1
|
Yang J, Xiao L, Zhang L, Luo G, Ma Y, Wang X, Zhang Y. Platelets: A Potential Factor that Offers Strategies for Promoting Bone Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:631-643. [PMID: 38482796 DOI: 10.1089/ten.teb.2024.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bone defects represent a prevalent category of clinical injuries, causing significant pain and escalating health care burdens. Effectively addressing bone defects is thus of paramount importance. Platelets, formed from megakaryocyte lysis, have emerged as pivotal players in bone tissue repair, inflammatory responses, and angiogenesis. Their intracellular storage of various growth factors, cytokines, and membrane protein receptors contributes to these crucial functions. This article provides a comprehensive overview of platelets' roles in hematoma structure, inflammatory responses, and angiogenesis throughout the process of fracture healing. Beyond their application in conjunction with artificial bone substitute materials for treating bone defects, we propose the potential future use of anticoagulants such as heparin in combination with these materials to regulate platelet number and function, thereby promoting bone healing. Ultimately, we contemplate whether manipulating platelet function to modulate bone healing could offer innovative ideas and directions for the clinical treatment of bone defects. Impact statement Given that 5-10% of fracture patients with delayed bone healing or even bone nonunion, this review explores the potential role of platelets in bone healing (directly/indirectly) and proposes ideas and directions for the future as to whether it is possible to promote bone healing and improve fracture healing rates by modulating platelets.
Collapse
Affiliation(s)
- Jingjing Yang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Key Laboratory of Maternal and Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi Medical University, Zunyi, China
- Guizhou Provincial Key Laboratory of Medicinal Biotechnology in Colleges and Universities, Zunyi Medical University, Zunyi, China
| | - Lan Xiao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- School of Medicine and Dentistry, Griffith University, Queensland, Australia
| | - Lijia Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
- Key Laboratory of Maternal and Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi Medical University, Zunyi, China
| | - Guochen Luo
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Provincial Key Laboratory of Medicinal Biotechnology in Colleges and Universities, Zunyi Medical University, Zunyi, China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
- Key Laboratory of Maternal and Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi Medical University, Zunyi, China
| |
Collapse
|
2
|
Moll M, Scheurle A, Nawaz Q, Walker T, Kunisch E, Renkawitz T, Boccaccini AR, Westhauser F. Osteogenic and angiogenic potential of molybdenum-containing mesoporous bioactive glass nanoparticles: An ionic approach to bone tissue engineering. J Trace Elem Med Biol 2024; 86:127518. [PMID: 39236559 DOI: 10.1016/j.jtemb.2024.127518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/31/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Biomaterials intended for application in bone tissue engineering (BTE) ideally stimulate osteogenesis and angiogenesis simultaneously, as both mechanisms are of critical importance for successful bone regeneration. Mesoporous bioactive glass nanoparticles (MBGNs) can be tailored towards specific biological needs, for example by addition of ions like Molybdenum (Mo). While Mo has been shown to enhance osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells (BMSCs) as well as their ability to form and mature a primitive osseous extracellular matrix (ECM), there are contradictory findings regarding its impact on angiogenesis. In this study, the effects of Mo-MBGNs (mol%: 70 SiO2, 25 CaO, 5 MoO3) on viability, proliferation, osteogenic differentiation, ECM formation and angiogenic response of BMSCs were compared to undoped MBGNs (in mol%: 70 SiO2, 30 CaO) and a control group of BMSCs. Furthermore, a human umbilical vein endothelial cells tube formation assay and a chorioallantoic membrane-assay using fertilized chicken eggs were used to analyze angiogenic properties. Mo-MBGNs were cytocompatible and promoted the proliferation of BMSCs. Furthermore, Mo-MBGNs showed promising osteogenic properties as they enhanced osteogenic differentiation, ECM formation and maturation as well as the gene expression and protein production of relevant osteogenic factors in BMSCs. However, despite the promising outcome on osteogenic properties, the addition of Mo to MBGNs resulted in anti-angiogenic effects. Due to the high relevance of vascularization in-vivo, the anti-angiogenic properties of Mo-MBGNs might hamper their osteogenic properties and therefore might restrict their performance in BTE applications. These limitations can be overcome by the addition of ions with distinct pro-angiogenic properties to the Mo-MBGNs-composition. Due to their promising osteogenic properties, Mo-MBGNs constitute a suitable basis for further research in the field of ionic (growth factor free) BTE.
Collapse
Affiliation(s)
- M Moll
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - A Scheurle
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Q Nawaz
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - T Walker
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - E Kunisch
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - T Renkawitz
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - A R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany.
| | - F Westhauser
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
3
|
Cai H, Han XJ, Luo ZR, Wang QL, Lu PP, Mou FF, Zhao ZN, Hu D, Guo HD. Pretreatment with Notoginsenoside R1 enhances the efficacy of neonatal rat mesenchymal stem cell transplantation in model of myocardial infarction through regulating PI3K/Akt/FoxO1 signaling pathways. Stem Cell Res Ther 2024; 15:419. [PMID: 39533348 PMCID: PMC11558819 DOI: 10.1186/s13287-024-04039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Although stem cell transplantation is a promising approach for the treatment of myocardial infarction (MI), there are still some problems faced such as the low survival rate of stem cells. Here, we investigated the role of Notoginsenoside R1 (NGR1) pretreatment in improving the effects of neonatal rat bone marrow mesenchymal stem cell (MSC) transplantation for treatment of MI. METHODS Cardiac functions were detected by echocardiography and the myocardial infarct size was determined by Masson's trichrome staining in a rat model of MI. The cardioprotective effects of NGR1/LY294002 co-pretreated MSCs was evaluated to explore the underlying mechanism. The angiogenesis was determined by vWF and α-SMA immunofluorescence staining and cell apoptosis was detected by TUNEL. In vitro, the effects of NGR1 on stem cell proliferation was examined by CCK-8 and levels of P-Akt, P-CREB, P-FoxO1 were detected by western blot. Apoptosis, ROS content, and cytokine levels were examined by DAPI and TUNEL staining, a ROS assay kit, and ELISA, respectively. RESULTS NGR1 elevated the therapeutic effect of MSC transplantation on infarction by preserving cardiac function, increasing angiogenesis and expressions of IGF-1, VEGF, and SDF-1, and reducing cell apoptosis, whereas the addition of LY294002 prior to NGR1 treatment significantly counteracted the foregoing effects of NGR1. NGR1 pretreatment and SC79 pretreatment were similar in that both significantly increased P-Akt and P-FoxO1 levels in MSC and did not affect P-CREB levels. Besides, both NGR1 and SC79 promoted VEGF, SCF and bFGF levels in MSC cultures, and significantly reduced ROS accumulation and the attenuated cell apoptosis in MSC triggered by H2O2. Similarly, addition of LY294002 before NGR1 treatment significantly counteracted the aforementioned effects of NGR1 in vitro. CONCLUSIONS NGR1 pretreatment enhances the effect of MSC transplantation for treatment of MI through paracrine signaling, and the mechanism underlying this effect may be associated with PI3K/Akt/FoxO1 signaling pathways.
Collapse
Affiliation(s)
- Hao Cai
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Jing Han
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhi-Rong Luo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qiang-Li Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ping-Ping Lu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fang-Fang Mou
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhi-Nan Zhao
- Development and Planning Division (Department of Discipline Development), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Dan Hu
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China.
| | - Hai-Dong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
4
|
Fiehn LA, Kunisch E, Saur M, Arango-Ospina M, Merle C, Hagmann S, Stiller A, Hupa L, Kaňková H, Galusková D, Renkawitz T, Boccaccini AR, Westhauser F. A comparative in vitro and in vivo analysis of the impact of copper substitution on the cytocompatibility, osteogenic, and angiogenic properties of a borosilicate bioactive glass. J Biomed Mater Res A 2024; 112:1740-1759. [PMID: 38623001 DOI: 10.1002/jbm.a.37721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/10/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024]
Abstract
The 0106-B1-bioactive glass (BG) composition (in wt %: 37.5 SiO2, 22.6 CaO, 5.9 Na2O, 4.0 P2O5, 12.0 K2O, 5.5 MgO, and 12.5 B2O3) has demonstrated favorable processing properties and promising bone regeneration potential. The present study aimed to evaluate the biological effects of the incorporation of highly pro-angiogenic copper (Cu) in 0106-B1-BG in vitro using human bone marrow-derived mesenchymal stromal cells (BMSCs) as well as its in vivo potential for bone regeneration. CuO was added to 0106-B1-BG in exchange for CaO, resulting in Cu-doped BG compositions containing 1.0, 2.5 and 5.0 wt % CuO (composition in wt %: 37.5 SiO2, 21.6/ 20.1/17.6 CaO, 5.9 Na2O, 4.0 P2O5, 12.0 K2O, 5.5 MgO, 12.5 B2O3, and 1.0/ 2.5/ 5.0 CuO). In vitro, the BGs' impact on the viability, proliferation, and growth patterns of BMSCs was evaluated. Analyses of protein secretion, matrix formation, and gene expression were used for the assessment of the BGs' influence on BMSCs regarding osteogenic differentiation and angiogenic stimulation. The presence of Cu improved cytocompatibility, osteogenic differentiation, and angiogenic response when compared with unmodified 0106-B1-BG in vitro. In vivo, a critical-size femoral defect in rats was filled with scaffolds made from BGs. Bone regeneration was evaluated by micro-computed tomography. Histological analysis was performed to assess bone maturation and angiogenesis. In vivo effects regarding defect closure, presence of osteoclastic cells or vascular structures in the defect were not significantly changed by the addition of Cu compared with undoped 0106-B1-BG scaffolds. Hence, while the in vitro properties of the 0106-B1-BG were significantly improved by the incorporation of Cu, further evaluation of the BG composition is necessary to transfer these effects to an in vivo setting.
