1
|
Ali AA, Azouz RAM, Hussein NA, El-Shenawy R, Helmy NM, El-Abd YS, Tabll AA. Development of Virus-Like Particles (VLPs) for Hepatitis C Virus genotype 4: a novel approach for vaccine development in Egypt. BMC Biotechnol 2025; 25:8. [PMID: 39827115 PMCID: PMC11742997 DOI: 10.1186/s12896-024-00935-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Egypt has the highest global prevalence of Hepatitis C Virus (HCV) infection, particularly of genotype 4. The development of a prophylactic vaccine remains crucial for HCV eradication, yet no such vaccine currently exists due to the vaccine development challenges. The ability of Virus-Like Particles (VLPs) to mimic the native virus and incorporate neutralizing and conformational epitopes, while effectively engaging both humoral and cellular immune responses, makes them a promising approach to addressing the challenges in HCV vaccine development. METHODS Lentiviral-based vectors were constructed and employed to integrate the full-length sequence of Core, E1, E2, and P7 genes of HCV genotype 4 into the genome of Human Embryonic Kidney cells (HEK293T). Upon the expression, HCV structural proteins can oligomerize and self-assemble into VLPs mimicking the structure of HCV native virus. VLPs were purified and characterized for the development of a potential VLPs-based vaccine. RESULTS In this study, mammalian cells were successfully engineered to stably express HCV structural proteins and generate non-infectious VLPs for HCV genotype 4. The expression of HCV-integrated genes resulted in a successful production of HCV structural proteins, which oligomerized and self-assembled into two layers enveloped VLPs. Electron microscopy analysis of purified VLPs revealed spherical particles with an average diameter of 60-65 nm, closely resembling mature HCV virions. These results highlighted the potential of these VLPs as a vaccine candidate for HCV genotype 4. CONCLUSIONS HCV genotype 4 remains an underexplored target in vaccine development, despite its significant public health burden, especially in Egypt. The successful generation of VLPs for this genotype represents a promising avenue for further vaccine development. The established system provides a robust platform for the production and study of VLP-based vaccines targeting HCV genotype 4.
Collapse
Affiliation(s)
- Ahmed A Ali
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Cairo, 12622, Egypt.
| | - Rasha A M Azouz
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Nahla A Hussein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Reem El-Shenawy
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Naiera M Helmy
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Yasmine S El-Abd
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Ashraf A Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Cairo, 12622, Egypt
- Egyptian Centre for Research and Regenerative Medicine (ECRRM), Cairo, 11517, Egypt
| |
Collapse
|
2
|
Ali AA, Tabll AA. Unlocking potential: Virus-like particles as a promising strategy for effective HCV vaccine development. Virology 2025; 602:110307. [PMID: 39580887 DOI: 10.1016/j.virol.2024.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. The development of prophylactic vaccine is essential for HCV global eradication. Despite over three decades of research, no effective vaccine for HCV has been developed, primarily due to the virus's genetic diversity, immune evasion mechanisms, and incomplete understanding of protective immunity. However, Virus-Like Particles (VLPs) offer a promising approach to overcoming these challenges. VLPs mimic the structure of native virus but without the infectious genome, making them safe and non-infectious vaccines candidates. The capability of VLPs to incorporate neutralizing and conformational epitopes, and engage humoral and cellular immune responses, positions them as a promising tool for overcoming challenges associated with the HCV vaccine development. This review examines the challenges and immunological considerations for HCV vaccine development and provides an overview of the VLPs-based vaccines development. It also discusses future directions and public health implications of HCV vaccine development.
