on an extracellular matrix. Inhibition of the cellular immune response by transient expression was reversed by RNA interference using dsRNA of CpBV H4. These results suggest that CpBV H4 plays a critical role in suppressing host immune responses during parasitization.
Collapse
Affiliation(s)
- Wael Gad
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| | - Yonggyun Kim
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| |
Collapse
|
32
|
Chen YF, Shi M, Liu PC, Huang F, Chen XX. Characterization of an IkappaB-like gene in Cotesia vestalis polydnavirus. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2008; 68:71-78. [PMID: 18454492 DOI: 10.1002/arch.20253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cotesia vestalis (Braconidae, Hymenoptera) depends mainly on 3 regulatory factors to manipulate its host's development and immune response, including polydnavirus, venom, and teratocytes, among which polydnavirus plays a key role in suppressing the host immune system. In the present work, we cloned the full sequence of gene CvBV-ank2, encoding an IkappaB-like protein in C. vestalis polydnavirus (CvBV). The full sequence of CvBV-ank2 is 955 bp, encoding 162 amino acids with a calculated molecular mass of 18,355 Da. CvBV-ank2 shares high similarity with the exon I and exon II of CvBV-ank1, which is on the same segment with CvBV-ank2. This result suggests that gene duplication might occur in CvBV-ank1 and CvBV-ank2. Phylogenetic analysis indicated that CvBV-ank2 and CvBV-ank1, both on segment CvBV-S2, are, respectively, closely related with CcBV-26.3 and CcBV-26.2, both on segment Circle26 of C. congregata polydnavirus (CcBV). BLAST search using the sequence of segment CvBV-S2 as a query revealed that segment CvBV-S2 shares 90% max identity with segment Circle26 of CcBV over 67% query coverage. These results demonstrate that there is not only gene similarity, but also segment similarity between CvBV and CcBV. Transcripts of CvBV-ank2 were detected as early as 0.5 h post-parasitization and continued to be detected for 6 days, indicating that CvBV-ank2 might be involved in the early protection of the parasitoid egg.
Collapse
Affiliation(s)
- Ya-Feng Chen
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
33
|
Shi M, Chen YF, Huang F, Liu PC, Zhou XP, Chen XX. Characterization of a novel gene encoding ankyrin repeat domain from Cotesia vestalis polydnavirus (CvBV). Virology 2008; 375:374-82. [DOI: 10.1016/j.virol.2008.02.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 02/04/2008] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
|
34
|
Shi M, Chen YF, Yao Y, Huang F, Chen XX. Characterization of a protein tyrosine phosphatase gene CvBV202 from Cotesia vestalis polydnavirus (CvBV). Virus Genes 2008; 36:595-601. [DOI: 10.1007/s11262-008-0225-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 03/13/2008] [Indexed: 11/28/2022]
|
35
|
Bézier A, Herbinière J, Serbielle C, Lesobre J, Wincker P, Huguet E, Drezen JM. Bracovirus gene products are highly divergent from insect proteins. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2008; 67:172-187. [PMID: 18348209 DOI: 10.1002/arch.20219] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Recently, several polydnavirus (PDV) genomes have been completely sequenced. The dsDNA circles enclosed in virus particles and injected by wasps into caterpillars appear to mainly encode virulence factors potentially involved in altering host immunity and/or development, thereby allowing the survival of the parasitoid larvae within the host tissues. Parasitoid wasps generally inject virulence factors produced in the venom gland. As PDV genomes are inherited vertically by wasps through a proviral form, wasp virulence genes may have been transferred to this chromosomal form, leading to their incorporation into virus particles. Indeed, many gene products from Cotesia congregata bracovirus (CcBV), such as PTPs, IkappaB-like, and cystatins, contain protein domains conserved in metazoans. Surprisingly however, CcBV virulence gene products are not more closely related to insect proteins than to human proteins. To determine whether the distance between CcBV and insect proteins is a specific feature of BV proteins or simply reflects a general high divergence of parasitoid wasp products, which might be due to parasitic lifestyle, we have analyzed the sequences of wasp genes obtained from a cDNA library. Wasp sequences having a high similarity with Apis mellifera genes involved in a variety of biological functions could be identified indicating that the high level of divergence observed for BV products is a hallmark of these viral proteins. We discuss how this divergence might be explained in the context of the current hypotheses on the origin and evolution of wasp-bracovirus associations.
