1
|
Stockwald ER, Steger LME, Vollmer S, Gottselig C, Grage SL, Bürck J, Afonin S, Fröbel J, Blümmel AS, Setzler J, Wenzel W, Walther TH, Ulrich AS. Length matters: Functional flip of the short TatA transmembrane helix. Biophys J 2023; 122:2125-2146. [PMID: 36523158 PMCID: PMC10257086 DOI: 10.1016/j.bpj.2022.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The twin arginine translocase (Tat) exports folded proteins across bacterial membranes. The putative pore-forming or membrane-weakening component (TatAd in B. subtilis) is anchored to the lipid bilayer via an unusually short transmembrane α-helix (TMH), with less than 16 residues. Its tilt angle in different membranes was analyzed under hydrophobic mismatch conditions, using synchrotron radiation circular dichroism and solid-state NMR. Positive mismatch (introduced either by reconstitution in short-chain lipids or by extending the hydrophobic TMH length) increased the helix tilt of the TMH as expected. Negative mismatch (introduced either by reconstitution in long-chain lipids or by shortening the TMH), on the other hand, led to protein aggregation. These data suggest that the TMH of TatA is just about long enough for stable membrane insertion. At the same time, its short length is a crucial factor for successful translocation, as demonstrated here in native membrane vesicles using an in vitro translocation assay. Furthermore, when reconstituted in model membranes with negative spontaneous curvature, the TMH was found to be aligned parallel to the membrane surface. This intrinsic ability of TatA to flip out of the membrane core thus seems to play a key role in its membrane-destabilizing effect during Tat-dependent translocation.
Collapse
Affiliation(s)
- Eva R Stockwald
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Karlsruhe, Germany
| | - Lena M E Steger
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany
| | - Stefanie Vollmer
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Karlsruhe, Germany
| | - Christina Gottselig
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Karlsruhe, Germany
| | - Stephan L Grage
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany
| | - Jochen Bürck
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany
| | - Sergii Afonin
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany
| | - Julia Fröbel
- University of Freiburg, Institute of Biochemistry and Molecular Biology, Freiburg, Germany
| | - Anne-Sophie Blümmel
- University of Freiburg, Institute of Biochemistry and Molecular Biology, Freiburg, Germany
| | - Julia Setzler
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Karlsruhe, Germany
| | - Wolfgang Wenzel
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Karlsruhe, Germany
| | - Torsten H Walther
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany.
| | - Anne S Ulrich
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Karlsruhe, Germany; Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany.
| |
Collapse
|
2
|
Palmer T, Stansfeld PJ. Targeting of proteins to the twin-arginine translocation pathway. Mol Microbiol 2020; 113:861-871. [PMID: 31971282 PMCID: PMC7317946 DOI: 10.1111/mmi.14461] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/12/2020] [Accepted: 01/12/2020] [Indexed: 02/06/2023]
Abstract
The twin-arginine protein transport (Tat pathway) is found in prokaryotes and plant organelles and transports folded proteins across membranes. Targeting of substrates to the Tat system is mediated by the presence of an N-terminal signal sequence containing a highly conserved twin-arginine motif. The Tat machinery comprises membrane proteins from the TatA and TatC families. Assembly of the Tat translocon is dynamic and is triggered by the interaction of a Tat substrate with the Tat receptor complex. This review will summarise recent advances in our understanding of Tat transport, focusing in particular on the roles played by Tat signal peptides in protein targeting and translocation.
Collapse
Affiliation(s)
- Tracy Palmer
- Faculty of Medical Sciences, Centre for Bacterial Cell Biology, Biosciences Institute, Molecular and Cellular Microbiology Theme, Newcastle University, Newcastle upon Tyne, England
| | - Phillip J Stansfeld
- School of Life Sciences and Department of Chemistry, University of Warwick, Coventry, UK
| |
Collapse
|
3
|
Petrus MLC, Vijgenboom E, Chaplin AK, Worrall JAR, van Wezel GP, Claessen D. The DyP-type peroxidase DtpA is a Tat-substrate required for GlxA maturation and morphogenesis in Streptomyces. Open Biol 2016; 6:150149. [PMID: 26740586 PMCID: PMC4736821 DOI: 10.1098/rsob.150149] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The filamentous bacterium Streptomyces lividans depends on the radical copper oxidase GlxA for the formation of reproductive aerial structures and, in liquid environments, for the formation of pellets. Incorporation of copper into the active site is essential for the formation of a cross-linked tyrosyl-cysteine cofactor, which is needed for enzymatic activity. In this study, we show a crucial link between GlxA maturation and a group of copper-related proteins including the chaperone Sco and a novel DyP-type peroxidase hereinafter called DtpA. Under copper-limiting conditions, the sco and dtpA deletion mutants are blocked in aerial growth and pellet formation, similarly to a glxA mutant. Western blot analysis showed that GlxA maturation is perturbed in the sco and dtpA mutants, but both maturation and morphology can by rescued by increasing the bioavailability of copper. DtpA acts as a peroxidase in the presence of GlxA and is a substrate for the twin-arginine translocation (Tat) translocation pathway. In agreement, the maturation status of GlxA is also perturbed in tat mutants, which can be compensated for by the addition of copper, thereby partially restoring their morphological defects. Our data support a model wherein a copper-trafficking pathway and Tat-dependent secretion of DtpA link to the GlxA-dependent morphogenesis pathway.