Collapse
Affiliation(s)
- Ahmed A Ali
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, (NRC), 12622, Cairo, Egypt.
| | - Ashraf A Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, 12622, Cairo, Egypt; Egyptian Centre for Research and Regenerative Medicine (ECRRM), 11517, Cairo, Egypt.
| |
Collapse
|
3
|
Mebus-Antunes NC, Ferreira WS, Barbosa GM, Neves-Martins TC, Weissmuller G, Almeida FCL, Da Poian AT. The interaction of dengue virus capsid protein with negatively charged interfaces drives the in vitro assembly of nucleocapsid-like particles. PLoS One 2022; 17:e0264643. [PMID: 35231063 PMCID: PMC8887749 DOI: 10.1371/journal.pone.0264643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/15/2022] [Indexed: 01/06/2023] Open
Abstract
Dengue virus (DENV) causes a major arthropod-borne viral disease, with 2.5 billion people living in risk areas. DENV consists in a 50 nm-diameter enveloped particle in which the surface proteins are arranged with icosahedral symmetry, while information about nucleocapsid (NC) structural organization is lacking. DENV NC is composed of the viral genome, a positive-sense single-stranded RNA, packaged by the capsid (C) protein. Here, we established the conditions for a reproducible in vitro assembly of DENV nucleocapsid-like particles (NCLPs) using recombinant DENVC. We analyzed NCLP formation in the absence or presence of oligonucleotides in solution using small angle X-ray scattering, Rayleigh light scattering as well as fluorescence anisotropy, and characterized particle structural properties using atomic force and transmission electron microscopy imaging. The experiments in solution comparing 2-, 5- and 25-mer oligonucleotides established that 2-mer is too small and 5-mer is sufficient for the formation of NCLPs. The assembly process was concentration-dependent and showed a saturation profile, with a stoichiometry of 1:1 (DENVC:oligonucleotide) molar ratio, suggesting an equilibrium involving DENVC dimer and an organized structure compatible with NCLPs. Imaging methods proved that the decrease in concentration to sub-nanomolar concentrations of DENVC allows the formation of regular spherical NCLPs after protein deposition on mica or carbon surfaces, in the presence as well as in the absence of oligonucleotides, in this latter case being surface driven. Altogether, the results suggest that in vitro assembly of DENV NCLPs depends on DENVC charge neutralization, which must be a very coordinated process to avoid unspecific aggregation. Our hypothesis is that a specific highly positive spot in DENVC α4-α4' is the main DENVC-RNA binding site, which is required to be firstly neutralized to allow NC formation.
Collapse
Affiliation(s)
- Nathane C. Mebus-Antunes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wellington S. Ferreira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glauce M. Barbosa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thais C. Neves-Martins
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto Weissmuller
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio C. L. Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrea T. Da Poian
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Nucleic acid vaccines for hepatitis B and C virus. INFECTION GENETICS AND EVOLUTION 2019; 75:103968. [PMID: 31325609 DOI: 10.1016/j.meegid.2019.103968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/25/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) and Hepatitis C virus (HCV) infections accounts for an important global health problem affecting over 250 million people all around the world. They can cause acute, transient and chronic infections in the human liver. Chronic infection of liver can lead to its failure or cancer. To deal with this problem, alternative approaches or strategies to inhibit these infections have already been started. DNA and mRNA-based vaccination will increase the efficacy and reduce toxicity in patients with Hepatitis B virus (HBV) and Hepatitis C virus (HCV) infections. Gene vaccines represent a promising alternative to conventional vaccine approaches because of their high potency, capacity for rapid development, low-cost manufacture and safe administration. MRNA-based vaccination is a method to elicit potent antigen-specific humoral and cell-mediated immune responses with a superior safety profile compared with DNA vaccines. Exploring the intricacies of these pathways can potentially help the researchers to explore newer vaccines. In this study, DNA and mRNA-based vaccination are introduced as an approach to treat Hepatitis B virus (HBV) and Hepatitis C virus (HCV) infections. DNA and mRNA-based vaccines as one of the most successful therapeutics are introduced and the clinical outcomes of their exploitation are explained.