Collapse
Affiliation(s)
- Annie Bézier
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 6035, Université F. Rabelais, Tours, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Lee S, Kim Y. Two homologous parasitism-specific proteins encoded in Cotesia plutellae bracovirus and their expression profiles in parasitized Plutella xylostella. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2008; 67:157-171. [PMID: 18348211 DOI: 10.1002/arch.20218] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A wasp, Cotesia plutellae, parasitizes the diamondback moth, Plutella xylostella, and interrupts host physiology for wasp survival and development. Identification of parasitism-specific factors would be helpful to understand the host-parasitoid interaction. This study focused on identification of a 15-kDa protein found only in plasma of the parasitized P. xylostella. Degenerate primers were designed after N-terminal amino acid sequencing of the parasitism-specific protein and used to clone the corresponding gene from the parasitized P. xylostella by a nested reverse transcriptase-polymerase chain reaction (RT-PCR). Two homologous genes were cloned and identified as "CpBV15alpha" and "CpBV15beta," respectively, due to the identical size (158 amino acid residues) of the predicted open reading frames, in which they shared amino acid sequences in both terminal regions, but varied in internal sequences. Southern hybridization analysis indicated that both genes were located on C. plutellae bracovirus genome. Real-time quantitative RT-PCR revealed that both genes were mostly expressed at the late parasitization period, which was further confirmed by an immunoblotting assay using CpBV15 antibody. A recombinant CpBV15 protein was produced from Sf9 cells via a baculovirus expression system. The purified CpBV15 protein could enter hemocytes of P. xylostella and were localized in the cytosol. Along with the sequence similarities of CpBV15s with eukaryotic initiation factors, their putative biological role has been discussed in terms of the host translation inhibitory factor.
Collapse
Affiliation(s)
- Sunyoung Lee
- Department of Bioresource Sciences, Andong National University, Andong, Korea
| | | |
Collapse
|
37
|
Kwon B, Kim Y. Transient expression of an EP1-like gene encoded in Cotesia plutellae bracovirus suppresses the hemocyte population in the diamondback moth, Plutella xylostella. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:932-942. [PMID: 18321572 DOI: 10.1016/j.dci.2008.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 01/11/2008] [Accepted: 01/14/2008] [Indexed: 05/26/2023]
Abstract
A genome project has been launched and aims to sequence total genome of Cotesia plutellae bracovirus (CpBV). This on-going research has identified seven EP1-like (ELP) genes in the CpBV genome. A group of ELP genes has been speculated as an immunosuppressant encoded in Cotesia-associated bracoviruses. This study analyzed gene expression of these seven CpBV-ELPs in the parasitized diamondback moth, Plutella xylostella. Of these, six CpBV-ELPs were expressed in P. xylostella parasitized by C. plutellae. However, their expression levels varied in different tissues and parasitization stages. Especially, CpBV-ELP1 showed a persistent and ubiquitous expression pattern in both reverse transcriptase-polymerase chain reaction (RT-PCR) and immunofluorescence assays. When nonparasitized P. xylostella was transfected with a recombinant CpBV-ELP1 in a eukaryotic expression vector, CpBV-ELP1 was expressed for at least 3 days and the proteins were detectable in the cytoplasm of hemocytes. The transfected larvae showed significant reduction in total hemocyte numbers, compared with larvae injected with the cloning vector alone. Co-transfection with double-stranded RNA could knock down the expression of CpBV-ELP1 and prevented the reduction of the hemocyte population. This study demonstrates that CpBV-ELP1 plays a physiological role in suppressing host immune response presumably by its hemolytic activity during C. plutellae parasitization.
