1
|
Shah A, Xu H, Kwon HJ, Wondisford FE. In vivo glycerol metabolism in patients with glycerol kinase deficiency. JIMD Rep 2024; 65:392-400. [PMID: 39512433 PMCID: PMC11540572 DOI: 10.1002/jmd2.12452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/03/2024] [Indexed: 11/15/2024] Open
Abstract
Glycerol kinase deficiency (GKD) is an X-linked recessive disorder due to glycerol kinase (GK) gene mutations resulting in hyperglycerolermia, hyperglyceroluria, and "pseudohypertriglyceridemia." In vivo glycerol metabolism has not been assessed in GKD. A 62-year-old man with suspected GKD and his extended family underwent whole exome sequencing and fasting blood work with two modes of lipid measurements: (1) standard lipase-based methodology and (2) nuclear magnetic resonance (NMR). Two overnight fasted men with GKD and a heterozygote female carrier then underwent 13C3-glycerol infusion. Affected family members had a novel two-nucleotide deletion in exon 5 of the GK gene (c.373_374del). Compared to their family members (n = 14), men with GKD (n = 5) had significantly lower total cholesterol levels (3.72 ± 0.70 vs. 4.77 ± 0.85 mmol/L, p = 0.024). Compared to NMR, lipase-based assays overreported triglycerides (5.28 ± 1.38 vs. 0.81 ± 0.32, mmol/L, p < 0.001) and underreported low-density lipoprotein cholesterol values (0.93 ± 0.23 vs. 2.18 ± 0.42 mmol/L, p = 0.001) in GKD. Men with GKD could not convert glycerol into glucose or triglycerides, which was preserved in the heterozygote carrier. Glycolytic metabolism of glycerol to lactate persisted in GKD, but it was reduced by a magnitude and, possibly, due to homologous glycerol kinases encoded by other genes. In summary, we report a novel GK pathogenic variant; affected men cannot convert circulating glycerol to glucose or triglycerides and have lower cholesterol levels. These results offer a human model for potentially targeting glycerol kinase to treat conditions associated with hyperglycemia and hyperlipidemia and warrant further investigation.
Collapse
Affiliation(s)
- Ankit Shah
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Robert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNew JerseyUSA
| | - Huiting Xu
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Robert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNew JerseyUSA
| | - Hyok Joon Kwon
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Robert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNew JerseyUSA
- University of Arizona College of MedicinePhoenixArizonaUSA
| | - Fredric E. Wondisford
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Robert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNew JerseyUSA
- University of Arizona College of MedicinePhoenixArizonaUSA
| |
Collapse
|
2
|
Parr LS, Sriram G, Nazarian R, Rahib L, Dipple KM. The ATP-stimulated translocation promoter (ASTP) activity of glycerol kinase plays central role in adipogenesis. Mol Genet Metab 2018; 124:254-265. [PMID: 29960856 DOI: 10.1016/j.ymgme.2018.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 11/16/2022]
Abstract
Glycerol kinase (GK) is a multifunctional enzyme located at the interface of carbohydrate and fat metabolism. It contributes to both central carbon metabolism and adipogenesis; specifically, through its role as the ATP-stimulated translocation promoter (ASTP). GK overexpression leads to increased ASTP activity and increased fat storage in H4IIE cells. We performed metabolic flux analysis in human GK-overexpressing H4IIE cells and found that overexpressing cells had significantly altered fluxes through central carbon and lipid metabolism including increased flux through the pentose phosphate pathway and increased production of lipids. We also observed an equal contribution of glycerol to carbohydrate metabolism in all cell lines, suggesting that GK's alternate functions rather than its enzymatic function are important for these processes. To further elucidate the contributions of the enzymatic (phosphorylation) and alternative (ASTP) functions of GK in adipogenesis, we performed experiments on mammalian GK and E. coli GK. We determined that the ASTP function of GK (which is absent in E. coli GK) plays a greater role than the enzymatic activity in these processes. These studies further emphasize GK's diverse functionality and provides fundamental insights into the multiple protein functions of glycerol kinase.