Collapse
|
5
|
de Souza TLF, de Lima SMB, Braga VLDA, Peabody DS, Ferreira DF, Bianconi ML, Gomes AMDO, Silva JL, de Oliveira AC. Charge neutralization as the major factor for the assembly of nucleocapsid-like particles from C-terminal truncated hepatitis C virus core protein. PeerJ 2016; 4:e2670. [PMID: 27867765 PMCID: PMC5111903 DOI: 10.7717/peerj.2670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/08/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) core protein, in addition to its structural role to form the nucleocapsid assembly, plays a critical role in HCV pathogenesis by interfering in several cellular processes, including microRNA and mRNA homeostasis. The C-terminal truncated HCV core protein (C124) is intrinsically unstructured in solution and is able to interact with unspecific nucleic acids, in the micromolar range, and to assemble into nucleocapsid-like particles (NLPs) in vitro. The specificity and propensity of C124 to the assembly and its implications on HCV pathogenesis are not well understood. METHODS Spectroscopic techniques, transmission electron microscopy and calorimetry were used to better understand the propensity of C124 to fold or to multimerize into NLPs when subjected to different conditions or in the presence of unspecific nucleic acids of equivalent size to cellular microRNAs. RESULTS The structural analysis indicated that C124 has low propensity to self-folding. On the other hand, for the first time, we show that C124, in the absence of nucleic acids, multimerizes into empty NLPs when subjected to a pH close to its isoelectric point (pH ≈ 12), indicating that assembly is mainly driven by charge neutralization. Isothermal calorimetry data showed that the assembly of NLPs promoted by nucleic acids is enthalpy driven. Additionally, data obtained from fluorescence correlation spectroscopy show that C124, in nanomolar range, was able to interact and to sequester a large number of short unspecific nucleic acids into NLPs. DISCUSSION Together, our data showed that the charge neutralization is the major factor for the nucleocapsid-like particles assembly from C-terminal truncated HCV core protein. This finding suggests that HCV core protein may physically interact with unspecific cellular polyanions, which may correspond to microRNAs and mRNAs in a host cell infected by HCV, triggering their confinement into infectious particles.
Collapse
Affiliation(s)
- Theo Luiz Ferraz de Souza
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Vanessa L. de Azevedo Braga
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David S. Peabody
- Department of Molecular Genetics and Microbiology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, United States
| | - Davis Fernandes Ferreira
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M. Lucia Bianconi
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andre Marco de Oliveira Gomes
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jerson Lima Silva
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andréa Cheble de Oliveira
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Protective T Cell and Antibody Immune Responses against Hepatitis C Virus Achieved Using a Biopolyester-Bead-Based Vaccine Delivery System. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:370-8. [PMID: 26888185 DOI: 10.1128/cvi.00687-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/15/2016] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) infection is a major worldwide problem. Chronic hepatitis C is recognized as one of the major causes of cirrhosis, hepatocellular carcinoma, and liver failure. Although new, directly acting antiviral therapies are suggested to overcome the low efficacy and adverse effects observed for the current standard of treatment, an effective vaccine would be the only way to certainly eradicate HCV infection. Recently, polyhydroxybutyrate beads produced by engineered Escherichia coli showed efficacy as a vaccine delivery system. Here, an endotoxin-free E. coli strain (ClearColi) was engineered to produce polyhydroxybutyrate beads displaying the core antigen on their surface (Beads-Core) and their immunogenicity was evaluated in BALB/c mice. Immunization with Beads-Core induced gamma interferon (IFN-γ) secretion and a functional T cell immune response against the HCV Core protein. With the aim to target broad T and B cell determinants described for HCV, Beads-Core mixed with HCV E1, E2, and NS3 recombinant proteins was also evaluated in BALB/c mice. Remarkably, only three immunization with Beads-Core+CoE1E2NS3/Alum (a mixture of 0.1 μg Co.120, 16.7 μg E1.340, 16.7 μg E2.680, and 10 μg NS3 adjuvanted in aluminum hydroxide [Alum]) induced a potent antibody response against E1 and E2 and a broad IFN-γ secretion and T cell response against Core and all coadministered antigens. This immunological response mediated protective immunity to viremia as assessed in a viral surrogate challenge model. Overall, it was shown that engineered biopolyester beads displaying foreign antigens are immunogenic and might present a particulate delivery system suitable for vaccination against HCV.