Collapse
Affiliation(s)
- Bowon Kwon
- Department of Bioresource Sciences, Andong National University, Andong, Republic of Korea
| | | |
Collapse
|
38
|
Lee S, Nalini M, Kim Y. A viral lectin encoded in Cotesia plutellae bracovirus and its immunosuppressive effect on host hemocytes. Comp Biochem Physiol A Mol Integr Physiol 2008; 149:351-61. [PMID: 18325805 DOI: 10.1016/j.cbpa.2008.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 01/09/2008] [Accepted: 01/09/2008] [Indexed: 10/22/2022]
Abstract
An endoparasitoid wasp, Cotesia plutellae, induces immunosuppression of the host diamondback moth, Plutella xylostella. To identify an immunosuppressive factor, the parasitized hemolymph of P. xylostella was separated into plasma and hemocyte fractions. When nonparasitized hemocytes were overlaid with parasitized plasma, they showed significant reduction in bacterial binding efficacy. Here, we considered a viral lectin previously known in other Cotesia species as a humoral immunosuppressive candidate in C. plutellae parasitization. Based on consensus regions of the viral lectins, the corresponding lectin gene was cloned from P. xylostella parasitized by C. plutellae. Its cDNA is 674 bp long and encodes 157 amino acid residues containing a signal peptide (15 residues) and one carbohydrate recognition domain. Open reading frame is divided by one intron (156 bp) in its genomic DNA. Amino acid sequence shares 80% homology with that of C. ruficrus bracovirus lectin and is classified into C-type lectin. Southern hybridization analysis indicated that the cloned lectin gene was located at C. plutellae bracovirus (CpBV) genome. Both real-time quantitative RT-PCR and immunoblotting assays indicated that CpBV-lectin showed early expression during the parasitization. A recombinant CpBV-lectin was expressed in a bacterial system and the purified protein significantly inhibited the association between bacteria and hemocytes of nonparasitized P. xylostella. In the parasitized P. xylostella, CpBV-lectin was detected on the surface of parasitoid eggs after 24 h parasitization by its specific immunostaining. The 24 h old eggs were not encapsulated in vitro by hemocytes of P. xylostella, compared to newly laid parasitoid eggs showing no CpBV-lectin detectable and easily encapsulated. These results support an existence of a polydnaviral lectin family among Cotesia-associated bracovirus and propose its immunosuppressive function.
Collapse
Affiliation(s)
- Sunyoung Lee
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| | | | | |
Collapse
|
39
|
Nalini M, Kim Y. A putative protein translation inhibitory factor encoded by Cotesia plutellae bracovirus suppresses host hemocyte-spreading behavior. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:1283-92. [PMID: 17706666 DOI: 10.1016/j.jinsphys.2007.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 07/02/2007] [Accepted: 07/02/2007] [Indexed: 05/16/2023]
Abstract
An endoparasitoid, Cotesia plutellae (Hymenoptera: Braconidae), possesses a mutualistic bracovirus (CpBV), which plays significant roles in the parasitized host, Plutella xylostella (Lepidoptera: Plutellidae). CpBV15beta, a viral gene encoded by CpBV, is expressed at early and late parasitization periods, suggesting that it functions to manipulate the physiology of the parasitized host. This paper reports a physiological function of CpBV15beta as an immunosuppressive agent. The effect of CpBV15beta on cellular immunity was analyzed by assessing hemocyte-spreading behavior. Parasitization by C. plutellae caused altered behavior of hemocytes of P. xylostella, in which the hemocytes were not able to attach and spread on glass slides. CpBV15beta was expressed in Sf9 cells using a baculovirus expression system and purified from the culture media. When hemocytes of nonparasitized P. xylostella were incubated with purified CpBV15beta protein, spreading behavior was impaired in a dose-dependent manner at low micro-molar range. This inhibitory effect of CpBV15beta could also be demonstrated on hemocytes of a non-natural host, Spodoptera exigua. CpBV15beta protein significantly inhibited F-actin growth of hemocytes in response to an insect cytokine. Similarly, cycloheximide, a eukaryotic translation inhibitor, strongly inhibited the spreading behavior and F-actin growth of P. xylostella hemocytes. Under in vitro condition, hemocytes of nonparasitized P. xylostella released proteins into the surrounding medium. Upon incubation of hemocytes with either CpBV15beta or cycloheximide, their ability to release protein molecules was markedly inhibited. This study suggests that CpBV15beta suppresses hemocyte behavior by inhibiting protein translation.