Collapse
Affiliation(s)
- Lilly S Parr
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 695 Charles E. Young Drive South, Los Angeles, CA 90095-7088, USA
| | - Ganesh Sriram
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 695 Charles E. Young Drive South, Los Angeles, CA 90095-7088, USA; Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Science at UCLA, 420 Westwood Plaza, Los Angeles, CA 90095, USA; Department of Chemical and Biomolecular Engineering, 1208D Building 90, Chemical and Nuclear Engineering Bldg, University of Maryland, College Park, MD 20742-2111, USA
| | - Ramin Nazarian
- Department of Medicine/Dermatology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Lola Rahib
- Biomedical Engineering, Interdepartmental Program, Henry Samueli School of Engineering and Applied Science at UCLA, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Katrina M Dipple
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 695 Charles E. Young Drive South, Los Angeles, CA 90095-7088, USA; Biomedical Engineering, Interdepartmental Program, Henry Samueli School of Engineering and Applied Science at UCLA, 420 Westwood Plaza, Los Angeles, CA 90095, USA; Department of Pediatrics, David Geffen School of Medicine at UCLA, Mattel Children's Hospital at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095-1782, USA; University of Washington, Department of Pediatrics, Seattle Children's Hospital, Division of Genetic Medicine, 4800 Sand Point Way NE, Seattle, WA 98105, USA.
| |
Collapse
|
3
|
Zhuo S, Yang M, Zhao Y, Chen X, Zhang F, Li N, Yao P, Zhu T, Mei H, Wang S, Li Y, Chen S, Le Y. MicroRNA-451 Negatively Regulates Hepatic Glucose Production and Glucose Homeostasis by Targeting Glycerol Kinase-Mediated Gluconeogenesis. Diabetes 2016; 65:3276-3288. [PMID: 27495223 DOI: 10.2337/db16-0166] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/19/2016] [Indexed: 11/13/2022]
Abstract
MicroRNAs (miRNAs) are a new class of regulatory molecules implicated in type 2 diabetes, which is characterized by insulin resistance and hepatic glucose overproduction. We show that miRNA-451 (miR-451) is elevated in the liver tissues of dietary and genetic mouse models of diabetes. Through an adenovirus-mediated gain- and loss-of-function study, we found that miR-451 negatively regulates hepatic gluconeogenesis and blood glucose levels in normal mice and identified glycerol kinase (Gyk) as a direct target of miR-451. We demonstrate that miR-451 and Gyk regulate hepatic glucose production, the glycerol gluconeogenesis axis, and the AKT-FOXO1-PEPCK/G6Pase pathway in an opposite manner; Gyk could reverse the effect of miR-451 on hepatic gluconeogenesis and AKT-FOXO1-PEPCK/G6Pase pathway. Moreover, overexpression of miR-451 or knockdown of Gyk in diabetic mice significantly inhibited hepatic gluconeogenesis, alleviated hyperglycemia, and improved glucose tolerance. Further studies showed that miR-451 is upregulated by glucose and insulin in hepatocytes; the elevation of hepatic miR-451 in diabetic mice may contribute to inhibiting Gyk expression. This study provides the first evidence that miR-451 and Gyk regulate the AKT-FOXO1-PEPCK/G6Pase pathway and play critical roles in hepatic gluconeogenesis and glucose homeostasis and identifies miR-451 and Gyk as potential therapeutic targets against hyperglycemia in diabetes.
Collapse
Affiliation(s)
- Shu Zhuo
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| | - Mengmei Yang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Yanan Zhao
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Xiaofang Chen
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Feifei Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Na Li
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Pengle Yao
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Tengfei Zhu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Hong Mei
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Shanshan Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Yu Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shiting Chen
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| | - Yingying Le
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| |
Collapse
|
4
|
Zhang YH, Van Hove JL, McCabe ER, Dipple KM. Gestational Diabetes Associated with a Novel Mutation (378-379insTT) in the Glycerol Kinase Gene. Mol Genet Metab Rep 2015; 4:42-45. [PMID: 26309814 PMCID: PMC4545508 DOI: 10.1016/j.ymgmr.2015.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Glycerol kinase deficiency (GKD) is an X-linked inborn error of metabolism at the interface of fat and carbohydrate metabolism. We report a male patient with GKD and a novel insertion of TT in exon 5 at position 378 of the GK cDNA (378–379insTT). This resulted in a premature stop codon and 0.8% normal GK activity. The mother is a carrier for this mutation and had gestational diabetes requiring insulin during this pregnancy but not in her previous pregnancy. Given the association between GKD and type 2 diabetes mellitus, it is interesting that the mother had gestational diabetes while carrying an affected fetus. Therefore, GKD is another disease where there may be a maternal–fetal interaction based on genotype. Further investigations may help elucidate the role of GKD in the carrier mother's gestational diabetes. In addition, these studies will provide better-informed counseling to families with GKD regarding the risk to carrier females.