Collapse
|
7
|
Amador-Cañizares Y, Martínez-Donato G, Álvarez-Lajonchere L, Vasallo C, Dausá M, Aguilar-Noriega D, Valenzuela C, Raíces I, Dubuisson J, Wychowski C, Cinza-Estévez Z, Castellanos M, Núñez M, Armas A, González Y, Revé I, Guerra I, Pérez Aguiar &A, Dueñas-Carrera S. HCV-specific immune responses induced by CIGB-230 in combination with IFN-α plus ribavirin. World J Gastroenterol 2014; 20:148-162. [PMID: 24415868 PMCID: PMC3886004 DOI: 10.3748/wjg.v20.i1.148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/14/2013] [Accepted: 07/13/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze hepatitis C virus (HCV)-specific immune responses in chronically infected patients under triple therapy with interferon-α (IFN-α) plus ribavirin and CIGB-230.
METHODS: CIGB-230 was administered in different schedules with respect to IFN-α plus ribavirin therapy. Paired serum and peripheral blood mononuclear cells (PBMC) samples from baseline and end of treatment were analyzed. The HCV-specific humoral response was tested by enzyme-linked immunosorbent assay, neutralizing antibodies were evaluated by cell culture HCV neutralization assays, PBMC proliferation was assayed by carboxyfluorescein succinimidyl ester staining and IFN-γ secretion was assessed by enzyme-linked immunospot. Data on virological and histological response and their association with immune variables are also provided.
RESULTS: From week 12 to week 48, all groups of patients showed a significant reduction in mean leukocyte counts. Statistically significant reductions in antibody titers were frequent, but only individuals immunized with CIGB-230 as early add-on treatment sustained the core-IgG response, and the neutralizing antibody response was enhanced only in patients receiving CIGB-230. Cell-mediated immune responses also tended to decline, but significant reductions in IFN-γ secretion and total absence of core-specific lymphoproliferation were exclusive of the control group. Only CIGB-230-immunized individuals showed de novo induced lymphoproliferative responses against the structural antigens. Importantly, it was demonstrated that the quality of the CIGB-230-induced immune response depended on the number of doses and timing of administration in relation to the antiviral therapy. Specifically, the administration of 6 doses of CIGB-230 as late add-on to therapy increased the neutralizing antibody activity and the de novo core-specific IFN-γ secretion, both of which were associated with the sustained virological response.
CONCLUSION: CIGB-230, combined with IFN-α-based therapy, modifies the immune response in chronic patients. The study provides evidence for the design of more effective therapeutic vaccine interventions against HCV.
Collapse
MESH Headings
- Adult
- Antiviral Agents/administration & dosage
- Antiviral Agents/adverse effects
- Biomarkers/blood
- Cells, Cultured
- Cuba
- Double-Blind Method
- Drug Administration Schedule
- Drug Therapy, Combination
- Female
- Hepacivirus/drug effects
- Hepacivirus/genetics
- Hepacivirus/immunology
- Hepatitis C Antibodies/blood
- Hepatitis C, Chronic/diagnosis
- Hepatitis C, Chronic/drug therapy
- Hepatitis C, Chronic/immunology
- Humans
- Immunity, Cellular/drug effects
- Immunity, Humoral/drug effects
- Immunization Schedule
- Interferon alpha-2
- Interferon-alpha/administration & dosage
- Interferon-alpha/adverse effects
- Interferon-gamma/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/virology
- Male
- Middle Aged
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/adverse effects
- Ribavirin/administration & dosage
- Ribavirin/adverse effects
- Time Factors
- Treatment Outcome
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/adverse effects
- Viral Hepatitis Vaccines/administration & dosage
- Viral Hepatitis Vaccines/adverse effects
Collapse
|
8
|
