1
|
Caron J, Ridgley LA, Bodman-Smith M. How to Train Your Dragon: Harnessing Gamma Delta T Cells Antiviral Functions and Trained Immunity in a Pandemic Era. Front Immunol 2021; 12:666983. [PMID: 33854516 PMCID: PMC8039298 DOI: 10.3389/fimmu.2021.666983] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence of viruses with pandemic potential such as the SARS-CoV-2 coronavirus causing COVID-19 poses a global health challenge. There is remarkable progress in vaccine technology in response to this threat, but their design often overlooks the innate arm of immunity. Gamma Delta (γδ) T cells are a subset of T cells with unique features that gives them a key role in the innate immune response to a variety of homeostatic alterations, from cancer to microbial infections. In the context of viral infection, a growing body of evidence shows that γδ T cells are particularly equipped for early virus detection, which triggers their subsequent activation, expansion and the fast deployment of antiviral functions such as direct cytotoxic pathways, secretion of cytokines, recruitment and activation of other immune cells and mobilization of a trained immunity memory program. As such, γδ T cells represent an attractive target to stimulate for a rapid and effective resolution of viral infections. Here, we review the known aspects of γδ T cells that make them crucial component of the immune response to viruses, and the ways that their antiviral potential can be harnessed to prevent or treat viral infection.
Collapse
Affiliation(s)
- Jonathan Caron
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| | - Laura Alice Ridgley
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| | - Mark Bodman-Smith
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| |
Collapse
|
2
|
Chen H, Ji X, Cui L, Zhang J, He W. Characterization of complementary determinant region 3δ in human MutS homologue 2-specific γδ T cells. Scand J Immunol 2015; 81:121-8. [PMID: 25410477 DOI: 10.1111/sji.12256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 10/29/2014] [Indexed: 11/29/2022]
Abstract
γδT cells function as sentinels in early host responses to infections and malignancies. Previously, we found ectopically expressed human MutS homologue 2 (hMSH2), recognized by γδT cells, triggered a γδT cell-mediated cytolysis to tumor cells. However, the characteristics of hMSH2-specific γδ Τ cells are not fully understood. In this study, we investigated the complementary determinant region (CDR) 3δ diversity of hMSH2-specific γδ T cells. We found that the CDR3δ sequences of hMSH2-specific γδ T cells displayed limited diversity, while the length and germline gene usage showed no differences compared with whole CDR3δ immune repertoire. There are more hydrophilic amino acids in P/N insert of hMSH2-specific γδ T cells including the more conserved amino acid at the position 97. Our results offer clues to understanding antigen recognition pattern of γδ T cells to stress-induced hMSH2 of tumor cells and also the mechanism of γδT cell-mediated tumor immune surveillance.
Collapse
Affiliation(s)
- H Chen
- State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | | | | | | | | |
Collapse
|
3
|
Intestinal intraepithelial TCRγδ+ T cells are activated by normal commensal bacteria. J Microbiol 2012; 50:837-41. [DOI: 10.1007/s12275-012-2468-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
|
4
|
Veum VL, Dankel SN, Gjerde J, Nielsen HJ, Solsvik MH, Haugen C, Christensen BJ, Hoang T, Fadnes DJ, Busch C, Våge V, Sagen JV, Mellgren G. The nuclear receptors NUR77, NURR1 and NOR1 in obesity and during fat loss. Int J Obes (Lond) 2011; 36:1195-202. [PMID: 22143616 DOI: 10.1038/ijo.2011.240] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Adipose tissue is critical for systemic metabolic health. Identifying key factors regulating adipose tissue function is a research priority. The NR4A subfamily of nuclear receptors (NRs) (NR4A1/NUR77, NR4A2/NURR1 and NR4A3/NOR1) has emerged as important proteins in different disease states and in the regulation of metabolic tissues, particularly in liver and muscle. However, the expression of the NR4A members in human adipose tissue has not previously been described, and their target genes are largely unknown. OBJECTIVE To determine whether the NR4As are differentially expressed in human adipose tissue in obesity, and identify potential NR4A target genes. DESIGN Prospective analysis of s.c. adipose tissue before and 1 year after fat loss, and during in vitro differentiation of primary human preadipocytes. Case-control comparison of omental (OM) adipose tissue. SUBJECTS A total of 13 extremely obese patients undergoing biliopancreatic diversion with duodenal switch for fat loss, 12 extremely obese patients undergoing laparoscopic sleeve gastrectomy and 37 lean individuals undergoing hernia repair or laparotomy were included in the study. Measurements were done by quantitative PCR gene expression analysis of the NR4A members and in silico promoter analysis based on microarray data. RESULTS There was a strong upregulation of the NR4As in extreme obesity and normalization after fat loss. The NR4As were expressed at the highest level in stromal-vascular fraction compared with adipocytes, but were downregulated in both fractions after fat loss. Their expression levels were also significantly higher in OM compared with s.c. adipocytes in obesity. The NR4As were downregulated during differentiation of primary human preadipocytes. Moreover, the NR4As were strongly induced within 30 min of tissue incubation. Finally, promoter analysis revealed potential NR4A target genes involved in stress response, immune response, development and other functions. Our data show altered adipose tissue expression of the NR4As in obesity, suggesting that these stress responsive nuclear receptors may modulate pathogenic potential in humans.