Collapse
Affiliation(s)
- Yao H. Zhang
- Department of Pediatrics, David Geffen School of Medicine at UCLA, and Mattel Children's Hospital UCLA, Los Angeles, CA 90095-1752, USA
| | - Johan L. Van Hove
- Department of Pediatrics, Catholic University Leuven, Leuven B3000, Belgium
| | - Edward R.B. McCabe
- Department of Pediatrics, David Geffen School of Medicine at UCLA, and Mattel Children's Hospital UCLA, Los Angeles, CA 90095-1752, USA
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7088, USA
- Interdepartmental Program, Biomedical Engineering, Henry Samulei School of Engineering and Applied Sciences at UCLA, Los Angeles, CA 90095, USA
| | - Katrina M. Dipple
- Department of Pediatrics, David Geffen School of Medicine at UCLA, and Mattel Children's Hospital UCLA, Los Angeles, CA 90095-1752, USA
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7088, USA
- Interdepartmental Program, Biomedical Engineering, Henry Samulei School of Engineering and Applied Sciences at UCLA, Los Angeles, CA 90095, USA
- Corresponding author at: Departments of Human Genetics and Pediatrics, David Geffen School of Medicine at UCLA, Gonda Center 5506B, 695 Charles E. Young Drive South, Los Angeles, CA 90095-7088, USA.
| |
Collapse
|
5
|
Wightman PJ, Jackson GR, Dipple KM. Disruption of glycerol metabolism by RNAi targeting of genes encoding glycerol kinase results in a range of phenotype severity in Drosophila. PLoS One 2013; 8:e71664. [PMID: 24039719 PMCID: PMC3765373 DOI: 10.1371/journal.pone.0071664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 07/02/2013] [Indexed: 12/03/2022] Open
Abstract
In Drosophila, RNAi targeting of either dGyk or dGK can result in two alternative phenotypes: adult glycerol hypersensitivity or larval lethality. Here we compare these two phenotypes at the level of glycerol kinase (GK) phosphorylation activity, dGyk and dGK-RNA expression, and glycerol levels. We found both phenotypes exhibit reduced but similar levels of GK phosphorylation activity. Reduced RNA expression levels of dGyk and dGK corresponded with RNAi progeny that developed into glycerol hypersensitive adult flies. However, quantification of dGyk/dGK expression levels for the larval lethality phenotype revealed unexpected levels possibly due to a compensatory mechanism between dGyk and dGK or RNAi inhibition. The enzymatic role of glycerol kinase converts glycerol to glycerol 3-phosphate. As expected, elevated glycerol levels were observed in larvae that went on to develop into glycerol hypersensitive adults. Interestingly, larvae that died before eclosion revealed extremely low glycerol levels. Further characterization identified a wing phenotype that is enhanced by a dGpdh null mutation, indicating disrupted glycerol metabolism underlies the wing phenotype. In humans, glycerol kinase deficiency (GKD) exhibits a wide range of phenotypic variation with no obvious genotype-phenotype correlations. Additionally, disease severity often does not correlate with GK phosphorylation activity. It is intriguing that both human GKD patients and our GKD Drosophila model show a range of phenotype severity. Additionally, the lack of correlation between GK phosphorylation and dGyk/dGK-RNA expression with phenotypic severity suggests further study including understanding the alternative functions of the GK protein, could provide insights into the complex pathogenic mechanism observed in human GKD patients.