Collapse
Affiliation(s)
- Madanagopal Nalini
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| | | |
Collapse
|
40
|
Chen YF, Shi M, Huang F, Chen XX. Characterization of two genes of Cotesia vestalis polydnavirus and their expression patterns in the host Plutella xylostella. J Gen Virol 2007; 88:3317-3322. [DOI: 10.1099/vir.0.82999-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cotesia vestalis is an endoparasitoid of larval stages of Plutella xylostella, the diamondback moth. For successful parasitization, this parasitoid injects a polydnavirus into its host during oviposition. Here we isolated two genes, which we named CvBV1 and CvBV2. CvBV1 was located on segment CvBV-S5 with a size of 790 bp, while CvBV2 was located on segment CvBV-S51 with a size of 459 bp. A gene copy of CvBV2 was found on segment CvBV-S48, which we name CvBV2’. Gene duplication occurred in both genes, tandem gene duplication for CvBV1 and segmental duplication for CvBV2. Gene transcripts of the two genes were detected in hosts as early as 0.5 h post-parasitization (p.p.) and continued to be detected for six days, and tissue-specific expression patterns showed that they could be detected in the haemolymph and brain at 2 h p.p., suggesting that they could participate in early protection of parasitoid eggs from host cellular encapsulation.
Collapse
Affiliation(s)
- Ya-Feng Chen
- Institute of Insect Sciences, Zhejiang University, 268 Kaixuan Road, Hangzhou 310029, PR China
| | - Min Shi
- Institute of Insect Sciences, Zhejiang University, 268 Kaixuan Road, Hangzhou 310029, PR China
| | - Fang Huang
- Institute of Insect Sciences, Zhejiang University, 268 Kaixuan Road, Hangzhou 310029, PR China
| | - Xue-xin Chen
- Institute of Insect Sciences, Zhejiang University, 268 Kaixuan Road, Hangzhou 310029, PR China
| |
Collapse
|
41
|
Ibrahim AMA, Kim Y. Transient expression of protein tyrosine phosphatases encoded in Cotesia plutellae bracovirus inhibits insect cellular immune responses. Naturwissenschaften 2007; 95:25-32. [PMID: 17646950 DOI: 10.1007/s00114-007-0290-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 05/21/2007] [Accepted: 06/28/2007] [Indexed: 10/23/2022]
Abstract
Several immunosuppressive factors are associated with parasitism of an endoparasitoid wasp, Cotesia plutellae, on the diamondback moth, Plutella xylostella. C. plutellae bracovirus (CpBV) encodes a large number of putative protein tyrosine phosphatases (PTPs), which may play a role in inhibiting host cellular immunity. To address this inhibitory hypothesis of CpBV-PTPs, we performed transient expression of individual CpBV-PTPs in hemocytes of the beet armyworm, Spodoptera exigua, and analyzed their cellular immune responses. Two different forms of CpBV-PTPs were chosen and cloned into a eukaryotic expression vector under the control of the p10 promoter of baculovirus: one with the normal cysteine active site (CpBV-PTP1) and the other with a mutated active site (CpBV-PTP5). The hemocytes transfected with CpBV-PTP1 significantly increased in PTP activity compared to control hemocytes, but those with CpBV-PTP5 exhibited a significant decrease in the PTP activity. All transfected hemocytes exhibited a significant reduction in both cell spreading and encapsulation activities compared to control hemocytes. Co-transfection of CpBV-PTP1 together with its double-stranded RNA reduced the messenger RNA (mRNA) level of CpBV-PTP1 and resulted in recovery of both hemocyte behaviors. This is the first report demonstrating that the polydnaviral PTPs can manipulate PTP activity of the hemocytes to interrupt cellular immune responses.