Castellanos M, Cinza Z, Dorta Z, Veliz G, Vega H, Lorenzo I, Ojeda S, Dueñas-Carrera S, Alvarez-Lajonchere L, Martínez G, Ferrer E, Limonta M, Linares M, Ruiz O, Acevedo B, Torres D, Márquez G, Herrera L, Arús E. Immunization with a DNA vaccine candidate in chronic hepatitis C patients is safe, well tolerated and does not impair immune response induction after anti-hepatitis B vaccination. J Gene Med 2010; 12:107-16. [PMID: 19866482 DOI: 10.1002/jgm.1407] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In the present study, we evaluated the safety of CIGB-230, a novel vaccine candidate based on the mixture of a plasmid for DNA immunization, expressing hepatitis C virus (HCV) structural antigens, with a recombinant HCV Core protein. METHODS Fifteen HCV chronically-infected volunteers with detectable levels of HCV RNA genotype 1b, who were nonresponders to previous treatment with interferon plus ribavirin, were intramuscularly injected with CIGB-230 on weeks 0, 4, 8, 12, 16 and 20. Individuals were also immunized at weeks 28, 32 and 36 with a recombinant vaccine against hepatitis B. Adverse events were recorded and analyzed. Blood samples were taken every 4 weeks up to month 12 for hematological, biochemical, virological and immunological analysis. RESULTS All patients completed the treatment with CIGB-230. Adverse events were only slight (83.6%) or moderate (16.4%). No significant differences in hematological and biochemical parameters, including serum aminotransferases, were detected between the baseline and post-treatment state. Induction of a CD4+ T lymphocyte response against a particular region in HCV E1, spanning amino acids 230-312 in HCV polyprotein, was detected in 42.8% of patients during treatment with CIGB-230. The ability of T cells to proliferate in response to mitogenic stimulation was not weakened. Most individuals (78.6%) were seroprotected after anti-hepatitis B vaccination and 42.8% were hyper-responders (antibody titers > 100 UI/ml). No anti-mitochondrial, anti-nuclear and anti-extractable nuclear antigen antibodies were generated during immunization with CIGB-230. CONCLUSIONS Vaccination with CIGB-230 in HCV chronically-infected individuals was safe, well tolerated and did not impair the ability to respond to non-HCV antigens.
Collapse
|
9
|
Virus-Like Particles as vaccine antigens and adjuvants: application to chronic disease, cancer immunotherapy and infectious disease preventive strategies. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.provac.2010.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Bacardí D, Amador-Cañizares Y, Cosme K, Urquiza D, Suárez J, Marante J, Viña A, Vázquez A, Concepción J, Pupo M, Aldana L, Soria Y, Romero J, Madrigal R, Martínez L, Hernández L, González I, Dueñas-Carrera S. Toxicology and biodistribution study of CIGB-230, a DNA vaccine against hepatitis C virus. Hum Exp Toxicol 2009; 28:479-91. [DOI: 10.1177/0960327109106438] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CIGB-230, a mixture of a DNA plasmid expressing hepatitis C virus (HCV) structural antigens and a HCV recombinant capsid protein, has demonstrated to elicit strong immune responses in animals. The present study evaluated the plasmid biodistribution after the administration of CIGB-230 in mice, as well as toxicity of this vaccine candidate in rats. In the biodistribution study, mice received single or repeated intramuscular injections of CIGB-230, 50 μg of plasmid DNA mixed with 5 μg of Co.120 protein. Plasmid presence was assessed in ovaries, kidney, liver, pancreas, mesenteric ganglion, blood, and muscle of the injection site by a qualitative polymerase chain reaction. The toxicology evaluation included treatment groups receiving doses 5, 15, or 50 times higher, according to the body weight, than the expected therapeutic clinical dose. During the first hour after repeated inoculation, a promiscuous distribution was observed. However, 3 months later, plasmid could not be detected in any tissue. There was an absence of detectable adverse effects on key toxicology parameters and no damage evidenced in inspected organs and tissues. These results indicate that CIGB-230 is nontoxic at local and systemic levels and no concerns about persistence are observed, which support clinical testing of this vaccine candidate against HCV.