Collapse
Affiliation(s)
- Linn Anna Fiehn
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Elke Kunisch
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Merve Saur
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Christian Merle
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Sébastien Hagmann
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Adrian Stiller
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Turku, Finland
| | - Leena Hupa
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Turku, Finland
| | - Hana Kaňková
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Trenčín, Slovakia
| | - Dagmar Galusková
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Trenčín, Slovakia
| | - Tobias Renkawitz
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Fabian Westhauser
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
5
|
Rai MF, Cai L, Chinzei N, Schmidt EJ, Yousuf O, Guilak F, Brophy RH. Distinct patterns of cytokines, chemokines, and growth factors in synovial fluid after ACL injury in comparison to osteoarthritis. J Orthop Res 2024; 42:1448-1462. [PMID: 38294185 PMCID: PMC11161321 DOI: 10.1002/jor.25794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024]
Abstract
This study analyzed knee synovial fluid after anterior cruciate ligament (ACL) tear and in osteoarthritis (OA) to test the hypotheses that concentrations of cytokines, chemokines, and growth factors differ (a) by diagnosis and (b) after ACL tear by time from injury and presence/absence of concomitant meniscus tear. Synovial fluid samples were collected from two groups, ACL tears (with or without meniscus tear) (N = 13) and Kellgren-Lawrence grade 3 and 4 OA (N = 16), undergoing clinically indicated aspiration of the knee joint. Multiple cytokines, chemokines, and growth factors were assessed using a multiplexed 45-protein panel. Comparisons were made for the concentrations of all molecules between ACL tear and OA patients, isolated versus combined ACL and meniscus tears, and categorized by time from injury: acute or early subacute (<15 days, N = 8) versus late subacute or chronic (>15 days and <3 months, N = 5). ACL tear patients have higher levels of six molecules (IL-4, IL-5, IL-13, PlGF-1, bNGF, TNF-α) in knee synovial fluid compared to OA patients. Isolated ACL tears express higher levels of IL-4, IL-13 and IFN-γ and lower levels of IL-7 than ACL tears with a concomitant meniscus tear. SDF-1α, PlGF-1, IL-1RA, HGF, bNGF, and BDNF levels are elevated immediately after injury and drop off significantly in the late subacute phase (after 15 days). Synovial fluid from knees with ACL tears have elevated metabolic activity compared to knees with OA. The cytokine profiles after ACL tears are influenced by the time from injury and the presence of meniscus tears. These findings offer valuable insights into the levels of cytokines, chemokines, and growth factors in the knee after ACL injury, information which may have important implications for the diagnosis, prognosis and treatment of this common pathology.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Biomedical Engineering, Saint Louis University of Science and Engineering, St. Louis, Missouri 63103, United States
| | - Lei Cai
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Nobuaki Chinzei
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Eric J. Schmidt
- College of Medical Science, University of Lynchburg, Lynchburg, VA 24501, United States
| | - Omer Yousuf
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Biomedical Engineering, Washington University School of Engineering and Applied Science, St. Louis, Missouri 63130, United States
- Shriners Hospitals for Children – St. Louis, 4400 Clayton Ave. St. Louis, MO 63110 United States
| | - Robert H. Brophy
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
6
|
Liu J, Qi L, Bao S, Yan F, Chen J, Yu S, Dong C. The acute spinal cord injury microenvironment and its impact on the homing of mesenchymal stem cells. Exp Neurol 2024; 373:114682. [PMID: 38199509 DOI: 10.1016/j.expneurol.2024.114682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Spinal cord injury (SCI) is a highly debilitating condition that inflicts devastating harm on the lives of affected individuals, underscoring the urgent need for effective treatments. By activating inflammatory cells and releasing inflammatory factors, the secondary injury response creates an inflammatory microenvironment that ultimately determines whether neurons will undergo necrosis or regeneration. In recent years, mesenchymal stem cells (MSCs) have garnered increasing attention for their therapeutic potential in SCI. MSCs not only possess multipotent differentiation capabilities but also have homing abilities, making them valuable as carriers and mediators of therapeutic agents. The inflammatory microenvironment induced by SCI recruits MSCs to the site of injury through the release of various cytokines, chemokines, adhesion molecules, and enzymes. However, this mechanism has not been previously reported. Thus, a comprehensive exploration of the molecular mechanisms and cellular behaviors underlying the interplay between the inflammatory microenvironment and MSC homing is crucial. Such insights have the potential to provide a better understanding of how to harness the therapeutic potential of MSCs in treating inflammatory diseases and facilitating injury repair. This review aims to delve into the formation of the inflammatory microenvironment and how it influences the homing of MSCs.
Collapse
Affiliation(s)
- Jinyi Liu
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Longju Qi
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Shengzhe Bao
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Fangsu Yan
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Jiaxi Chen
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Shumin Yu
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Chuanming Dong
- Department of Anatomy, Medical College of Nantong University, Nantong, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
7
|
Moskowitzova K, Whitlock AE, Kycia I, Zurakowski D, Fauza DO. Bidirectional Feto-Maternal Traffic of Donor Mesenchymal Stem Cells Following Transamniotic Stem Cell Therapy (TRASCET). J Pediatr Surg 2024; 59:290-294. [PMID: 37945511 DOI: 10.1016/j.jpedsurg.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/07/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE Transamniotic stem cell therapy (TRASCET) with mesenchymal stem cells (MSCs) has emerged experimentally as a potential treatment for different congenital diseases and maternal diseases of pregnancy. The broad applicability of TRASCET is predicated on hematogenous routing of donor MSCs via the placenta. We investigated whether donor MSC kinetics includes bidirectional traffic between the fetus and mother. METHODS Eight time-dated dams had their fetuses (n = 96) divided in 4 groups on gestational day 17 (E17, term = E21). Groups populating one uterine horn received intra-amniotic injections (50 μL) of either donor amniotic fluid-derived MSCs (2×106 cells/mL) labelled with a firefly luciferase reporter gene (MSC-injected, n = 32), or of acellular luciferase (luciferase-injected, n = 26). Contra-lateral (CL) horn fetuses received no injection (MSC-CL, n = 20 and luciferase-CL, n = 18). At term, samples from 11 fetal anatomical sites from CL fetuses, along with placentas from all fetuses and maternal blood were screened for luciferase activity via microplate luminometry. RESULTS Overall survival was 95 % (91/96). When controlled by the acellular injection, positive luciferase activity was observed in the placentas of all MSC-injected fetuses, confirming viability of the donor cells at term. When controlled by the acellular injection group, MSC-CL fetuses showed positive luciferase activity in the bone marrow, peripheral blood, brain and skin (p = <0.001-0.048). No luciferase activity was detected in any maternal blood sample. CONCLUSION Amniotic fluid-derived MSCs can traffic between the fetus and mother in both directions after simple intra-amniotic injection, in a healthy rat model. This phenomenon must be considered in TRASCET performed in twin/multiple pregnancies. LEVEL OF EVIDENCE N/A (animal and laboratory study).
Collapse
Affiliation(s)
- Kamila Moskowitzova
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ashlyn E Whitlock
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ina Kycia
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - David Zurakowski
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Dario O Fauza
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
8
|
Aleynik DY, Bokov AE, Charykova IN, Rubtsova YP, Linkova DD, Farafontova EA, Egorikhina MN. Functionalization of Osteoplastic Material with Human Placental Growth Factor and Assessment of Biocompatibility of the Resulting Material In Vitro. Pharmaceutics 2024; 16:85. [PMID: 38258096 PMCID: PMC10819287 DOI: 10.3390/pharmaceutics16010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/27/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
This article provides the results of a study of the interaction of placental growth factor with adipose-derived stem cells (ASCs) of various origins, as well as the possibility of generating osteoplastic material based on xenogeneic matrix functionalization with human placental growth factor (PLGF). It is demonstrated that the greatest release of this factor from the functionalized material into the medium occurs during the first 3 h of contact with the model medium, but then the levels of the factor being released fall sharply, although release did continue throughout the 7 days of observation. The modified material was not cytotoxic, and its surface provided good cell adhesion. During 3 days of cultivation, the ASCs proliferated and migrated more actively on the surfaces of the modified material than on the surfaces of the control material. This study can serve as the basis for the development of original methods to functionalize such osteoplastic material by increasing PLGF immobilization by creating stronger bonds in order to regulate both factor dosage and the dynamics of the factor release into the environment. Further studies in experimental animals should facilitate assessment of the effectiveness of the functionalized materials. Such studies will be useful in the development of osteoplastic materials with new properties resulting from the inclusion of growth factors and in research on their biological activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marfa N. Egorikhina
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 10/1 Minin and Pozharsky Square, 603005 Nizhny Novgorod, Russia; (D.Y.A.); (A.E.B.); (I.N.C.); (Y.P.R.); (D.D.L.); (E.A.F.)
| |
Collapse
|
9
|
Kunisch E, Fiehn LA, Saur M, Arango-Ospina M, Merle C, Hagmann S, Stiller A, Hupa L, Renkawitz T, Boccaccini AR, Westhauser F. A comparative in vitro and in vivo analysis of the biological properties of the 45S5-, 1393-, and 0106-B1-bioactive glass compositions using human bone marrow-derived stromal cells and a rodent critical size femoral defect model. BIOMATERIALS ADVANCES 2023; 153:213521. [PMID: 37356285 DOI: 10.1016/j.bioadv.2023.213521] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/26/2023] [Accepted: 06/11/2023] [Indexed: 06/27/2023]
Abstract
Since the introduction of the 45S5-bioactive glass (BG), numerous new BG compositions have been developed. Compared to the 45S5-BG, 1393-BG shows favorable processing properties due to its low crystallization tendency and the 1393-BG-based borosilicate 0106-B1-BG exhibits improved angiogenic properties due to its boron content. Despite their close (chemical) relationship, the biological properties of the mentioned BG composition have not yet been comparatively examined. In this study, the effects of the BGs on proliferation, viability, osteogenic differentiation, and angiogenic factor production of human bone marrow-derived mesenchymal stromal cells were assessed. Scaffolds made of the BGs were introduced in a critical-sized femur defect model in rats in order to analyze their impact on bone defect regeneration. In vitro, 1393-BG and 0106-B1-BG outperformed 45S5-BG with regard to cell proliferation and viability. 1393-BG enhanced osteogenic differentiation; 0106-B1-BG promoted angiogenic factor production. In vivo, 0106-B1-BG and 45S5-BG outperformed 1393-BG in terms of angiogenic and osteoclastic response resulting in improved bone regeneration. In conclusion, the biological properties of BGs can be significantly modified by tuning their composition. Demonstrating favorable processing properties and an equally strong in vivo bone regeneration potential as 45S5-BG, 0106-B1-BG qualifies as a basis to incorporate other bioactive ions to improve its biological properties.
Collapse
Affiliation(s)
- Elke Kunisch
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Linn Anna Fiehn
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Merve Saur
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Marcela Arango-Ospina
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Christian Merle
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; Joint Replacement Centre, Orthopaedic Surgery Paulinenhilfe, Diakonie-Klinikum Stuttgart, Rosenbergstraße 38, 70176 Stuttgart, Germany
| | - Sébastien Hagmann
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Adrian Stiller
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| | - Leena Hupa
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| | - Tobias Renkawitz
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Fabian Westhauser
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| |
Collapse
|
10
|
Jiang Y, Chen A, Kline D, Liu Q, Ma J, Wang Y, Zhang T, Qian J, Nelson L, Prasadan K, Hu B, Gittes GK, Xiao X. Polarized macrophages promote gestational beta cell growth through extracellular signal-regulated kinase 5 signalling. Diabetes Obes Metab 2022; 24:1721-1733. [PMID: 35546452 DOI: 10.1111/dom.14744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 12/25/2022]
Abstract
AIM To show that depletion of pancreatic macrophages impairs gestational beta cell proliferation and leads to glucose intolerance. MATERIALS AND METHODS Genetic animal models were applied to study the effects of depletion of pancreatic macrophges on gestational beta-cell proliferaiton and glucose response. The crosstalk between macrophages and beta-cells was studied in vivo using beta-cell-specific extracellular-signal-regulated kinase 5 (ERK5) knockout and epidermal growth receptor (EGFR) knockout mice, and in vitro using a co-culture system. RESULTS Beta cell-derived placental growth factor (PlGF) recruited naïve macrophages and polarized them towards an M2-like phenotype. These macrophages then secreted epidermal growth factor (EGF), which activated extracellular signal-regulated kinase 5 (ERK5) signalling in beta cells to promote gestational beta cell proliferation. On the other hand, activation of ERK5 signalling in beta cells likely, in turn, enhanced the production and secretion of PlGF by beta cells. CONCLUSIONS Our study shows a regulatory loop between macrophages and beta cells through PlGF/EGF/ERK5 signalling cascades to regulate gestational beta cell growth.