Collapse
Affiliation(s)
- Marloes L C Petrus
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Erik Vijgenboom
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Amanda K Chaplin
- School of Biological Science, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Jonathan A R Worrall
- School of Biological Science, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
4
|
Abstract
Twin-arginine protein translocation systems (Tat) translocate fully folded and co-factor-containing proteins across biological membranes. In this review, we focus on the Tat pathway of Gram-positive bacteria. The minimal Tat pathway is composed of two components, namely a TatA and TatC pair, which are often complemented with additional TatA-like proteins. We provide overviews of our current understanding of Tat pathway composition and mechanistic aspects related to Tat-dependent cargo protein translocation. This includes Tat pathway flexibility, requirements for the correct folding and incorporation of co-factors in cargo proteins and the functions of known cargo proteins. Tat pathways of several Gram-positive bacteria are discussed in detail, with emphasis on the Tat pathway of Bacillus subtilis. We discuss both shared and unique features of the different Gram-positive bacterial Tat pathways. Lastly, we highlight topics for future research on Tat, including the development of this protein transport pathway for the biotechnological secretion of high-value proteins and its potential applicability as an antimicrobial drug target in pathogens.
Collapse
Affiliation(s)
- Vivianne J Goosens
- MRC Centre for Molecular Bacteriology and Infection, Section of Microbiology, Imperial College London, London, SW7 2AZ, UK
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700, RB, Groningen, The Netherlands.
| |
Collapse
|
5
|
Muhamadali H, Xu Y, Ellis DI, Trivedi DK, Rattray NJW, Bernaerts K, Goodacre R. Metabolomics investigation of recombinant mTNFα production in Streptomyces lividans. Microb Cell Fact 2015; 14:157. [PMID: 26449894 PMCID: PMC4598958 DOI: 10.1186/s12934-015-0350-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/29/2015] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Whilst undergoing differentiation, Streptomyces produce a large quantity of hydrolytic enzymes and secondary metabolites, and it is this very ability that has focussed increasing interest on the use of these bacteria as hosts for the production of various heterologous proteins. However, within this genus, the exploration and understanding of the metabolic burden associated with such bio-products has only just begun. In this study our overall aim was to apply metabolomics approaches as tools to get a glimpse of the metabolic alterations within S. lividans TK24 when this industrially relevant microbe is producing recombinant murine tumour necrosis factor alpha (mTNFα), in comparison to wild type and empty (non-recombinant protein containing) plasmid-carrying strains as controls. RESULTS Whilst growth profiles of all strains demonstrated comparable trends, principal component-discriminant function analysis of Fourier transform infrared (FT-IR) spectral data, showed clear separation of wild type from empty plasmid and mTNFα-producing strains, throughout the time course of incubation. Analysis of intra- and extra-cellular metabolic profiles using gas chromatography-mass spectrometry (GC-MS) displayed similar trends to the FT-IR data. Although the strain carrying the empty plasmid demonstrated metabolic changes due to the maintenance of the plasmid, the metabolic behaviour of the recombinant mTNFα-producing strain appeared to be the most significantly affected. GC-MS results also demonstrated a significant overflow of several organic acids (pyruvate, 2-ketoglutarate and propanoate) and sugars (xylitol, mannose and fructose) in the mTNFα-producing strain. CONCLUSION The results obtained in this study have clearly demonstrated the metabolic impacts of producing mTNFα in S. lividans TK24, while displaying profound metabolic effects of harbouring the empty PIJ486 plasmid. In addition, the level of mTNFα produced in this study, further highlights the key role of media composition towards the efficiency of a bioprocess and metabolic behaviour of the host cells, which directly influences the yield of the recombinant product.