Collapse
Affiliation(s)
- Ahmed M A Ibrahim
- Department of Bioresource Sciences, Andong National University, Andong, 760-749, South Korea
| | | |
Collapse
|
42
|
Falabella P, Varricchio P, Provost B, Espagne E, Ferrarese R, Grimaldi A, de Eguileor M, Fimiani G, Ursini MV, Malva C, Drezen JM, Pennacchio F. Characterization of the IkappaB-like gene family in polydnaviruses associated with wasps belonging to different Braconid subfamilies. J Gen Virol 2007; 88:92-104. [PMID: 17170441 DOI: 10.1099/vir.0.82306-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polydnaviruses (PDVs) are obligate symbionts of hymenopteran parasitoids of lepidopteran larvae that induce host immunosuppression and physiological redirection. PDVs include bracoviruses (BVs) and ichnoviruses (IVs), which are associated with braconid and ichneumonid wasps, respectively. In this study, the gene family encoding IkappaB-like proteins in the BVs associated with Cotesia congregata (CcBV) and Toxoneuron nigriceps (TnBV) was analysed. PDV-encoded IkappaB-like proteins (ANK) are similar to insect and mammalian IkappaB, an inhibitor of the transcription factor nuclear factor kappaB (NF-kappaB), but display shorter ankyrin domains and lack the regulatory domains for signal-mediated degradation and turnover. Phylogenetic analysis of ANK proteins indicates that those of IVs and BVs are closely related, even though these two taxa are believed to lack a common ancestor. Starting from a few hours after parasitization, the transcripts of BV ank genes were detected, at different levels, in several host tissues. The structure of the predicted proteins suggests that they may stably bind NF-kappaB/Rel transcription factors of the tumour necrosis factor (TNF)/Toll immune pathway. Accordingly, after bacterial challenge of Heliothis virescens host larvae parasitized by T. nigriceps, NF-kappaB immunoreactive material failed to enter the nucleus of host haemocytes and fat body cells. Moreover, transfection experiments in human HeLa cells demonstrated that a TnBV ank1 gene product reduced the efficiency of the TNF-alpha-induced expression of a reporter gene under NF-kappaB transcriptional control. Altogether, these results suggest strongly that TnBV ANK proteins cause retention of NF-kappaB/Rel factors in the cytoplasm and may thus contribute to suppression of the immune response in parasitized host larvae.
Collapse
Affiliation(s)
- Patrizia Falabella
- Dipartimento di Biologia, Difesa e Biotecnologie Agro-Forestali, Università della Basilicata, Potenza, Italy
| | | | - Bertille Provost
- Institut de Recherche sur la Biologie de l'Insecte, CNRS, Université de Tours, Faculté des Sciences, Tours, France
| | - Eric Espagne
- Institut de Recherche sur la Biologie de l'Insecte, CNRS, Université de Tours, Faculté des Sciences, Tours, France
| | - Roberto Ferrarese
- Dipartimento di Biologia Strutturale e Funzionale, Università dell'Insubria, Varese, Italy
| | - Annalisa Grimaldi
- Dipartimento di Biologia Strutturale e Funzionale, Università dell'Insubria, Varese, Italy
| | - Magda de Eguileor
- Dipartimento di Biologia Strutturale e Funzionale, Università dell'Insubria, Varese, Italy
| | | | | | - Carla Malva
- Istituto di Genetica e Biofisica, CNR, Napoli, Italy
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte, CNRS, Université de Tours, Faculté des Sciences, Tours, France
| | - Francesco Pennacchio
- Dipartimento di Entomologia e Zoologia Agraria 'F. Silvestri', Università di Napoli 'Federico II', Via Università 100, 80055 Portici (NA), Italy
| |
Collapse
|
43
|
Pruijssers AJ, Strand MR. PTP-H2 and PTP-H3 from Microplitis demolitor Bracovirus localize to focal adhesions and are antiphagocytic in insect immune cells. J Virol 2007; 81:1209-19. [PMID: 17121799 PMCID: PMC1797498 DOI: 10.1128/jvi.02189-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 11/13/2006] [Indexed: 12/31/2022] Open
Abstract
Viruses in the family Polydnaviridae are symbiotically associated with parasitoid wasps. Wasps inject polydnaviruses (PDVs) when laying an egg into their insect host, and expression of viral gene products causes several physiological alterations, including immunosuppression, that allow the wasp's progeny to develop. As with other PDVs, most Microplitis demolitor bracovirus (MdBV) genes are related variants that form gene families. The largest MdBV gene family includes 13 members that encode predicted proteins related to protein tyrosine phosphatases (PTPs). Sequence analysis during the present study indicated that five PTP family members (PTP-H2, -H3, -N1, and -N2) have fully conserved catalytic domains, whereas other family members exhibited replacements, deletions, or rearrangements of amino acids considered essential for tyrosine phosphatase activity. Expression studies indicated that most MdBV PTP genes are expressed in virus-infected host insects, with transcript abundance usually being highest in hemocytes. MdBV-infected hemocytes also exhibited higher levels of tyrosine phosphatase activity than noninfected hemocytes. We produced expression constructs for four of the most abundantly expressed PTP family members and conducted functional studies with hemocyte-like Drosophila S2 cells. These experiments suggested that recombinant PTP-H2 and PTP-H3 are functional tyrosine phosphatases whereas PTP-H1 and PTP-J1 are not. PTP-H2 and -H3 localized to focal adhesions in S2 cells, and coexpression with another MdBV gene product, Glc1.8, resulted in complete inhibition of phagocytosis.