Collapse
Affiliation(s)
- Yinan Jiang
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Apeng Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Diana Kline
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Qun Liu
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jie Ma
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yan Wang
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ting Zhang
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jieqi Qian
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Laura Nelson
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Krishna Prasadan
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - George K Gittes
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xiangwei Xiao
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
11
|
Park KR, Leem HH, Kwon YJ, Kwon IK, Hong JT, Yun HM. Sec-O-glucosylhamaudol promotes the osteogenesis of pre-osteoblasts via BMP2 and Wnt3a signaling. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
12
|
Koyama S, Hamai R, Shiwaku Y, Kurobane T, Tsuchiya K, Takahashi T, Suzuki O. Angio-osteogenic capacity of octacalcium phosphate co-precipitated with copper gluconate in rat calvaria critical-sized defect. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:120-139. [PMID: 35185389 PMCID: PMC8856029 DOI: 10.1080/14686996.2022.2035193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The objective of this study is to investigate the effects of octacalcium phosphate (OCP)-induced bone regeneration on angiogenesis regulated by the inclusion of copper ions in OCP in vitro and in vivo. Calcium (Ca)-deficient Cu-OCPs, containing 0.01 wt% Cu (low-Cu-OCP) and 0.12 wt% Cu (high-Cu-OCP), were synthesized with co7pper gluconate salt. The lattice parameters of Cu-OCPs tended to decrease slightly with Cu inclusion, as estimated by Rietveld analysis. Cu ions were released in OCP when the materials were incubated in the medium for human umbilical vein endothelial cells (HUVECs). The solubility of Cu-OCPs, estimated by the degree of supersaturation, was slightly higher than that of the original OCP. Cu-OCP tended to hydrolyze to an apatite structure while maintaining the crystal plate-like morphology when incubated with mesenchymal stem D1 cells in osteogenic media for 14 days. The specimens were characterized by selected area electron diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. Low-Cu-OCP significantly enhanced the HUVEC capillary cross-linking density. D1 cell differentiation was inhibited with the inclusion of Cu, even at low concentrations. The composite of low-Cu-OCP with a gelatin sponge (low-Cu-OCP/Gel) significantly enhanced angiogenesis coupled with bone regeneration when implanted in a rat calvarial critical-sized defect for 4 weeks, compared with the corresponding amount of Cu-containing Gel (Cu/Gel) or OCP/Gel materials through angiography and tissue histomorphometry. These results support the proposition that angiogenesis stimulated by low-Cu-OCP is closely related with enhanced bone regeneration.
Collapse
Affiliation(s)
- Shinki Koyama
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
- Division of Oral and Maxillofacial Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Ryo Hamai
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yukari Shiwaku
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
- Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Tsuyoshi Kurobane
- Division of Oral and Maxillofacial Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kaori Tsuchiya
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Tetsu Takahashi
- Division of Oral and Maxillofacial Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Osamu Suzuki
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
13
|
Jiao D, Wang J, Yu W, Zhang K, Zhang N, Cao L, Jiang X, Bai Y. Biocompatible reduced graphene oxide stimulated BMSCs induce acceleration of bone remodeling and orthodontic tooth movement through promotion on osteoclastogenesis and angiogenesis. Bioact Mater 2022; 15:409-425. [PMID: 35386350 PMCID: PMC8958387 DOI: 10.1016/j.bioactmat.2022.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/23/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
We has synthesized the biocompatible gelatin reduced graphene oxide (GOG) in previous research, and in this study we would further evaluate its effects on bone remodeling in the aspects of osteoclastogenesis and angiogenesis so as to verify its impact on accelerating orthodontic tooth movement. The mouse orthodontic tooth movement (OTM) model tests in vivo showed that the tooth movement was accelerated in the GOG local injection group with more osteoclastic bone resorption and neovascularization compared with the PBS injection group. The analysis on the degradation of GOG in bone marrow stromal stem cells (BMSCs) illustrated its good biocompatibility in vitro and the accumulation of GOG in spleen after local injection of GOG around the teeth in OTM model in vivo also didn't influence the survival and life of animals. The co-culture of BMSCs with hematopoietic stem cells (HSCs) or human umbilical vein endothelial cells (HUVECs) in transwell chamber systems were constructed to test the effects of GOG stimulated BMSCs on osteoclastogenesis and angiogenesis in vitro. With the GOG stimulated BMSCs co-culture in upper chamber of transwell, the HSCs in lower chamber manifested the enhanced osteoclastogenesis. Meanwhile, the co-culture of GOG stimulated BMSCs with HUVECs showed a promotive effect on the angiogenic ability of HUVECs. The mechanism analysis on the biofunctions of the GOG stimulated BMSCs illustrated the important regulatory effects of PERK pathway on osteoclastogenesis and angiogenesis. All the results showed the biosecurity of GOG and the biological functions of GOG stimulated BMSCs in accelerating bone remodeling and tooth movement. Here we observed the phenomenon of tooth movement acceleration induced by GOG in vivo. We hypothesized the pivotal role of BMSCs in the tooth movement acceleration induced by GOG. The effects of the GOG stimulated BMSCs on the osteoclastogenesis and angiogenesis were investigated in vitro. The potential mechanism of the GOG stimulated BMSCs were also analyzed in vitro and in vivo.
Collapse
Affiliation(s)
- Delong Jiao
- Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Jing Wang
- Department of Orthodontics, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Wenting Yu
- Department of Orthodontics, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Ke Zhang
- Department of Orthodontics, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Ning Zhang
- Department of Orthodontics, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Lingyan Cao
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, China
- Corresponding author.
| | - Yuxing Bai
- Department of Orthodontics, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, 100050, China
- Corresponding author.
| |
Collapse
|
14
|
A Chemotactic Functional Scaffold with VEGF-Releasing Peptide Amphiphiles Facilitates Bone Regeneration by BMP-2 in a Large-Scale Rodent Cranial Defect Model. Plast Reconstr Surg 2021; 147:386-397. [PMID: 33235044 DOI: 10.1097/prs.0000000000007551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Current common techniques for repairing calvarial defects by autologous bone grafting and alloplastic implants have significant limitations. In this study, the authors investigated a novel alternative approach to bone repair based on peptide amphiphile nanofiber gels that are engineered to control the release of vascular endothelial growth factor (VEGF) to recruit circulating stem cells to a site of bone regeneration and facilitate bone healing by bone morphogenetic protein-2 (BMP-2). METHODS VEGF release kinetics from peptide amphiphile gels were evaluated. Chemotactic functional scaffolds were fabricated by combining collagen sponges with peptide amphiphile gels containing VEGF. The in vitro and in vivo chemotactic activities of the scaffolds were evaluated by measuring mesenchymal stem cell migration, and angiogenic capability of the scaffolds was also evaluated. Large-scale rodent cranial bone defects were created to evaluate bone regeneration after implanting the scaffolds and other control materials. RESULTS VEGF was released from peptide amphiphile in a controlled-release manner. In vitro migration of mesenchymal stem cells was significantly greater when exposed to chemotactic functional scaffolds compared to control scaffolds. In vivo chemotaxis was evidenced by migration of tracer-labeled mesenchymal stem cells to the chemotactic functional scaffolds. Chemotactic functional scaffolds showed significantly increased angiogenesis in vivo. Successful bone regeneration was noted in the defects treated with chemotactic functional scaffolds and BMP-2. CONCLUSIONS The authors' observations suggest that this bioengineered construct successfully acts as a chemoattractant for circulating mesenchymal stem cells because of controlled release of VEGF from the peptide amphiphile gels. The chemotactic functional scaffolds may play a role in the future design of clinically relevant bone graft substitutes for large-scale bone defects.
Collapse
|
15
|
Vascular Endothelial Growth Factor Biology and Its Potential as a Therapeutic Target in Rheumatic Diseases. Int J Mol Sci 2021; 22:ijms22105387. [PMID: 34065409 PMCID: PMC8161097 DOI: 10.3390/ijms22105387] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Rheumatic diseases constitute a diversified group of diseases distinguished by arthritis and often involve other organs. The affected individual has low quality of life, productivity even life-threatening in some severe conditions. Moreover, they impose significant economic and social burdens. In recent years, the patient outcome has been improved significantly due to clearer comprehension of the pathology of rheumatic diseases and the effectiveness of "treat to target" therapies. However, the high cost and the adverse effects are the concerns and full remissions are not often observed. One of the main processes that contributes to the pathogenesis of rheumatic diseases is angiogenesis. Vascular endothelial growth factor (VEGF), a central mediator that regulates angiogenesis, has different isoforms and functions in various physiological processes. Increasing evidence suggests an association between the VEGF system and rheumatic diseases. Anti-VEGF and VEGF receptor (VEGFR) therapies have been used to treat several cancers and eye diseases. This review summarizes the current understanding of VEGF biology and its role in the context of rheumatic diseases, the contribution of VEGF bioavailability in the pathogenesis of rheumatic diseases, and the potential implications of therapeutic approaches targeting VEGF for these diseases.
Collapse
|
16
|
Yang Z, Li H, Yuan Z, Fu L, Jiang S, Gao C, Wang F, Zha K, Tian G, Sun Z, Huang B, Wei F, Cao F, Sui X, Peng J, Lu S, Guo W, Liu S, Guo Q. Endogenous cell recruitment strategy for articular cartilage regeneration. Acta Biomater 2020; 114:31-52. [PMID: 32652223 DOI: 10.1016/j.actbio.2020.07.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
In the absence of timely and proper treatments, injuries to articular cartilage (AC) can lead to cartilage degeneration and ultimately result in osteoarthritis. Regenerative medicine and tissue engineering techniques are emerging as promising approaches for AC regeneration and repair. Although the use of cell-seeded scaffolds prior to implantation can regenerate and repair cartilage lesions to some extent, these approaches are still restricted by limited cell sources, excessive costs, risks of disease transmission and complex manufacturing practices. Recently developed acellular scaffold approaches that rely on the recruitment of endogenous cells to the injured sites avoid these drawbacks and offer great promise for in situ AC regeneration. Multiple endogenous stem/progenitor cells (ESPCs) are found in joint-resident niches and have the capability to migrate to sites of injury to participate in AC regeneration. However, the natural recruitment of ESPCs is insufficient, and the local microenvironment is hostile after injury. Hence, an endogenous cell recruitment strategy based on the combination of chemoattractants and acellular scaffolds to effectively and specifically recruit ESPCs and improve local microenvironment may provide new insights into in situ AC regeneration. This review provides a brief overview of: (1) the status of endogenous cell recruitment strategy; (2) the subpopulations, potential migration routes (PMRs) of joint-resident ESPCs and their immunomodulatory and reparative effects; (3) chemoattractants and their potential adverse effects; (4) scaffold-based drug delivery systems (SDDSs) that are utilized for in situ AC regeneration; and (5) the challenges and future perspectives of endogenous cell recruitment strategy for AC regeneration. STATEMENT OF SIGNIFICANCE: Although the endogenous cell recruitment strategy for articular cartilage (AC) regeneration has been investigated for several decades, much work remains to be performed in this field. Future studies should have the following aims: (1) reporting the up-to-date progress in the endogenous cell recruitment strategies; (2) determining the subpopulations of ESPCs, the cellular and molecular mechanisms underlying the migration of these cells and their anti-inflammatory, immunomodulatory and reparative effects; (3) elucidating the chemoattractants that enhance ESPC recruitment and their potential adverse effects; and (4) developing advanced SDDSs for chemoattractant dispatch. Herein, we present a systematic overview of the aforementioned issues to provide a better understanding of endogenous cell recruitment strategies for AC regeneration and repair.