Collapse
Affiliation(s)
- V L Veum
- Institute of Medicine, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Targeting myeloma-osteoclast interaction with Vγ9Vδ2 T cells. Int J Hematol 2011; 94:63-70. [PMID: 21698356 DOI: 10.1007/s12185-011-0885-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/01/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
Abstract
Multiple myeloma (MM) cells stimulate osteoclastogenesis, and osteoclasts (OCs) in turn enhance MM growth and drug resistance, resulting in a vicious cycle. Vγ9Vδ2 T cells exert potent anti-tumor effects, making T cell-based immunotherapies using these cells attractive candidates for currently incurable malignancies, such as MM. However, the impact of such treatments on the MM-OC interaction is largely unknown. We demonstrate here that Vγ9Vδ2 T cells expanded by zoledronic acid and IL-2 exerted potent cytotoxic effects on both MM cells and OCs, even in coculture settings, but showed no such effect on bone marrow stromal cells. Vγ9Vδ2 T cells marginally affected colony formation from normal hematopoietic progenitors, and furthermore migrated toward osteopontin and MIP-1α, factors produced by the MM-OC interaction. These results suggest that Vγ9Vδ2 T cells expanded by zoledronic acid and IL-2 are able to migrate to MM bone lesions and preferentially target OCs as well as MM cells, thereby inhibiting both tumor expansion and bone destruction.
Collapse
|
6
|
Xi X, Cui L, He W. The recognition of gammadelta TCR to protein antigen does not depend on the hydrophobic I97 residue of CDR3delta. Int Immunol 2010; 22:299-306. [PMID: 20181655 DOI: 10.1093/intimm/dxq011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The crystal structure analysis demonstrated that the hydrophobic amino acid residue (isolecuine/leucine/valine) at conserved position 97 of Vdelta2 TCR plays an important role in recognizing the non-peptide antigen. But its importance to protein antigen remains unclear until now. In the present study, we focus on the role of hydrophobic amino acid residue at conserved position 97 of Vdelta2 TCR in complementarity determining region (CDR)3delta-mediated binding to protein antigen. We employed CDR3delta peptide and membrane-engineered gammadelta TCR as detecting molecules with mutated 97 hydrophobic amino acid residue in CDR3delta (nominated as OT10), a Vdelta2 CDR3 sequence derived from tumor infiltrating lymphocytes in ovarian epithelial carcinoma (OEC). Binding assays revealed that OT10 peptide and membrane-engineered gammadelta TCR (gammadelta TCR transfected cells with OT10 sequence) could bind specifically ovarian tumor cell line (SKOV3). The mutant analysis indicated that any amino acid substitution at position deltaI97 could abolish the response of the transfected cells to iso-butylamine, a known non-peptide antigen of gammadelta T cells. But amino acid substitution of isoleucine at position delta97 did not change the responsiveness of gammadelta TCR transfected cell to protein antigen. Our data suggested that a mechanism other than non-peptide antigen might mediate the recognition of Vdelta2gammadelta T cells for protein antigen. This finding may provide a possibility that gammadelta TCR recognize different ligands in diversity manners.