Collapse
Affiliation(s)
- Dania Bacardí
- Center for Genetic Engineering and Biotechnology, Cubanacán, Playa, Havana, Cuba,
| | | | - Karelia Cosme
- Center for Genetic Engineering and Biotechnology, Cubanacán, Playa, Havana, Cuba
| | - Dioslaida Urquiza
- Center for Genetic Engineering and Biotechnology, Cubanacán, Playa, Havana, Cuba
| | - José Suárez
- Center for Genetic Engineering and Biotechnology, Cubanacán, Playa, Havana, Cuba
| | - Jeny Marante
- Center for Genetic Engineering and Biotechnology, Cubanacán, Playa, Havana, Cuba
| | - Ariel Viña
- Center for Genetic Engineering and Biotechnology, Cubanacán, Playa, Havana, Cuba
| | - Ariel Vázquez
- Center for Genetic Engineering and Biotechnology, Cubanacán, Playa, Havana, Cuba
| | - Joel Concepción
- Center for Genetic Engineering and Biotechnology, Cubanacán, Playa, Havana, Cuba
| | - Maylín Pupo
- Center for Genetic Engineering and Biotechnology, Cubanacán, Playa, Havana, Cuba
| | - Lizet Aldana
- Center for Genetic Engineering and Biotechnology, Cubanacán, Playa, Havana, Cuba
| | - Yordanka Soria
- Center for Genetic Engineering and Biotechnology, Cubanacán, Playa, Havana, Cuba
| | - Juan Romero
- Center for Genetic Engineering and Biotechnology, Cubanacán, Playa, Havana, Cuba
| | - Roberto Madrigal
- Center for Genetic Engineering and Biotechnology, Cubanacán, Playa, Havana, Cuba
| | - Leticia Martínez
- Center for Genetic Engineering and Biotechnology, Cubanacán, Playa, Havana, Cuba
| | - Lourdes Hernández
- Center for Genetic Engineering and Biotechnology, Cubanacán, Playa, Havana, Cuba
| | - Idania González
- Center for Genetic Engineering and Biotechnology, Cubanacán, Playa, Havana, Cuba
| | | |
Collapse
|
11
|
Alvarez-Lajonchere L, Shoukry NH, Grá B, Amador-Cañizares Y, Helle F, Bédard N, Guerra I, Drouin C, Dubuisson J, González-Horta EE, Martínez G, Marante J, Cinza Z, Castellanos M, Dueñas-Carrera S. Immunogenicity of CIGB-230, a therapeutic DNA vaccine preparation, in HCV-chronically infected individuals in a Phase I clinical trial. J Viral Hepat 2009; 16:156-67. [PMID: 19017255 DOI: 10.1111/j.1365-2893.2008.01058.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) is a worldwide health problem. No vaccine is available against this pathogen and therapeutic treatments currently in use are of limited efficacy. In the present study, the immunogenicity of the therapeutic vaccine candidate CIGB-230, based on the mixture of pIDKE2, a plasmid expressing HCV structural antigens, with a recombinant HCV core protein, Co.120, was evaluated. CIGB-230 was administered by intramuscular injection on weeks 0, 4, 8, 12, 16 and 20 to 15 HCV-chronically infected individuals, non-responders to previous treatment with interferon (IFN) plus ribavirin. Interestingly, following the final immunization, neutralizing antibody responses against heterologous viral pseudoparticles were modified in eight individuals, including six de novo responders. In addition, 73% of vaccinees exhibited specific T cell proliferative response and T cell IFN-gamma secretory response 24 weeks after primary immunization with CIGB-230. Furthermore, 33.3% of individuals developed de novo cellular immune response against HCV core and the number of patients (46.7% at the end of treatment) with cellular immune response against more than one HCV structural antigen increased during vaccination (P = 0.046). In addition, despite persistent detection of HCV RNA, more than 40% percent of vaccinated individuals improved or stabilized liver histology, particularly reducing fibrosis, which correlated with cellular immune response against more than one HCV antigen (P = 0.0053). In conclusion, CIGB-230 is a promising candidate for effective therapeutic interventions based on its ability for enhancing the immune response in HCV chronically infected individuals.