Collapse
|
17
|
Brennan MÁ, Layrolle P, Mooney DJ. Biomaterials functionalized with MSC secreted extracellular vesicles and soluble factors for tissue regeneration. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909125. [PMID: 32952493 PMCID: PMC7494127 DOI: 10.1002/adfm.201909125] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Indexed: 05/05/2023]
Abstract
The therapeutic benefits of mesenchymal stromal cell (MSC) transplantation have been attributed to their secreted factors, including extracellular vesicles (EVs) and soluble factors. The potential of employing the MSC secretome as an alternative acellular approach to cell therapy is being investigated in various tissue injury indications, but EVs administered via bolus injections are rapidly sequestered and cleared. However, biomaterials offer delivery platforms to enhance EV retention rates and healing efficacy. In this review, we highlight the mechanisms underpinning the therapeutic effects of MSC-EVs and soluble factors as effectors of immunomodulation and tissue regeneration, conferred primarily via their nucleic acid and protein contents. We discuss how manipulating the cell culture microenvironment or genetic modification of MSCs can further augment the potency of their secretions. The most recent advances in the development of EV-functionalized biomaterials that mediate enhanced angiogenesis and cell survival, while attenuating inflammation and fibrosis, are presented. Finally, some technical challenges to be considered for the clinical translation of biomaterials carrying MSC-secreted bioactive cargo are discussed.
Collapse
Affiliation(s)
- Meadhbh Á Brennan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Pierre Layrolle
- INSERM, UMR 1238, PHY-OS, Bone sarcomas and remodeling of calcified tissues, Faculty of Medicine, University of Nantes, Nantes, France
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
18
|
Monsef F, Artimani T, Ramazani M, Alizadeh Z, Solgi G, Yavangi M, Soleimani Asl S. Effects of adipose- derived stromal vascular fraction on asherman syndrome model. Acta Histochem 2020; 122:151556. [PMID: 32622423 DOI: 10.1016/j.acthis.2020.151556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/17/2020] [Accepted: 04/28/2020] [Indexed: 01/13/2023]
Abstract
Asherman's syndrome (AS) is an endometrial damage that results in infertility in women. Although stem cell therapy has been introduced as a potential treatment for this syndrome, its use in clinical settings remains challenging because of the likelihood of contamination and cell differentiation. Herein, we investigated the effects of adipose-derived stromal vascular fraction (SVF) transplantation on proliferation and angiogenesis in the endometrium in an AS model. The AS model was induced using scratch method in adult male Wistar rats, and SVF (5 × 10 (Simsir et al., 2019) cells) was locally administered into the damaged horns. Two weeks after cell transplantation, endometrial thickness, fibrosis, and expression of vascular endothelial growth factor (VEGF) were assessed by Hematoxylin & Eosin, Masson's trichrome, and immunofluorescence staining, respectively. We found thin endometrium, increased fibrosis, and decreased VEGF following AS induction all of which were reversed after SVF transplantation. We concluded that the local injection of SVF may serve as an effective alternative therapy for AS.
Collapse
|
19
|
|
20
|
Castilla-Casadiego DA, Reyes-Ramos AM, Domenech M, Almodovar J. Effects of Physical, Chemical, and Biological Stimulus on h-MSC Expansion and Their Functional Characteristics. Ann Biomed Eng 2020; 48:519-535. [PMID: 31705365 PMCID: PMC6952531 DOI: 10.1007/s10439-019-02400-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/30/2019] [Indexed: 01/10/2023]
Abstract
Human adult mesenchymal stem or stromal cells (h-MSC) therapy has gained considerable attention due to the potential to treat or cure diseases given their immunosuppressive properties and tissue regeneration capabilities. Researchers have explored diverse strategies to promote high h-MSC production without losing functional characteristics or properties. Physical stimulus including stiffness, geometry, and topography, chemical stimulus, like varying the surface chemistry, and biochemical stimuli such as cytokines, hormones, small molecules, and herbal extracts have been studied but have yet to be translated to industrial manufacturing practice. In this review, we describe the role of those stimuli on h-MSC manufacturing, and how these stimuli positively promote h-MSC properties, impacting the cell manufacturing field for cell-based therapies. In addition, we discuss other process considerations such as bioreactor design, good manufacturing practice, and the importance of the cell donor and ethics factors for manufacturing potent h-MSC.
Collapse
Affiliation(s)
- David A Castilla-Casadiego
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA
| | - Ana M Reyes-Ramos
- Department of Chemical Engineering, University of Puerto Rico Mayagüez, Call Box 9000, Mayagüez, PR, 00681-9000, USA
| | - Maribella Domenech
- Department of Chemical Engineering, University of Puerto Rico Mayagüez, Call Box 9000, Mayagüez, PR, 00681-9000, USA
| | - Jorge Almodovar
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA.
| |
Collapse
|
21
|
Schölch S, Bogner A, Bork U, Rahbari M, Győrffy B, Schneider M, Reissfelder C, Weitz J, Rahbari NN. Serum PlGF and EGF are independent prognostic markers in non-metastatic colorectal cancer. Sci Rep 2019; 9:10921. [PMID: 31358848 PMCID: PMC6662856 DOI: 10.1038/s41598-019-47429-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/17/2019] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to determine the prognostic value of circulating angiogenic cytokines in non-metastatic colorectal cancer (CRC) patients. Preoperative serum samples of a training (TC) (n = 219) and a validation cohort (VC) (n = 168) were analyzed via ELISA to determine PlGF, EGF, VEGF, Ang1, PDGF-A, PDGF-B, IL-8 and bFGF levels. In addition, survival was correlated with PlGF and EGF expression measured by microarray and RNAseq in two publicly available, independent cohorts (n = 550 and n = 463, respectively). Prognostic values for overall (OS) and disease-free survival (DFS) were determined using uni- and multivariate Cox proportional hazard analyses. Elevated PlGF is predictive for impaired OS (TC: HR 1.056; p = 0.046; VC: HR 1.093; p = 0.001) and DFS (TC: HR 1.052; p = 0.029; VC: HR 1.091; p = 0.009). Conversely, elevated EGF is associated with favorable DFS (TC: HR 0.998; p = 0.045; VC: HR 0.998; p = 0.018) but not OS (TC: p = 0.201; VC: p = 0.453). None of the other angiogenic cytokines correlated with prognosis. The prognostic value of PlGF (OS + DFS) and EGF (DFS) was confirmed in both independent retrospective cohorts. Serum PlGF and EGF may serve as prognostic markers in non-metastatic CRC.
Collapse
Affiliation(s)
- Sebastian Schölch
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. .,Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany. .,German Cancer Consortium, Heidelberg, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Andreas Bogner
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ulrich Bork
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mohammad Rahbari
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Magyar Tudósok körútja 2., H-1117, Budapest, Hungary.,Semmelweis University, 2nd Department of Pediatrics, Bókay u. 53-54., H-1083, Budapest, Hungary
| | - Martin Schneider
- German Cancer Consortium, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of General, Gastrointestinal and Transplant Surgery, University Hospital Heidelberg, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Christoph Reissfelder
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Weitz
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nuh N Rahbari
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
22
|
Varennes J, Moon HR, Saha S, Mugler A, Han B. Physical constraints on accuracy and persistence during breast cancer cell chemotaxis. PLoS Comput Biol 2019; 15:e1006961. [PMID: 30970018 PMCID: PMC6476516 DOI: 10.1371/journal.pcbi.1006961] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 04/22/2019] [Accepted: 03/18/2019] [Indexed: 01/19/2023] Open
Abstract
Directed cell motion in response to an external chemical gradient occurs in many biological phenomena such as wound healing, angiogenesis, and cancer metastasis. Chemotaxis is often characterized by the accuracy, persistence, and speed of cell motion, but whether any of these quantities is physically constrained by the others is poorly understood. Using a combination of theory, simulations, and 3D chemotaxis assays on single metastatic breast cancer cells, we investigate the links among these different aspects of chemotactic performance. In particular, we observe in both experiments and simulations that the chemotactic accuracy, but not the persistence or speed, increases with the gradient strength. We use a random walk model to explain this result and to propose that cells’ chemotactic accuracy and persistence are mutually constrained. Our results suggest that key aspects of chemotactic performance are inherently limited regardless of how favorable the environmental conditions are. One of the most ubiquitous and important cell behaviors is chemotaxis: the ability to move in the direction of a chemical gradient. Due to its importance, key aspects of chemotaxis have been quantified for a variety of cells, including the accuracy, persistence, and speed of cell motion. However, whether these aspects are mutually constrained is poorly understood. Can a cell be accurate but not persistent, or vice versa? Here we use theory, simulations, and experiments on cancer cells to uncover mutual constraints on the properties of chemotaxis. Our results suggest that accuracy and persistence are mutually constrained.
Collapse
Affiliation(s)
- Julien Varennes
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, United States of America
| | - Hye-ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette Indiana, United States of America
| | - Soutick Saha
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, United States of America
| | - Andrew Mugler
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (AM); (BH)
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette Indiana, United States of America
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (AM); (BH)
| |
Collapse
|
23
|
Lavenus S, Rozé J, Louarn G, Layrolle P. Impact of nanotechnology on dental implants. NANOBIOMATERIALS IN CLINICAL DENTISTRY 2019:385-399. [DOI: 10.1016/b978-0-12-815886-9.00016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Abstract
Receptor tyrosine kinases (RTKs) are essential components of cell communication pathways utilized from the embryonic to adult stages of life. These transmembrane receptors bind polypeptide ligands, such as growth factors, inducing signalling cascades that control cellular processes such as proliferation, survival, differentiation, motility and inflammation. Many viruses have acquired homologs of growth factors encoded by the hosts that they infect. Production of growth factors during infection allows viruses to exploit RTKs for entry and replication in cells, as well as for host and environmental dissemination. This review describes the genetic diversity amongst virus-derived growth factors and the mechanisms by which RTK exploitation enhances virus survival, then highlights how viral ligands can be used to further understanding of RTK signalling and function during embryogenesis, homeostasis and disease scenarios.