Collapse
Affiliation(s)
- Patrick J. Wightman
- Department of Human Genetics, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - George R. Jackson
- Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Brain Research Institute, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Katrina M. Dipple
- Department of Human Genetics, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Department of Pediatrics, David Geffen School of Medicine at University of California Los Angeles, Mattel Children's Hospital at University of California, Los Angeles, Los Angeles California, United States of America
- * E-mail:
| |
Collapse
|
6
|
Glycerol hypersensitivity in a Drosophila model for glycerol kinase deficiency is affected by mutations in eye pigmentation genes. PLoS One 2012; 7:e31779. [PMID: 22427807 PMCID: PMC3302884 DOI: 10.1371/journal.pone.0031779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/18/2012] [Indexed: 01/10/2023] Open
Abstract
Glycerol kinase plays a critical role in metabolism by converting glycerol to glycerol 3-phosphate in an ATP dependent reaction. In humans, glycerol kinase deficiency results in a wide range of phenotypic variability; patients can have severe metabolic and CNS abnormalities, while others possess hyperglycerolemia and glyceroluria with no other apparent phenotype. In an effort to help understand the pathogenic mechanisms underlying the phenotypic variation, we have created a Drosophila model for glycerol kinase deficiency by RNAi targeting of dGyk (CG18374) and dGK (CG7995). As expected, RNAi flies have reduced glycerol kinase RNA expression, reduced phosphorylation activity and elevated glycerol levels. Further investigation revealed these flies to be hypersensitive to fly food supplemented with glycerol. Due to the hygroscopic nature of glycerol, we predict glycerol hypersensitivity is a result of greater susceptibility to desiccation, suggesting glycerol kinase to play an important role in desiccation resistance in insects. To evaluate a role for genetic modifier loci in determining severity of the glycerol hypersensitivity observed in knockdown flies, we performed a preliminary screen of lethal transposon insertion mutant flies using a glycerol hypersensitive survivorship assay. We demonstrate that this type of screen can identify both enhancer and suppressor genetic loci of glycerol hypersensitivity. Furthermore, we found that the glycerol hypersensitivity phenotype can be enhanced or suppressed by null mutations in eye pigmentation genes. Taken together, our data suggest proteins encoded by eye pigmentation genes play an important role in desiccation resistance and that eye pigmentation genes are strong modifiers of the glycerol hypersensitive phenotype identified in our Drosophila model for glycerol kinase deficiency.
Collapse
|
7
|
Kosuga M, Henderson-MacLennan NK, Zhang YH, Huang BL, Dipple KM, McCabe ERB. Glycerol homeostasis and metabolism in glycerol kinase carrier mice. Mol Genet Metab 2011; 103:297-9. [PMID: 21536471 DOI: 10.1016/j.ymgme.2011.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 02/15/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
Abstract
To examine glycerol homeostasis and metabolism is essential for understanding of pathogenesis and evaluation of treatment efficacy in disorders of glycerol metabolism. In this study, we designed the intraperitoneal glycerol tolerance test (IPGlyTT) and studied glycerol tolerance in vivo using glycerol kinase (Gyk) carrier (C) and wild type (WT) mice. Serum glycerol concentrations in WT almost normalized at 90 min after injection, whereas Gyk C mice retained high serum glycerol concentrations at least until 180 min after injection. These results showed that glycerol tolerance was impaired in Gyk C mice compared to WT mice. The IPGlyTT is useful in accessing glycerol homeostasis and metabolism in animal models such as Gyk C mice and will be valuable in assessing therapeutic interventions in Gyk KO mice.
Collapse
Affiliation(s)
- Motomichi Kosuga
- Department of Pediatrics, 22-412 MDCC, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095-1752, USA
| | | | | | | | | | | |
Collapse
|
8
|
Aragon CC, Ferreira-Dias S, de Lucca Gattás EA, de Freitas Sanches Peres M. Characterization of glycerol kinase from baker's yeast: Response surface modeling of the enzymatic reaction. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.molcatb.2007.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Rahib L, MacLennan NK, Horvath S, Liao JC, Dipple KM. Glycerol kinase deficiency alters expression of genes involved in lipid metabolism, carbohydrate metabolism, and insulin signaling. Eur J Hum Genet 2007; 15:646-57. [PMID: 17406644 DOI: 10.1038/sj.ejhg.5201801] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Glycerol kinase (GK) is at the interface of fat and carbohydrate metabolism and has been implicated in insulin resistance and type 2 diabetes mellitus. To define GK's role in insulin resistance, we examined gene expression in brown adipose tissue in a glycerol kinase knockout (KO) mouse model using microarray analysis. Global gene expression profiles of KO mice were distinct from wild type with 668 differentially expressed genes. These include genes involved in lipid metabolism, carbohydrate metabolism, insulin signaling, and insulin resistance. Real-time polymerase chain reaction analysis confirmed the differential expression of selected genes involved in lipid and carbohydrate metabolism. PathwayAssist analysis confirmed direct and indirect connections between glycerol kinase and genes in lipid metabolism, carbohydrate metabolism, insulin signaling, and insulin resistance. Network component analysis (NCA) showed that the transcription factors (TFs) PPAR-gamma, SREBP-1, SREBP-2, STAT3, STAT5, SP1, CEBPalpha, CREB, GR and PPAR-alpha have altered activity in the KO mice. NCA also revealed the individual contribution of these TFs on the expression of genes altered in the microarray data. This study elucidates the complex network of glycerol kinase and further confirms a possible role for glycerol kinase deficiency, a simple Mendelian disorder, in insulin resistance, and type 2 diabetes mellitus, a common complex genetic disorder.