Collapse
Affiliation(s)
- Xueyan Xi
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | | | | |
Collapse
|
7
|
Correia DV, d'Orey F, Cardoso BA, Lança T, Grosso AR, deBarros A, Martins LR, Barata JT, Silva-Santos B. Highly active microbial phosphoantigen induces rapid yet sustained MEK/Erk- and PI-3K/Akt-mediated signal transduction in anti-tumor human gammadelta T-cells. PLoS One 2009; 4:e5657. [PMID: 19479075 PMCID: PMC2682580 DOI: 10.1371/journal.pone.0005657] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 04/20/2009] [Indexed: 02/06/2023] Open
Abstract
Background The unique responsiveness of Vγ9Vδ2 T-cells, the major γδ subset of human peripheral blood, to non-peptidic prenyl pyrophosphate antigens constitutes the basis of current γδ T-cell-based cancer immunotherapy strategies. However, the molecular mechanisms responsible for phosphoantigen-mediated activation of human γδ T-cells remain unclear. In particular, previous reports have described a very slow kinetics of activation of T-cell receptor (TCR)-associated signal transduction pathways by isopentenyl pyrophosphate and bromohydrin pyrophosphate, seemingly incompatible with direct binding of these antigens to the Vγ9Vδ2 TCR. Here we have studied the most potent natural phosphoantigen yet identified, (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), produced by Eubacteria and Protozoa, and examined its γδ T-cell activation and anti-tumor properties. Methodology/Principal Findings We have performed a comparative study between HMB-PP and the anti-CD3ε monoclonal antibody OKT3, used as a reference inducer of bona fide TCR signaling, and followed multiple cellular and molecular γδ T-cell activation events. We show that HMB-PP activates MEK/Erk and PI-3K/Akt pathways as rapidly as OKT3, and induces an almost identical transcriptional profile in Vγ9+ T-cells. Moreover, MEK/Erk and PI-3K/Akt activities are indispensable for the cellular effects of HMB-PP, including γδ T-cell activation, proliferation and anti-tumor cytotoxicity, which are also abolished upon antibody blockade of the Vγ9+ TCR Surprisingly, HMB-PP treatment does not induce down-modulation of surface TCR levels, and thereby sustains γδ T-cell activation upon re-stimulation. This ultimately translates in potent human γδ T-cell anti-tumor function both in vitro and in vivo upon transplantation of human leukemia cells into lymphopenic mice, Conclusions/Significance The development of efficient cancer immunotherapy strategies critically depends on our capacity to maximize anti-tumor effector T-cell responses. By characterizing the intracellular mechanisms of HMB-PP-mediated activation of the highly cytotoxic Vγ9+ T-cell subset, our data strongly support the usage of this microbial antigen in novel cancer clinical trials.
Collapse
Affiliation(s)
- Daniel V. Correia
- Molecular Immunology Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Francisco d'Orey
- Molecular Immunology Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Bruno A. Cardoso
- Cancer Biology Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Telma Lança
- Molecular Immunology Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Ana R. Grosso
- Cellular Biology Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Ana deBarros
- Molecular Immunology Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Leila R. Martins
- Cancer Biology Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - João T. Barata
- Cancer Biology Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Bruno Silva-Santos
- Molecular Immunology Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
8
|
Conrad ML, Mawer MA, Lefranc MP, McKinnell L, Whitehead J, Davis SK, Pettman R, Koop BF. The genomic sequence of the bovine T cell receptor gamma TRG loci and localization of the TRGC5 cassette. Vet Immunol Immunopathol 2007; 115:346-56. [PMID: 17141331 DOI: 10.1016/j.vetimm.2006.10.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 09/29/2006] [Accepted: 10/26/2006] [Indexed: 02/04/2023]
Abstract
The bovine and ovine TRG genes have previously been shown to be located in two loci, TRG1 and TRG2, in contrast to human and mouse TRG genes that are located in a single locus. The bovine TRG1 and TRG2 loci are located on chromosome 4 at 4q3.1 and 4q1.5-2.2, respectively. The complete genomic organization of the two bovine loci is described: each locus comprises three cassettes, each one includes one or several variable genes (TRGV) and one or several joining genes (TRGJ) preceding a constant (TRGC) gene. The location of the TRGC5 cassette is conclusively described in 5' of the TRG1 locus. Analysis of 17 TRGV belonging to 10 different subgroups, 8 TRGJ and 6 TRGC genes is conducted which comprises the most comprehensive list to date.
Collapse
Affiliation(s)
- Melanie L Conrad
- University of Victoria, Centre for Biomedical Research, Victoria, British Columbia, Canada V8W 3N5.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Lahmers KK, Hedges JF, Jutila MA, Deng M, Abrahamsen MS, Brown WC. Comparative gene expression by WC1
+
γδ and CD4
+
αβ T lymphocytes, which respond to
Anaplasma marginale
, demonstrates higher expression of chemokines and other myeloid cell‐associated genes by WC1
+
γδ T cells. J Leukoc Biol 2006; 80:939-52. [PMID: 17005908 DOI: 10.1189/jlb.0506353] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The functions of gammadelta T cells are enigmatic, and these cells are often considered as evolutionary remnants of well-characterized alphabeta T cells. However, their conservation throughout evolution suggests that gammadelta T cells are biologically unique. In ruminants, gammadelta T cells expressing the workshop cluster 1 (WC1) scavenger receptor comprise a large proportion of circulating lymphocytes, suggesting these cells are biologically relevant and functionally different from alphabeta T cells. In fact, bovine WC1(+) gammadelta T cells can act as APC for alphabeta T cells, indicating they may express genes encoding proteins associated with innate immunity. The present study was designed to compare immune function gene expression profiles of clonal populations of WC1(+) gammadelta and CD4(+) alphabeta T cells derived from the same animal, which respond to major surface protein 2 (MSP2) of the intraerythrocytic rickettsial pathogen of cattle, Anaplasma marginale. Gene expression profiles of activated T cell clones were compared using a microarray format, and differential gene expression was confirmed by real-time RT-PCR and protein analyses. We demonstrate that although MSP2-specific alphabeta and gammadelta T cell clones express many of the same genes, gammadelta T cell clones express high levels of genes associated with myeloid cells, including chemokines CCL2, CXCL1, CXCL2, CXCL6, and surface receptors CD68, CD11b, macrophage scavenger receptor 1, macrophage mannose receptor, and galectin-3. It is important that many of these genes were also expressed at higher levels in polyclonal WC1(+) gammadelta T cells when compared with CD4(+) alphabeta T cells selected from peripheral blood.