Collapse
Affiliation(s)
- Andrea J Pruijssers
- Department of Entomology and Center for Emerging and Tropical Diseases, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
44
|
Ibrahim AMA, Choi JY, Je YH, Kim Y. Protein tyrosine phosphatases encoded in Cotesia plutellae bracovirus: sequence analysis, expression profile, and a possible biological role in host immunosuppression. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 31:978-90. [PMID: 17363054 DOI: 10.1016/j.dci.2006.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2006] [Revised: 11/06/2006] [Accepted: 11/09/2006] [Indexed: 05/14/2023]
Abstract
A genome project has been launched and aims to sequence total genome of Cotesia plutellae bracovirus (CpBV). On this process, several putative open reading frames have been proposed, among which there was a large gene family coding for protein tyrosine phosphatases (PTPs). This study analyzed the deduced amino acid sequences of 14 CpBV-PTPs in terms of conserved domains with other known polydnaviral PTPs and determined their expression patterns in diamondback moth, Plutella xylostella, parasitized by C. plutellae. The analyzed CpBV-PTPs share the common 10 motifs with classical type of PTPs. However, there are variations among CpBV-PTPs in active site sequence and phosphorylation sites. Quantitative real-time polymerase chain reaction (PCR) indicated that most PTPs in the parasitized P. xylostella were expressed from the first day of parasitization and increased the expression levels during parasitization. All 14 PTPs were expressed in both immune-associated tissues of fat body and hemocytes in the parasitized host. During last instar, the PTP enzyme activity of the parasitized P. xylostella was significantly lower than that of the nonparasitized. The reduction of the PTP activity was observed in cytosolic fraction, but not in membrane fraction. The hemocytes of parasitized P. xylostella markedly lost their spreading ability in response to a cytokine (PSP1: plasmatocyte-spreading peptide 1). The functional link between the reduced PTP activity and the suppressed hemocytic behavior was evidenced by the inhibitory effect of sodium orthovanadate (a specific PTP inhibitor) on hemocyte-spreading behavior of nonparasitized P. xylostella. These results suggest that CpBV-PTPs are expressed in the parasitized P. xylostella and affect cellular PTP activity, which may be associated with host immunosuppression.
Collapse
Affiliation(s)
- Ahmed M A Ibrahim
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| | | | | | | |
Collapse
|
45
|
Ibrahim AMA, Kim Y. Parasitism by Cotesia plutellae alters the hemocyte population and immunological function of the diamondback moth, Plutella xylostella. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:943-50. [PMID: 16872627 DOI: 10.1016/j.jinsphys.2006.06.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 05/30/2006] [Accepted: 06/01/2006] [Indexed: 05/11/2023]
Abstract
Cotesia plutellae, a solitary endoparasitoid wasp, parasitizes the diamondback moth, Plutella xylostella, and induces host immunosuppression and lethality in the late larval stage. This study focused on changes of cellular immunity in the parasitized P. xylostella in terms of hemocyte composition and cellular functions. In third and fourth instar larvae of nonparasitized P. xylostella, granular cells represented the main hemocyte type (60-70%) and plasmatocytes were also present at around 15% among the total hemocytes. Following parasitization by C. plutellae, the relative proportions of these two major hemocytes changed very little, but the total hemocyte counts exhibited a significant reduction. Functionally, the granular cells played a significant role in phagocytosis based on a fluorescence assay using fluorecein isothiocyanate-labeled bacteria. The phagocytic activity of the granular cells occurred as early as 5 min after incubation with the bacteria, and increased during the first 40 min of incubation. The parasitism by C. plutellae significantly inhibited phagocytosis of the granular cells. Plasmatocytes also exhibited minor phagocytic activity. Moreover, plasmatocyte phagocytosis was not inhibited by parasitism. On the other hand, hemocyte-spreading behavior in response to pathogen infection was significant only for plasmatocytes, which exhibited a characteristic spindle shape upon infection. A significant spreading of the plasmatocytes was found as early as 5 min after pathogen incubation and their ratio increased during the first 40 min. An insect cytokine, plasmatocyte-spreading peptide 1 (PSP1) from Pseudoplusia includens, was highly active in inducing plasmatocyte-spreading behavior of P. xylostella in a dose-dependent manner. P. xylostella parasitized by C. plutella was significantly inhibited in plasmatocyte-spreading in response to an active dose of PSP1. An in vivo encapsulation assay showed that the parasitized P. xylostella could not effectively form the hemocyte capsules around injected agarose beads. This research demonstrates that the parasitism of C. plutellae adversely affects the total hemocyte populations in number and function, which would contribute to host immunosuppression.