Collapse
Affiliation(s)
- Zabeen Lateef
- a Department of Pharmacology and Toxicology, School of Biomedical Sciences , University of Otago , Dunedin , New Zealand
| | - Lyn M Wise
- a Department of Pharmacology and Toxicology, School of Biomedical Sciences , University of Otago , Dunedin , New Zealand
| |
Collapse
|
25
|
Hassani Besheli N, Damoogh S, Zafar B, Mottaghitalab F, Motasadizadeh H, Rezaei F, Shokrgozar MA, Farokhi M. Preparation of a Codelivery System Based on Vancomycin/Silk Scaffold Containing Silk Nanoparticle Loaded VEGF. ACS Biomater Sci Eng 2018; 4:2836-2846. [DOI: 10.1021/acsbiomaterials.8b00149] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Negar Hassani Besheli
- School of Chemical Engineering, Collage of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran 1417466191, Iran
| | - Sheyda Damoogh
- National Cell Bank of Iran, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran 1316943551, Iran
| | - Bahareh Zafar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14177-55469, Iran
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417613151, Iran
| | - Hamidreza Motasadizadeh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Fatemeh Rezaei
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran 15875/4413, Iran
| | - Mohammad Ali Shokrgozar
- National Cell Bank of Iran, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran 1316943551, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran 1316943551, Iran
| |
Collapse
|
26
|
The impact of different torques for the insertion of immediately loaded implants on the peri-implant levels of angiogenesis- and bone-related markers. Int J Oral Maxillofac Surg 2018; 47:651-657. [DOI: 10.1016/j.ijom.2017.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/31/2017] [Accepted: 11/03/2017] [Indexed: 11/23/2022]
|
27
|
Kang M, Jeong J, Lee J, Park S, Sung Y, Choi M, Kwon W, Jang S, Choi KS, Choo YS, Yoon D, Kim MO, Ryoo ZY. Placental growth factor (PlGF) is linked to inflammation and metabolic disorders in mice with diet-induced obesity. Endocr J 2018; 65:437-447. [PMID: 29434073 DOI: 10.1507/endocrj.ej17-0363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Placental growth factor (PlGF), a member of the vascular endothelial growth factor (VEGF) sub-family, plays a major role in angiogenesis and vasculogenesis. Previous study demonstrated that PlGF-overexpressing transgenic (Tg) mice had gestational loss. In addition, PlGF secretion was up-regulated in isolated T lymphocytes (T-cell) upon CD3/CD28 stimulation, suggesting that PlGF could be a regulator of T-cell differentiation and development. T-cells are well known to play a critical role in obesity-induced inflammation. Therefore, to verify the possible link of diet-induced obesity (DIO) with inflammation and related metabolic disorders, such as insulin resistance, we fed high-fat diet (HFD) to Tg mice for 16 weeks. Adiposity and glucose intolerance significantly increase in Tg mice fed a HFD (Tg HFD) compared to wild-type (WT) mice fed HFD (WT HFD). In addition, macrophage infiltrations were significantly higher in the epididymal white adipose tissue (EWAT), liver, and pancreatic islets of Tg HFD mice compared to WT HFD mice. In the in vitro study, we showed that isolated CD4+ T-cells from Tg mice further differentiate into type 1 (Th1) and type 17 (Th17) helper T-cells via CD3/CD28 stimulation. Furthermore, we observed that the pro-inflammatory cytokines IL-6, IL-17, and TNFα, are remarkably increased in Tg mice compared to WT mice. These findings demonstrate that PlGF overexpression in T-cells might lead to inflammatory T-cell differentiation and accumulation in adipose tissue (AT) or metabolism-related tissues, contributing to the development of systemic metabolic disorders. Thus, PlGF may provide an effective therapeutic target in the management of obesity-induced inflammation and related metabolic disorders.
Collapse
Affiliation(s)
- Mincheol Kang
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, 41566, Republic of Korea
| | - Jain Jeong
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, 41566, Republic of Korea
| | - Jinhee Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, 41566, Republic of Korea
| | - Song Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, 41566, Republic of Korea
| | - Yonghun Sung
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, 41566, Republic of Korea
| | - Minjee Choi
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, 41566, Republic of Korea
| | - Wookbong Kwon
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, 41566, Republic of Korea
| | - Soyoung Jang
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, 41566, Republic of Korea
| | - Kwang Shik Choi
- College of Natural Science, Kyungpook National University, 41566, Republic of Korea
| | - Yeon Sik Choo
- College of Natural Science, Kyungpook National University, 41566, Republic of Korea
| | - Duhak Yoon
- Department of Animal Science, Kyungpook National University, 37224, Republic of Korea
| | - Myoung Ok Kim
- School of Animal Biotechnology (BT) Science, Kyungpook National University, 37224, Republic of Korea
| | - Zae Young Ryoo
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, 41566, Republic of Korea
| |
Collapse
|
28
|
Skoda M, Stangret A, Szukiewicz D. Fractalkine and placental growth factor: A duet of inflammation and angiogenesis in cardiovascular disorders. Cytokine Growth Factor Rev 2018; 39:116-123. [DOI: 10.1016/j.cytogfr.2017.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022]
|
29
|
The Effects of Desferroxamine on Bone and Bone Graft Healing in Critical-Size Bone Defects. Ann Plast Surg 2018; 77:560-568. [PMID: 26808734 DOI: 10.1097/sap.0000000000000679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Autogenous bone grafts are still the criterion standard treatment option in critical-size bone defect reconstructions, and many therapies can affect its incorporation. In this study, it was aimed to research the effects of desferroxamine (DFO) application on bone and bone graft healing due to the effects of osteoblast and osteoclast regulation and stimulation of angiogenesis. METHODS Rat zygomatic arch critical-size bone defect model (5 mm) was used as the experimental model. Thirty-two Sprague-Dawley rats (64 zygomatic arches) were divided into 4 groups (16 zygomatic arches in each). In groups 1 and 2, defects were reconstructed with the bone grafts harvested from the other side, and the right arc was named as group 1, and the left was group 2. At group 1, 200 μM/300 μL dosage of DFO was injected at the zygomatic arch region starting at the seventh day preoperatively and lasting until the 45th day postoperatively. Group 2 animals were defined as the control group of group 1, and 0.9% NaCl injection was applied. In groups 3 and 4, there was no repair after the formation of defects, and the right arc region was treated with DFO, and left was treated with 0.9% NaCl for postoperative 45 days, respectively. Radiological (computed tomography), histological (hematoxylin-eosin), and biomechanical (3-point bending test) tests were used for the evaluation. RESULTS In radiological evaluation, there was a statistically significant decrease (P < 0.05) in bone defect size in group 3 animals at the 4th, 8th, and 12th weeks, and bone graft volume showed a statistical difference at all weeks (P < 0.05). In histological evaluation, it was observed that there was an increase in osteoblast number and vascularity rates (P < 0.05) in the DFO-treated groups at all weeks. Biomechanical evaluation of the subjects showed increase in bone strength in group 1 animals at 12 weeks. CONCLUSIONS In this study, it was shown that DFO treatment increased bone graft incorporation and healing in critical-size bone defects. In this aspect, we suggest that DFO can be used to increase graft incorporation in risky areas and reduce the defect size in patients who are not suitable for vascularized bone graft transfer.
Collapse
|
30
|
Subramani K, Lavenus S, Rozé J, Louarn G, Layrolle P. Impact of nanotechnology on dental implants. EMERGING NANOTECHNOLOGIES IN DENTISTRY 2018:83-97. [DOI: 10.1016/b978-0-12-812291-4.00005-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
31
|
Huang H, Cheng WX, Hu YP, Chen JH, Zheng ZT, Zhang P. Relationship between heterotopic ossification and traumatic brain injury: Why severe traumatic brain injury increases the risk of heterotopic ossification. J Orthop Translat 2017; 12:16-25. [PMID: 29662775 PMCID: PMC5866497 DOI: 10.1016/j.jot.2017.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/12/2017] [Accepted: 10/18/2017] [Indexed: 01/01/2023] Open
Abstract
Heterotopic ossification (HO) is a pathological phenomenon in which ectopic lamellar bone forms in soft tissues. HO involves many predisposing factors, including congenital and postnatal factors. Postnatal HO is usually induced by fracture, burn, neurological damage (brain injury and spinal cord injury) and joint replacement. Recent studies have found that patients who suffered from bone fracture combined with severe traumatic brain injury (S-TBI) are at a significantly increased risk for HO occurrence. Thus, considerable research focused on the influence of S-TBI on fracture healing and bone formation, as well as on the changes in various osteogenic factors with S-TBI occurrence. Brain damage promotes bone formation, but the exact mechanisms underlying bone formation and HO after S-TBI remain to be clarified. Hence, this article summarises the findings of previous studies on the relationship between S-TBI and HO and discusses the probable causes and mechanisms of HO caused by S-TBI. The translational potential of this article: A better understanding of the probable causes of traumatic brain injury-induced HO can provide new perspectives and ideas in preventing HO and may support to design more targeted therapies to reduce HO or enhance the bone formation.
Collapse
Affiliation(s)
- Huan Huang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Xiang Cheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Ping Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Hai Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng-Tan Zheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Peng Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
32
|
Liao H, Zhong Z, Liu Z, Li L, Ling Z, Zou X. Bone mesenchymal stem cells co-expressing VEGF and BMP-6 genes to combat avascular necrosis of the femoral head. Exp Ther Med 2017; 15:954-962. [PMID: 29399103 PMCID: PMC5772743 DOI: 10.3892/etm.2017.5455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/03/2017] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to investigate the potential of bone mesenchymal stem cells (BMSCs) treated with a combination of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-6 (BMP-6) genes for the treatment of avascular necrosis of the femoral head (ANFH). Rat BMSCs were isolated and purified using a density gradient centrifugation method. The purity and characteristics of the BMSCs were detected by cell surface antigens identification using flow cytometry. The experimental groups were administered with one of the following adeno-associated virus (AAV) vector constructs: AAV-green fluorescent protein (AAV-GFP), AAV-BMP-6, AAV-VEGF or AAV-VEGF-BMP-6. The expression of VEGF and BMP-6 was detected by reverse transcription-quantitative polymerase chain reaction, western blotting and ELISA assays. The effects of VEGF and BMP-6 on BMSCs were evaluated by angiogenic and osteogenic assays. The transfected BMSCs were combined with a biomimetic synthetic scaffold poly lactide-co-glycolide (PLAGA) and they were then subcutaneously implanted into nude mice. After four weeks, the implants were analyzed with histology and subsequent immunostaining to evaluate the effects of BMSCs on blood vessel and bone formation in vivo. In the AAV-VEGF-BMP-6 group, the expression levels of VEGF and BMP-6 were significantly increased and human umbilical vein endothelial cells tube formation was significantly enhanced compared with other groups. Capillaries and bone formation in the AAV-VEGF-BMP-6 group was significantly higher compared with the other groups. The results of the present study suggest that BMSCs expressing both VEGF and BMP-6 induce an increase in blood vessels and bone formation, which provides theoretical support for ANFH gene therapy.