Collapse
MESH Headings
- Anaplasma marginale/immunology
- Animals
- CD4-Positive T-Lymphocytes/immunology
- Cattle
- Cell Line
- Chemokines/genetics
- Chemokines/immunology
- Gene Expression Profiling
- Membrane Glycoproteins/biosynthesis
- Myeloid Cells/immunology
- Oligonucleotide Array Sequence Analysis/methods
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Sensitivity and Specificity
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Kevin K Lahmers
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
| | | | | | | | | | | |
Collapse
|
10
|
Vendelin J, Bruce S, Holopainen P, Pulkkinen V, Rytilä P, Pirskanen A, Rehn M, Laitinen T, Laitinen LA, Haahtela T, Saarialho-Kere U, Laitinen A, Kere J. Downstream target genes of the neuropeptide S-NPSR1 pathway. Hum Mol Genet 2006; 15:2923-35. [PMID: 16926187 DOI: 10.1093/hmg/ddl234] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The neuropeptide S (NPS)-NPS receptor 1 (NPSR1) pathway has recently been implicated in the pathogenesis of asthma. The purpose of this study was to identify downstream gene targets regulated by NPSR1 upon NPS stimulation. A total of 104 genes were found significantly up-regulated and 42 down-regulated by microarray analysis 6 h after NPS administration. By Gene Ontology enrichment analysis, the categories 'cell proliferation', 'morphogenesis' and 'immune response' were among the most altered. A TMM microarray database comparison suggested a common co-regulated pathway, which includes JUN/FOS oncogene homologs, early growth response genes, nuclear receptor subfamily 4 members and dual specificity phosphatases. The expression of four up-regulated genes, matrix metallopeptidase 10 (MMP10), INHBA (activin A), interleukin 8 (IL8) and EPH receptor A2 (EPHA2), exhibited a significant NPS dose-response relationship as confirmed by quantitative reverse-transcriptase-PCR and for MMP10 by immunoassay. Immunohistochemical analyses revealed that MMP10 and TIMP metallopeptidase inhibitor 3 (TIMP3) were both strongly expressed in bronchial epithelium, and macrophages and eosinophils expressed MMP10 in asthmatic sputum samples. Because remodeling of airway epithelium is a feature of chronic asthma, the up-regulation of MMP10 and TIMP3 by NPS-NPSR1 signaling may be of relevance in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Johanna Vendelin
- Department of Medical Genetics, Biomedicum Helsinki, University of Helsinki, Finland, and Department of Biosciences and Nutrition, Clinical Research Centre, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bonneville M, Scotet E. Human Vgamma9Vdelta2 T cells: promising new leads for immunotherapy of infections and tumors. Curr Opin Immunol 2006; 18:539-46. [PMID: 16870417 DOI: 10.1016/j.coi.2006.07.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 07/14/2006] [Indexed: 02/05/2023]
Abstract
Vgamma9Vdelta2 T cells, a major human peripheral gammadelta T-cell subset, react in vitro against a wide array of microbial agents and tumor cells. This broad reactivity pattern is conferred by non-peptidic phosphorylated isoprenoid pathway metabolites, referred to as phosphoantigens, which are able to specifically activate this gammadelta T-cell subset in a T-cell receptor dependent fashion. Recent studies provide new insights into the mode of action of phosphoantigens on Vgamma9Vdelta2 T cells and might explain how their recognition can allow detection of infected or altered self by the immune system. The broad antimicrobial and antitumoral reactivity of Vgamma9Vdelta2 T cells, their ability to produce inflammatory cytokines involved in protective immunity against intracellular pathogens and tumors, and their strong cytolytic and bactericidal activities suggest a direct involvement in immune control of cancers and infections. These observations have recently aided development of novel immunotherapeutic approaches aimed at Vgamma9Vdelta2 T-cell activation, which have already yielded encouraging results.
Collapse
Affiliation(s)
- Marc Bonneville
- Institut National de la Sante et de la Recherche Medicale, Unite 601, Institut de Biologie, 9 quai Moncousu, 44093 Nantes cedex 01, France.
| | | |
Collapse
|