Collapse
Affiliation(s)
- Ahmed M A Ibrahim
- Department of Agricultural Biology, Andong National University, Andong 760-749, Republic of Korea
| | | |
Collapse
|
46
|
Dupuy C, Huguet E, Drezen JM. Unfolding the evolutionary story of polydnaviruses. Virus Res 2006; 117:81-9. [PMID: 16460826 DOI: 10.1016/j.virusres.2006.01.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 12/21/2005] [Accepted: 01/05/2006] [Indexed: 11/20/2022]
Abstract
Polydnaviruses (PDVs) are fascinating viruses. Described in thousands of parasitoid wasp species they are unique viruses having both a segmented DNA genome in viral particles and an integrated form that persists as a provirus in the wasp genome. Parasitoid wasps inject their eggs in another insect host typically a lepidopteran. In these host-parasitoid interactions, the virus particles are co-injected along with the eggs and are essential to ensure wasp parasitism success. PDVs do not replicate in the lepidopteran host, but expression of viral gene products confers protection from the host immune defence response. Two genera of PDVs phylogenetically unrelated exist, the bracoviruses (BVs) and the ichnoviruses (IVs), associated with braconid and ichneumonid wasps, respectively. New data on the genomes of two bracoviruses (Microplitis demolitor BV and Cotesia congregata BV) and an ichnovirus associated with Campoletis sonorensis (CsIV) offers us new elements to discuss the central questions concerning the origin of these viral entities and how they have evolved. The results of sequencing approaches indicate that the tens of millions of years of mutualistic associations between PDVs and wasps have had a strong impact on PDV genomes that now ressemble eukaryotic regions both in organization and gene content.
Collapse
Affiliation(s)
- Catherine Dupuy
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 6035, Université F. Rabelais, Parc Grandmont, 37200 Tours, France.
| | | | | |
Collapse
|
47
|
Gill TA, Fath-Goodin A, Maiti II, Webb BA. Potential Uses of Cys‐Motif and Other Polydnavirus Genes in Biotechnology. Adv Virus Res 2006; 68:393-426. [PMID: 16997018 DOI: 10.1016/s0065-3527(06)68011-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Exploiting the ability of insect pathogens, parasites, and predators to control natural and damaging insect populations is a cornerstone of biological control. Here we focus on an unusual group of viruses, the polydnaviruses (PDV), which are obligate symbionts of some hymenopteran insect parasitoids. PDVs have a variety of important pathogenic effects on their parasitized hosts. The genes controlling some of these pathogenic effects, such as inhibition of host development, induction of precocious metamorphosis, slowed or reduced feeding, and immune suppression, may have use for biotechnological applications. In this chapter, we consider the physiological functions of both wasp and viral genes with emphasis on the Cys-motif gene family and their potential use for insect pest control.
Collapse
Affiliation(s)
- Torrence A Gill
- Department of Entomology, S-225 Agricultural Science Building North University of Kentucky, Lexington, Kentucky 40546, USA
| | | | | | | |
Collapse
|