Collapse
Affiliation(s)
- Hongxing Liao
- Department of Orthopedics, Meizhou People's Hospital, Meizhou, Guangdong 514000, P.R. China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhixiong Zhong
- Department of Cardiovascular Medicine, Meizhou People's Hospital, Meizhou, Guangdong 514000, P.R. China
| | - Zhanliang Liu
- Department of Orthopedics, Meizhou People's Hospital, Meizhou, Guangdong 514000, P.R. China
| | - Liangping Li
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zemin Ling
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
33
|
Ion channel functional protein kinase TRPM7 regulates Mg ions to promote the osteoinduction of human osteoblast via PI3K pathway: In vitro simulation of the bone-repairing effect of Mg-based alloy implant. Acta Biomater 2017; 63:369-382. [PMID: 28882757 DOI: 10.1016/j.actbio.2017.08.051] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 01/29/2023]
Abstract
Mg-based alloys, as the potential orthopaedic implant, can self-degrade to avoid second operation for its remove, and enable to promote bone repair; however, the underlying molecular mechanisms remain unclear. In the present study, we examined the effect of Mg ions on osteogenesis, chemotaxis and anti-alkaline stress in hFOB1.19 human osteoblast cells to simulate bone-repairing effect of a biodegradable Mg-based alloy implant in vitro, and explored the regulatory role of the transient receptor potential melastatin 7 (TRPM7)/phosphoinositide 3-kinase (PI3K) signalling pathway in the process of Mg ion-induced bone repair by knockdown of TRPM7 and antagonizing PI3K activity. Results indicate that Mg ions up-regulated the expression of Runx2 and alkaline phosphatase (ALP) through TRPM7/PI3K signalling pathway, which could significantly enhance the osteogenic activity of human osteoblasts. Furthermore, the expression levels of MMP2, MMP9 and vascular endothelial growth factor (VEGF) were increased by TRPM7/PI3K signalling pathway, which recruits osteoblasts from low- to high-Mg ion environments by inducing cell migration. Although an alkaline environment has antibacterial effects, alkaline stress can cause cytotoxicity and induce cell death. Finally, we found that Mg ions could activate PI3K phosphorylation to promote cell growth and survival, protecting cells against the alkaline-stress-induced cytotoxicity caused by the degradation of Mg-based alloy implants. Our study not only revealed the molecular mechanism of Mg in promoting bone repair but also explained the protective effects of Mg ions on osteoblasts in an alkaline environment, which provides a theoretical basis and new directions for the application of Mg-based alloy implant material in orthopaedics fixations and osteosarcoma treatment. STATEMENTS OF SIGNIFICANCE As a potential biomaterial for orthopaedic implant, biodegradable magnesium has several advantages including self-degradation and bone repair promotion; however, the underlying mechanisms and effective concentration by which molecular regulates the bone repair remain unclear. The present study revealed that Mg ion and its effective concentration for activating PI3K phosphorylation via TRPM7, which causes three processes affecting bone repair, namely, osteoblast recruitment, osteogenesis and resistance to alkaline stress in human osteoblast. Therefore, our results have provided insight into the underlying molecular biological basis, and guidance for manipulating degradation rate, such as surface modification, of orthopaedic Mg-based implants.
Collapse
|
34
|
Oranger A, Brunetti G, Colaianni G, Tamma R, Carbone C, Lippo L, Mori G, Pignataro P, Cirulli N, Zerlotin R, Moretti B, Notarnicola A, Ribatti D, Grano M, Colucci S. Sclerostin stimulates angiogenesis in human endothelial cells. Bone 2017; 101:26-36. [PMID: 28267633 DOI: 10.1016/j.bone.2017.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/24/2022]
Abstract
Sclerostin, negative regulator of bone formation, has been originally known as an osteocyte product. Recently, it has been also detected in hypertrophic chondrocytes, distinctive cells of avascular cartilage which is invaded by capillaries and then replaced by vascularized bone. Thus, we hypothesized that sclerostin, in addition to its role already known, may exert an angiogenic activity. We first proved that sclerostin increased the proliferation of human umbilical vein endothelial cells (HUVECs), and next, by using the chicken chorioallantoic membrane (CAM) in vivo assay, we demonstrated that it exerts an angiogenic activity similar to that of vascular endothelial growth factor (VEGF). This last finding was reinforced by several in vitro approaches. Indeed, we showed that sclerostin induced the formation of a network of anastomosing tubules, a significant increase in the percentage of tubule number, total tubule length and number of junctions, as well as the ability of sclerostin-stimulated HUVECs to organize capillary-like structures and closed-meshes similar to VEGF. The angiogenic response elicited by the protein may be due to the binding to its receptor, LRP6, which is highly expressed at mRNA and protein levels by sclerostin treated HUVECs and through the production of two well-known pro-angiogenic cytokines, VEGF and placental growth factor (PlGF). Finally, we demonstrated that sclerostin was also responsible for the recruitment of osteoclasts and their circulating monocyte progenitors. Overall, these findings showed for the first time the new angiogenic in vitro role of sclerostin which could be also considered as a novel molecule in angiogenesis-osteogenesis coupling.
Collapse
Affiliation(s)
- Angela Oranger
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Giacomina Brunetti
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Graziana Colaianni
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Claudia Carbone
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Luciana Lippo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Paolo Pignataro
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Nunzio Cirulli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Roberta Zerlotin
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Biagio Moretti
- Orthopaedics Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, Faculty of Medicine and Surgery, University of Bari, General Hospital, Bari, Italy
| | - Angela Notarnicola
- Orthopaedics Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, Faculty of Medicine and Surgery, University of Bari, General Hospital, Bari, Italy
| | - Domenico Ribatti
- National Cancer Institute "Giovanni Paolo II", Bari, Italy; Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Maria Grano
- Department of Emergency and Organ Transplantation, University of Bari Medical School, Bari, Italy
| | - Silvia Colucci
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy.
| |
Collapse
|
35
|
Cortini M, Avnet S, Baldini N. Mesenchymal stroma: Role in osteosarcoma progression. Cancer Lett 2017; 405:90-99. [PMID: 28774797 DOI: 10.1016/j.canlet.2017.07.024] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/19/2017] [Accepted: 07/23/2017] [Indexed: 12/21/2022]
Abstract
The initiation and progression of malignant tumors are supported by their microenvironment: cancer cells per se cannot explain growth and formation of the primary or metastasis, and a combination of proliferating tumor cells, cancer stem cells, immune cells mesenchymal stromal cells and/or cancer-associated fibroblasts all contribute to the tumor bulk. The interaction between these multiple players, under different microenvironmental conditions of biochemical and physical stimuli (i.e. oxygen tension, pH, matrix mechanics), regulates the production and biological activity of several soluble factors, extracellular matrix components, and extracellular vesicles that are needed for growth, maintenance, chemoresistance and metastatization of cancer. In osteosarcoma, a very aggressive cancer of young adults characterized by the extensive need for more effective therapies, this aspect has been only recently explored. In this view, we will discuss the role of stroma, with a particular focus on the mesenchymal stroma, contributing to osteosarcoma progression through inherent features for homing, neovascularization, paracrine cross-feeding, microvesicle secretion, and immune modulation, and also by responding to the changes of the microenvironment that are induced by tumor cells. The most recent advances in the molecular cues triggered by cytokines, soluble factors, and metabolites that are partially beginning to unravel the axis between stromal elements of mesenchymal origin and osteosarcoma cells, will be reviewed providing insights likely to be used for novel therapeutic approaches against sarcomas.
Collapse
Affiliation(s)
- Margherita Cortini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
36
|
Thiel A, Reumann MK, Boskey A, Wischmann J, von Eisenhart-Rothe R, Mayer-Kuckuk P. Osteoblast migration in vertebrate bone. Biol Rev Camb Philos Soc 2017. [PMID: 28631442 DOI: 10.1111/brv.12345] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bone formation, for example during bone remodelling or fracture repair, requires mature osteoblasts to deposit bone with remarkable spatial precision. As osteoblast precursors derive either from circulation or resident stem cell pools, they and their progeny are required to migrate within the three-dimensional bone space and to navigate to their destination, i.e. to the site of bone formation. An understanding of this process is emerging based on in vitro and in vivo studies of several vertebrate species. Receptors on the osteoblast surface mediate cell adhesion and polarization, which induces osteoblast migration. Osteoblast migration is then facilitated along gradients of chemoattractants. The latter are secreted or released proteolytically by several cell types interacting with osteoblasts, including osteoclasts and vascular endothelial cells. The positions of these cellular sources of chemoattractants in relation to the position of the osteoblasts provide the migrating osteoblasts with tracks to their destination, and osteoblasts possess the means to follow a track marked by multiple chemoattractant gradients. In addition to chemotactic cues, osteoblasts sense other classes of signals and utilize them as landmarks for navigation. The composition of the osseous surface guides adhesion and hence migration efficiency and can also provide steering through haptotaxis. Further, it is likely that signals received from surface interactions modulate chemotaxis. Besides the nature of the surface, mechanical signals such as fluid flow may also serve as navigation signals for osteoblasts. Alterations in osteoblast migration and navigation might play a role in metabolic bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Antonia Thiel
- Bone Cell and Imaging Laboratory, Department of Orthopedics, Klinikum rechts der Isar, Ismaninger Straße 22, Technical University Munich, 81675 München, Germany
| | - Marie K Reumann
- Siegfried Weller Institute, BG Hospital, University of Tübingen, Schnarrenbergstraße 95, 72076 Tübingen, Germany
| | - Adele Boskey
- Mineralized Tissue Laboratory, Research Division, Hospital for Special Surgery, 535 E 70th Street, New York, NY 10021, U.S.A
| | - Johannes Wischmann
- Bone Cell and Imaging Laboratory, Department of Orthopedics, Klinikum rechts der Isar, Ismaninger Straße 22, Technical University Munich, 81675 München, Germany
| | - Rüdiger von Eisenhart-Rothe
- Bone Cell and Imaging Laboratory, Department of Orthopedics, Klinikum rechts der Isar, Ismaninger Straße 22, Technical University Munich, 81675 München, Germany
| | - Philipp Mayer-Kuckuk
- Bone Cell and Imaging Laboratory, Department of Orthopedics, Klinikum rechts der Isar, Ismaninger Straße 22, Technical University Munich, 81675 München, Germany
| |
Collapse
|
37
|
Sharmin F, McDermott C, Lieberman J, Sanjay A, Khan Y. Dual growth factor delivery from biofunctionalized allografts: Sequential VEGF and BMP-2 release to stimulate allograft remodeling. J Orthop Res 2017; 35:1086-1095. [PMID: 27155087 DOI: 10.1002/jor.23287] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 04/29/2016] [Indexed: 02/04/2023]
Abstract
Autografts have been shown to stimulate osteogenesis, osteoclastogenesis, and angiogenesis, and subsequent rapid graft incorporation. Large structural allografts, however, suffer from limited new bone formation and remodeling, both of which are directly associated with clinical failure due to non-unions, late graft fractures, and infections, making it a priority to improve large structural allograft healing. We have previously shown the osteogenic ability of a polymer-coated allograft that delivers bone morphogenetic protein-2 both in vitro and in vivo through both burst release and sustained release kinetics. In this study, we have demonstrated largely sequential delivery of bone morphogenetic protein-2 and vascular endothelial growth factor from the same coated allograft. Release data showed that loading both growth factors onto a polymeric coating with two different techniques resulted in short-term (95% release within 2 weeks) and long-term (95% release within 5 weeks) delivery kinetics. We have also demonstrated how released VEGF, traditionally associated with angiogenesis, can also provide a stimulus for allograft remodeling via resorption. Bone marrow derived mononuclear cells were co-cultured with VEGF released from the coated allograft and showed a statistically significant (p < 0.05) and dose dependent increase in the number of tartrate-resistant acid phosphatase-positive multinucleated osteoclasts. Functionality of these osteoclasts was assessed quantitatively and qualitatively by evaluating resorption pit area from both osteo-assay plates and harvested bone. Data indicated a statistically significant higher resorption area from the cells exposed to VEGF released from the allografts over controls (p < 0.05). These results indicate that by using different loading protocols temporal control can be achieved when delivering multiple growth factors from a polymer-coated allograft. Further, released VEGF can also stimulate osteoclastogenesis that may enhance allograft incorporation, and thus mitigate long-term clinical complications. © 2017 Orthopedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1086-1095, 2017.