Collapse
|
12
|
Roohvand F, Aghasadeghi MR, Sadat SM, Budkowska A, Khabiri AR. HCV core protein immunization with Montanide/CpG elicits strong Th1/Th2 and long-lived CTL responses. Biochem Biophys Res Commun 2007; 354:641-649. [PMID: 17250802 DOI: 10.1016/j.bbrc.2006.12.232] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Accepted: 12/28/2006] [Indexed: 01/23/2023]
Abstract
An efficient vaccine against Hepatitis C virus (HCV) infection requires induction of strong humoral and cellular responses against viral proteins. We evaluated the immunogenicity of HCV core protein (HCVcp), a prime vaccine candidate, formulated in various human compatible adjuvants. An Escherichia coli-expressed HCVcp, purified in native conditions was used for murine immunization in separate groups of: free HCVcp (Ag), Ag+C/IFA (Freunds), Ag+CpG, Ag+M720 (Montanide ISA 720), Ag+F127 (Pluronic acid) and cocktails of Ag+F127+CpG and Ag+M720+CpG. Mice immunized with M720(+CpG) developed the highest HCVcp-specific titers of total IgG, IgG1, 2a, 2b, and that of IFN-gamma and IL-4 cytokines compared to all other groups. HCVcp-specific-CTLs against relevant MHC class I peptides were detected only for Ag+M720+CpG, Ag+M720, and Ag+CpG groups and could be blocked by antimouse-CD8 antibodies. While CTLs were stable, only F127 formulated groups demonstrated detectable IgG antibodies one year post-immunization. Hence, HCVcp formulated in M720 (with a synergistic effect by inclusion of CpG) could induce balanced and strong Th1/Th2 responses with long-lived CD4(-)CD8(+) CTLs.
Collapse
Affiliation(s)
- Farzin Roohvand
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran.
| | | | | | | | | |
Collapse
|
13
|
Rodríguez-Casado A, Molina M, Carmona P. Spectroscopic study of conformational changes accompanying self-assembly of HCV core protein. Proteins 2006; 66:110-7. [PMID: 17078073 DOI: 10.1002/prot.21192] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Electron microscopy and infrared and Raman spectroscopy have been used here to study the morphology, size distribution, secondary and tertiary structures of protein particles assembled from a truncated hepatitis C virus (HCV) core protein covering the first 120 aa. Particles of pure protein, having similar morphology and size distribution of those of nucleocapsids found in sera from HCV-infected patients, have been visualized for the first time. The secondary structure of these protein particles involve beta-sheet enrichment in relation to its protein monomer. Tertiary/quaternary structure has also been studied using the dynamics of H/D exchange. With this aim infrared spectra were measured as a function of H/D exchange time and subsequently analyzed by principal component analysis and two-dimensional correlation spectroscopy. Temporal dynamics of exchange for these protein particles were as follows: arginine residues exchanged first, followed by turn and unordered structures, followed by beta-sheets which may act as linkers of protein monomers.
Collapse
|
14
|
Rodriguez-Casado A, Molina M, Carmona P. Conformational features of truncated hepatitis C virus core protein in virus-like particles. Biopolymers 2006; 82:334-8. [PMID: 16475155 DOI: 10.1002/bip.20474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
HCVc 120 is a truncated protein from the hepatitis C virus (HCV) core protein that interacts with itself to form nucleocapsid-like particles. We present here the infrared and Raman spectra of oligomeric HCVc 120 protein in order to obtain insights into its secondary structure as well as the environment surrounding some protein side chains. When compared with its monomer form, oligomeric HCVc 120 protein shows an increase in beta-sheet structure. Tryptophan residues have been found to be solvent exposed in the oligomeric form, and they likely do not significantly participate in the protein assembly. However, the beta-sheet content in oligomeric HCVc 120 protein suggests that this structural motif cannot be excluded in nucleocapsid formation, as shown recently in other viruses.
Collapse
Affiliation(s)
- A Rodriguez-Casado
- Instituto de Estructura de la Materia (CSIC), Serrano 121, 28006 Madrid, Spain
| | | | | |
Collapse
|