Collapse
Affiliation(s)
- Lola Rahib
- Biomedical Engineering, Interdepartmental Program, Henry Samueli School of Engineering and Applied Science at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
10
|
MacLennan NK, Rahib L, Shin C, Fang Z, Horvath S, Dean J, Liao JC, McCabe ERB, Dipple KM. Targeted disruption of glycerol kinase gene in mice: expression analysis in liver shows alterations in network partners related to glycerol kinase activity. Hum Mol Genet 2005; 15:405-15. [PMID: 16368706 DOI: 10.1093/hmg/ddi457] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glycerol kinase deficiency (GKD) is an X-linked inborn error of metabolism with metabolic and neurological crises. Liver shows the highest level of glycerol kinase (GK) activity in humans and mice. Absence of genotype-phenotype correlations in patients with GKD indicates the involvement of modifier genes, including other network partners. To understand the molecular pathogenesis of GKD, we performed microarray analysis on liver mRNA from neonatal glycerol kinase (Gyk) knockout (KO) and wild-type (WT) mice. Unsupervised learning revealed that the overall gene expression profile of the KO mice was different from that of WT. Real-time PCR confirmed the differences for selected genes. Functional gene enrichment analysis was used to find 56 increased and 37 decreased gene functional categories. PathwayAssist analysis identified changes in gene expression levels of genes involved in organic acid metabolism indicating that GK was part of the same metabolic network which correlates well with the patients with GKD having metabolic acidemia during their episodic crises. Network component analysis (NCA) showed that transcription factors sterol regulatory element-binding protein (SREBP)-1c, carbohydrate response element-binding protein (ChREBP), hepatocyte nuclear factor-4 alpha (HNF-4alpha) and peroxisome proliferative-activated receptor-alpha (PPARalpha) had increased activity in the Gyk KO mice compared with WT mice, whereas SREBP-2 was less active in the Gyk KO mice. These studies show that Gyk deletion causes alterations in expression of genes in several regulatory networks and is the first time NCA has been used to expand on microarray data from a mouse KO model of a human disease.
Collapse
Affiliation(s)
- Nicole K MacLennan
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7088, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ohira RH, Dipple KM, Zhang YH, McCabe ERB. Human and murine glycerol kinase: influence of exon 18 alternative splicing on function. Biochem Biophys Res Commun 2005; 331:239-46. [PMID: 15845384 DOI: 10.1016/j.bbrc.2005.03.143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Indexed: 01/18/2023]
Abstract
Glycerol kinase (GK) is a key enzyme in glycerol metabolism with two alternatively spliced forms-one with an 87bp insertion corresponding to exon 18 (GK+EX18), and one lacking exon 18 (GK-EX18). We report the expression of GK+/-EX18 in various tissues and cell lines, as well as their enzymatic characteristics and subcellular localization. RT-PCR revealed differential expression in tissues and cell lines. Northern blot analysis revealed that both forms of the murine ortholog, Gyk, were highly expressed in murine heart and increased during embryonic development. K(m) values for glycerol for GK+/-EX18 were not significantly different, although GK-EX18 had a higher V(max) for glycerol. GK-EX18 had a lower K(m) and V(max) for ATP than GK+EX18. Immunofluorescence experiments showed that GK+EX18 co-localized to the mitochondria and the perinuclear region while GK-EX18 had a diffuse expression pattern. These data suggest specific and divergent roles for GK+EX18 and GK-EX18 in cellular metabolism and development.
Collapse
Affiliation(s)
- Riki H Ohira
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | | | | |
Collapse
|