Collapse
Affiliation(s)
- Farzana Sharmin
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut.,Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut
| | - Casey McDermott
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - Jay Lieberman
- Department of Orthopedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Archana Sanjay
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, Connecticut.,New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut, 06030
| | - Yusuf Khan
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut.,Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut.,Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, Connecticut.,New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut, 06030
| |
Collapse
|
38
|
Quade M, Knaack S, Akkineni AR, Gabrielyan A, Lode A, Rösen-Wolff A, Gelinsky M. * Central Growth Factor Loaded Depots in Bone Tissue Engineering Scaffolds for Enhanced Cell Attraction. Tissue Eng Part A 2017; 23:762-772. [PMID: 28316275 DOI: 10.1089/ten.tea.2016.0483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tissue engineering, the application of stem and progenitor cells in combination with an engineered extracellular matrix, is a promising strategy for bone regeneration. However, its success is limited by the lack of vascularization after implantation. The concept of in situ tissue engineering envisages the recruitment of cells necessary for tissue regeneration from the host environment foregoing ex vivo cell seeding of the scaffold. In this study, we developed a novel scaffold system for enhanced cell attraction, which is based on biomimetic mineralized collagen scaffolds equipped with a central biopolymer depot loaded with chemotactic agents. In humid milieu, as after implantation, the signaling factors are expected to slowly diffuse out of the central depot forming a gradient that stimulates directed cell migration toward the scaffold center. Heparin, hyaluronic acid, and alginate have been shown to be capable of depot formation. By using vascular endothelial growth factor (VEGF) as model factor, it was demonstrated that the release kinetics can be adjusted by varying the depot composition. While alginate and hyaluronic acid are able to reduce the initial burst and prolong the release of VEGF, the addition of heparin led to a much stronger retention that resulted in an almost linear release over 28 days. The biological activity of released VEGF was proven for all variants using an endothelial cell proliferation assay. Furthermore, migration experiments with endothelial cells revealed a relationship between the degree of VEGF retention and migration distance: cells invaded deepest in scaffolds containing a heparin-based depot indicating that the formation of a steep gradient is crucial for cell attraction. In conclusion, this novel in situ tissue engineering approach, specifically designed to recruit and accommodate endogenous cells upon implantation, appeared highly promising to stimulate cell invasion, which in turn would promote vascularization and finally new bone formation.
Collapse
Affiliation(s)
- Mandy Quade
- 1 Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden , Dresden, Germany
| | - Sven Knaack
- 1 Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden , Dresden, Germany
| | - Ashwini Rahul Akkineni
- 1 Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden , Dresden, Germany
| | - Anastasia Gabrielyan
- 2 Department of Pediatrics, University Hospital Carl Gustav Carus Dresden , Dresden, Germany
| | - Anja Lode
- 1 Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden , Dresden, Germany
| | - Angela Rösen-Wolff
- 2 Department of Pediatrics, University Hospital Carl Gustav Carus Dresden , Dresden, Germany
| | - Michael Gelinsky
- 1 Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden , Dresden, Germany
| |
Collapse
|
39
|
Use of Gene-Activated Demineralized Bone Allograft in the Therapy of Ulnar Pseudarthrosis. Case Report. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0325-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Freeman FE, Stevens HY, Owens P, Guldberg RE, McNamara LM. Osteogenic Differentiation of Mesenchymal Stem Cells by Mimicking the Cellular Niche of the Endochondral Template. Tissue Eng Part A 2016; 22:1176-1190. [PMID: 27604384 DOI: 10.1089/ten.tea.2015.0339] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In vitro bone regeneration strategies that prime mesenchymal stem cells (MSCs) with chondrogenic factors, to mimic aspects of the endochondral ossification process, have been shown to promote mineralization and vascularization by MSCs both in vitro and when implanted in vivo. However, these approaches required the use of osteogenic supplements, namely dexamethasone, ascorbic acid, and β-glycerophosphate, none of which are endogenous mediators of bone formation in vivo. Rather MSCs, endothelial progenitor cells, and chondrocytes all reside in proximity within the cartilage template and might paracrineally regulate osteogenic differentiation. Thus, this study tests the hypothesis that an in vitro bone regeneration approach that mimics the cellular niche existing during endochondral ossification, through coculture of MSCs, endothelial cells, and chondrocytes, will obviate the need for extraneous osteogenic supplements and provide an alternative strategy to elicit osteogenic differentiation of MSCs and mineral production. The specific objectives of this study were to (1) mimic the cellular niche existing during endochondral ossification and (2) investigate whether osteogenic differentiation could be induced without the use of any external growth factors. To test the hypothesis, we evaluated the mineralization and vessel formation potential of (a) a novel methodology involving both chondrogenic priming and the coculture of human umbilical vein endothelial cells (HUVECs) and MSCs compared with (b) chondrogenic priming of MSCs alone, (c) addition of HUVECs to chondrogenically primed MSC aggregates, (d-f) the same experimental groups cultured in the presence of osteogenic supplements and (g) a noncoculture group cultured in the presence of osteogenic growth factors alone. Biochemical (DNA, alkaline phosphatase [ALP], calcium, CD31+, vascular endothelial growth factor [VEGF]), histological (alcian blue, alizarin red), and immunohistological (CD31+) analyses were conducted to investigate osteogenic differentiation and vascularization at various time points (1, 2, and 3 weeks). The coculture methodology enhanced both osteogenesis and vasculogenesis compared with osteogenic differentiation alone, whereas osteogenic supplements inhibited the osteogenesis and vascularization (ALP, calcium, and VEGF) induced through coculture alone. Taken together, these results suggest that chondrogenic and vascular priming can obviate the need for osteogenic supplements to induce osteogenesis of human MSCs in vitro, while allowing for the formation of rudimentary vessels.
Collapse
Affiliation(s)
- Fiona E Freeman
- 1 Biomedical Engineering, Centre for Biomechanics Research (BMEC), National University of Ireland Galway , Galway, Ireland
| | - Hazel Y Stevens
- 2 George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia
| | - Peter Owens
- 3 Centre for Microscopy and Imaging, National University of Ireland , Galway, Galway, Ireland
| | - Robert E Guldberg
- 2 George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia
| | - Laoise M McNamara
- 1 Biomedical Engineering, Centre for Biomechanics Research (BMEC), National University of Ireland Galway , Galway, Ireland
| |
Collapse
|
41
|
Tellez-Gabriel M, Brown HK, Young R, Heymann MF, Heymann D. The Challenges of Detecting Circulating Tumor Cells in Sarcoma. Front Oncol 2016; 6:202. [PMID: 27656422 PMCID: PMC5013264 DOI: 10.3389/fonc.2016.00202] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022] Open
Abstract
Sarcomas are a heterogeneous group of malignant neoplasms of mesenchymal origin, many of which have a propensity to develop distant metastases. Cancer cells that have escaped from the primary tumor are able to invade into surrounding tissues, to intravasate into the bloodstream to become circulating tumor cells (CTCs), and are responsible for the generation of distant metastases. Due to the rarity of these tumors and the absence of specific markers expressed by sarcoma tumor cells, the characterization of sarcoma CTCs has to date been relatively limited. Current techniques for isolating sarcoma CTCs are based on size criteria, the identification of circulating cells that express either common mesenchymal markers, sarcoma-specific markers, such as CD99, CD81, or PAX3, and chromosomal translocations found in certain sarcoma subtypes, such as EWS-FLI1 in Ewing’s sarcoma, detection of osteoblast-related genes, or measurement of the activity of specific metabolic enzymes. Further studies are needed to improve the isolation and characterization of sarcoma CTCs, to demonstrate their clinical significance as predictive and/or prognostic biomarkers, and to utilize CTCs as a tool for investigating the metastatic process in sarcoma and to identify novel therapeutic targets. The present review provides a short overview of the most recent literature on CTCs in sarcoma.
Collapse
Affiliation(s)
- Marta Tellez-Gabriel
- UMR 957, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Equipe Ligue 2012, Faculty of Medicine, INSERM, University of Nantes, Nantes, France; Laboratotio Hematologia Oncologica y de Transplantes, Institut Investigacions Biomèdiques (IBB) Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Hannah K Brown
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK; European Associated Laboratory, INSERM-University of Sheffield, Sarcoma Research Unit, Medical School, Sheffield, UK
| | - Robin Young
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK; European Associated Laboratory, INSERM-University of Sheffield, Sarcoma Research Unit, Medical School, Sheffield, UK
| | - Marie-Françoise Heymann
- UMR 957, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Equipe Ligue 2012, Faculty of Medicine, INSERM, University of Nantes, Nantes, France; Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK; European Associated Laboratory, INSERM-University of Sheffield, Sarcoma Research Unit, Medical School, Sheffield, UK; Nantes University Hospital, Nantes, France
| | - Dominique Heymann
- UMR 957, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Equipe Ligue 2012, Faculty of Medicine, INSERM, University of Nantes, Nantes, France; Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK; European Associated Laboratory, INSERM-University of Sheffield, Sarcoma Research Unit, Medical School, Sheffield, UK; Nantes University Hospital, Nantes, France
| |
Collapse
|
42
|
Farokhi M, Mottaghitalab F, Shokrgozar MA, Ou KL, Mao C, Hosseinkhani H. Importance of dual delivery systems for bone tissue engineering. J Control Release 2016; 225:152-69. [PMID: 26805518 DOI: 10.1016/j.jconrel.2016.01.033] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 02/07/2023]
Abstract
Bone formation is a complex process that requires concerted function of multiple growth factors. For this, it is essential to design a delivery system with the ability to load multiple growth factors in order to mimic the natural microenvironment for bone tissue formation. However, the short half-lives of growth factors, their relatively large size, slow tissue penetration, and high toxicity suggest that conventional routes of administration are unlikely to be effective. Therefore, it seems that using multiple bioactive factors in different delivery systems can develop new strategies for improving bone tissue regeneration. Combination of these factors along with biomaterials that permit tunable release profiles would help to achieve truly spatiotemporal regulation during delivery. This review summarizes the various dual-control release systems that are used for bone tissue engineering.
Collapse
Affiliation(s)
- Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Keng-Liang Ou
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan; Department of Dentistry, Taipei Medical University - Shuang Ho Hospital, New Taipei city, Taiwan
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019, USA
| | - Hossein Hosseinkhani
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
43
|
Chu C, Deng J, Liu L, Cao Y, Wei X, Li J, Man Y. Nanoparticles combined with growth factors: recent progress and applications. RSC Adv 2016. [DOI: 10.1039/c6ra13636b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Increasing attention has been focused on the applications of nanoparticles combined with growth factors (NPs/GFs) due to the substantial functions of GFs in regenerative medicine and disease treatments.
Collapse
Affiliation(s)
- Chenyu Chu
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| | - Jia Deng
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| | - Li Liu
- State Key Laboratory of Biotherapy and Laboratory for Aging Research
- West China Hospital
- Sichuan University and Collaborative Innovation Center for Biotherapy
- Chengdu
- China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| | - Xiawei Wei
- State Key Laboratory of Biotherapy and Laboratory for Aging Research
- West China Hospital
- Sichuan University and Collaborative Innovation Center for Biotherapy
- Chengdu
- China
| | - Jidong Li
- Research Center for Nano Biomaterials
- Analytical & Testing Center
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Yi Man
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| |
Collapse
|
44
|
Keceli HG, Akman AC, Bayram C, Nohutcu RM. Tissue engineering applications and nanobiomaterials in periodontology and implant dentistry. NANOBIOMATERIALS IN DENTISTRY 2016:337-387. [DOI: 10.1016/b978-0-323-42867-5.00013-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
45
|
Romereim SM, Cupp AS. Mesonephric Cell Migration into the Gonads and Vascularization Are Processes Crucial for Testis Development. Results Probl Cell Differ 2016; 58:67-100. [PMID: 27300176 DOI: 10.1007/978-3-319-31973-5_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Testis morphogenesis requires the integration and reorganization of multiple cell types from several sources, one of the more notable being the mesonephric-derived cell population. One of the earliest sex-specific morphogenetic events in the gonad is a wave of endothelial cell migration from the mesonephros that is crucial for (1) partitioning the gonad into domains for testis cords, (2) providing the vasculature of the testis, and (3) signaling to cells both within the gonad and beyond it to coordinately regulate testis development. In addition to endothelial cell migration, there is evidence that precursors of peritubular myoid cells migrate from the mesonephros, an event which is also important for testis cord architecture. Investigation of the mesonephric cell migration event has utilized histology, lineage tracing with mouse genetic markers, and many studies of the signaling molecules/pathways involved. Some of the more well-studied signaling molecules involved include vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and neurotrophins. In this chapter, the morphogenetic events, relevant signaling pathways, mechanisms underlying the migration, and the role of the migratory cells within the testis will be discussed. Overall, the migration of mesonephric cells into the early testis is indispensable for its development and future functionality.
Collapse
|
46
|
Das A, Fishero BA, Christophel JJ, Li CJ, Kohli N, Lin Y, Dighe AS, Cui Q. Poly(lactic-co-glycolide) polymer constructs cross-linked with human BMP-6 and VEGF protein significantly enhance rat mandible defect repair. Cell Tissue Res 2015; 364:125-35. [PMID: 26475719 DOI: 10.1007/s00441-015-2301-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/21/2015] [Indexed: 11/28/2022]
Abstract
We have previously shown that the combined delivery of mesenchymal stem cells (MSCs), vascular endothelial growth factor (VEGF) and bone morphogenetic protein 6 (BMP-6) induces significantly more bone formation than that induced by the delivery of any single factor or a combination of any two factors. We now determine whether the exogenous addition of VEGF and BMP-6 is sufficient for bone healing when MSCs are not provided. Poly(lactic-co-glycolic acid) (PLAGA) microsphere-based three-dimensional scaffolds (P) were fabricated by thermal sintering of PLAGA microspheres. The scaffolds were chemically cross-linked with 200 ng recombinant human VEGF (P(VEGF)) or BMP-6 (P(BMP-6)) or both (P(VEGF+BMP-6)) by the EDC-NHS-MES method. Release of the proteins from the scaffolds was detected for 21 days in vitro which confirmed their comparable potential to supply the proteins in vivo. The scaffolds were delivered to a critical-sized mandibular defect created in 32 Sprague Dawley rats. Significant bone regeneration was observed only in rats with P(VEGF+BMP-6) scaffolds at weeks 2, 8 and 12 as revealed by micro-computer tomography. Vascular ingrowth was higher in the P(VEGF+BMP-6) group as seen by microfil imaging than in other groups. Trichrome staining revealed that a soft callus formed in P(VEGF), P(BMP-6) and P(VEGF+BMP-6) but not in P. MSCs isolated from rat femurs displayed expression of the bone-specific marker osteocalcin when cultured with P(VEGF), P(BMP-6), or P(VEGF+BMP-6) but not with P. Robust mineralization and increased alkaline phosphatase gene expression were seen in rat MSCs when cultured on P(VEGF+BMP-6) but not on P, P(VEGF), or P(BMP-6). Thus, unlike the delivery of VEGF or BMP-6 alone, the combined delivery of VEGF and BMP-6 to the bone defect significantly enhanced bone repair through the enhancement of angiogenesis and the differentiation of endogenously recruited MSCs into the bone repair site.
Collapse
Affiliation(s)
- Anusuya Das
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Brian A Fishero
- Department of Otolaryngology- Head and Neck Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - J Jared Christophel
- Department of Otolaryngology- Head and Neck Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Ching-Ju Li
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Nikita Kohli
- School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Yong Lin
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Abhijit S Dighe
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Quanjun Cui
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
47
|
Marini M, Bertolai R, Ambrosini S, Sarchielli E, Vannelli GB, Sgambati E. Differential expression of vascular endothelial growth factor in human fetal skeletal site-specific tissues: Mandible versus femur. Acta Histochem 2015; 117:228-34. [PMID: 25769656 DOI: 10.1016/j.acthis.2015.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 01/10/2023]
Abstract
Vascular endothelial growth factor (VEGF) is a well-known mediator that signals through pathways in angiogenesis and osteogenesis. Angiogenesis and bone formation are coupled during either skeletal development or bone remodeling and repair occurring in postnatal life. In this study, we examined for the first time the expression of VEGF in human fetal mandibular and femoral bone in comparison with the respective adult tissues. Similarly to other craniofacial bones, but at variance with the axial and appendicular skeleton, during development mandible does not arise from mesoderm but neural crest cells of the neuroectoderm germ layer, and undergoes intramembranous instead of endochondral ossification. By quantitative real-time PCR technique, we could show that VEGF gene expression levels were significantly higher in fetal than in adult samples, especially in femoral tissue. Western blotting analysis confirmed higher protein expression of VEGF in the fetal femur respect to the mandible. Moreover, immunohistochemistry revealed that in both fetal tissues VEGF expression was mainly localized in pre- and osteoblasts. Differential expression of VEGF in femoral and mandibular bone tissues could be related to their different structure, function and development during organogenesis.
Collapse
Affiliation(s)
- Mirca Marini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Roberto Bertolai
- Department of Surgery and Translational Medicine, University of Florence, Largo Palagi 1, 50139 Florence, Italy.
| | - Stefano Ambrosini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Erica Sarchielli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Gabriella Barbara Vannelli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Eleonora Sgambati
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche 86090 Isernia, Italy.
| |
Collapse
|
48
|
Dulamea AO. The potential use of mesenchymal stem cells in stroke therapy--From bench to bedside. J Neurol Sci 2015; 352:1-11. [PMID: 25818674 DOI: 10.1016/j.jns.2015.03.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 12/11/2022]
Abstract
Stroke is the second main cause of morbidity and mortality worldwide. The rationale for the use of mesenchymal stem cells (MSCs) in stroke is based on the capacity of MSCs to secrete a large variety of bioactive molecules such as growth factors, cytokines and chemokines leading to reduction of inflammation, increased neurogenesis from the germinative niches of central nervous system, increased angiogenesis, effects on astrocytes, oligodendrocytes and axons. This review presents the data derived from experimental studies and the evidence available from clinical trials about the use of MSCs in stroke therapy.
Collapse
Affiliation(s)
- Adriana Octaviana Dulamea
- U.M.F. "Carol Davila", Fundeni Clinical Institute, Department of Neurology, 258 Sos. Fundeni, Sector 2, Bucharest, Romania.
| |
Collapse
|
49
|
Emulating native periosteum cell population and subsequent paracrine factor production to promote tissue engineered periosteum-mediated allograft healing. Biomaterials 2015; 52:426-40. [PMID: 25818449 DOI: 10.1016/j.biomaterials.2015.02.064] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 01/01/2023]
Abstract
Emulating autograft healing within the context of decellularized bone allografts has immediate clinical applications in the treatment of critical-sized bone defects. The periosteum, a thin, osteogenic tissue that surrounds bone, houses a heterogenous population of stem cells and osteoprogenitors. There is evidence that periosteum-cell derived paracrine factors, specifically vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2), orchestrate autograft healing through host cell recruitment and subsequent tissue elaboration. In previous work, we demonstrated that the use of poly(ethylene glycol) (PEG) hydrogels as a tissue engineered (T.E.) periosteum to localize mesenchymal stem cells (MSCs) to the surface of decellularized bone enhances allograft healing and integration. Herein, we utilize a mixed population of 50:50 MSCs and osteoprogenitor cells to better mimic native periosteum cell population and paracrine factor production to further promote allograft healing. This mixed cell population was localized to the surface of decellularized allografts within degradable hydrogels and shown to expedite allograft healing. Specifically, bone callus formation and biomechanical graft-host integration are increased as compared to unmodified allografts. These results demonstrate the dual importance of periosteum-mediated paracrine factors orchestrating host cell recruitment as well as new bone formation while developing clinically translatable strategies for allograft healing and integration.
Collapse
|
50
|
Cranial neural crest deletion of VEGFa causes cleft palate with aberrant vascular and bone development. Cell Tissue Res 2015; 361:711-22. [DOI: 10.1007/s00441-015-2150-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 02/05/2015] [Indexed: 12/15/2022]
|