Collapse
Affiliation(s)
- Howbeer Muhamadali
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| | - Yun Xu
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| | - David I Ellis
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| | - Drupad K Trivedi
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| | - Nicholas J W Rattray
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| | - Kristel Bernaerts
- Bio- and Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, KU Leuven (University of Leuven), Leuven Chem&Tech, Celestijnenlaan 200F (bus 2424), 3001, Leuven, Belgium.
| | - Royston Goodacre
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
6
|
Oertel D, Schmitz S, Freudl R. A TatABC-type Tat translocase is required for unimpaired aerobic growth of Corynebacterium glutamicum ATCC13032. PLoS One 2015; 10:e0123413. [PMID: 25837592 PMCID: PMC4383559 DOI: 10.1371/journal.pone.0123413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/27/2015] [Indexed: 11/30/2022] Open
Abstract
The twin-arginine translocation (Tat) system transports folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of plant chloroplasts. Escherichia coli and other Gram-negative bacteria possess a TatABC-type Tat translocase in which each of the three inner membrane proteins TatA, TatB, and TatC performs a mechanistically distinct function. In contrast, low-GC Gram-positive bacteria, such as Bacillus subtilis, use a TatAC-type minimal Tat translocase in which the TatB function is carried out by a bifunctional TatA. In high-GC Gram-positive Actinobacteria, such as Mycobacterium tuberculosis and Corynebacterium glutamicum, tatA, tatB, and tatC genes can be identified, suggesting that these organisms, just like E. coli, might use TatABC-type Tat translocases as well. However, since contrary to this view a previous study has suggested that C. glutamicum might in fact use a TatAC translocase with TatB only playing a minor role, we reexamined the requirement of TatB for Tat-dependent protein translocation in this microorganism. Under aerobic conditions, the misassembly of the Rieske iron-sulfur protein QcrA was identified as a major reason for the severe growth defect of Tat-defective C. glutamicum mutant strains. Furthermore, our results clearly show that TatB, besides TatA and TatC, is strictly required for unimpaired aerobic growth. In addition, TatB was also found to be essential for the secretion of a heterologous Tat-dependent model protein into the C. glutamicum culture supernatant. Together with our finding that expression of the C. glutamicum TatB in an E. coli ΔtatB mutant strain resulted in the formation of an active Tat translocase, our results clearly indicate that a TatABC translocase is used as the physiologically relevant functional unit for Tat-dependent protein translocation in C. glutamicum and, most likely, also in other TatB-containing Actinobacteria.
Collapse
Affiliation(s)
- Dan Oertel
- Institut für Bio- und Geowissenschaften 1, IBG1: Biotechnologie, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Sabrina Schmitz
- Institut für Bio- und Geowissenschaften 1, IBG1: Biotechnologie, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Roland Freudl
- Institut für Bio- und Geowissenschaften 1, IBG1: Biotechnologie, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
7
|
Taubert J, Hou B, Risselada HJ, Mehner D, Lünsdorf H, Grubmüller H, Brüser T. TatBC-independent TatA/Tat substrate interactions contribute to transport efficiency. PLoS One 2015; 10:e0119761. [PMID: 25774531 PMCID: PMC4361764 DOI: 10.1371/journal.pone.0119761] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 02/03/2015] [Indexed: 11/18/2022] Open
Abstract
The Tat system can transport folded, signal peptide-containing proteins (Tat substrates) across energized membranes of prokaryotes and plant plastids. A twin-arginine motif in the signal peptide of Tat substrates is recognized by TatC-containing complexes, and TatA permits the membrane passage. Often, as in the model Tat systems of Escherichia coli and plant plastids, a third component - TatB - is involved that resembles TatA but has a higher affinity to TatC. It is not known why most TatA dissociates from TatBC complexes in vivo and distributes more evenly in the membrane. Here we show a TatBC-independent substrate-binding to TatA from Escherichia coli, and we provide evidence that this binding enhances Tat transport. First hints came from in vivo cross-linking data, which could be confirmed by affinity co-purification of TatA with the natural Tat substrates HiPIP and NrfC. Two positions on the surface of HiPIP could be identified that are important for the TatA interaction and transport efficiency, indicating physiological relevance of the interaction. Distributed TatA thus may serve to accompany membrane-interacting Tat substrates to the few TatBC spots in the cells.
Collapse
Affiliation(s)
- Johannes Taubert
- Institute of Microbiology, Leibniz Universität Hannover, Schneiderberg 50, 30167, Hannover, Germany
| | - Bo Hou
- Institute of Microbiology, Leibniz Universität Hannover, Schneiderberg 50, 30167, Hannover, Germany
| | - H. Jelger Risselada
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Denise Mehner
- Institute of Microbiology, Leibniz Universität Hannover, Schneiderberg 50, 30167, Hannover, Germany
| | - Heinrich Lünsdorf
- Helmholtz Centre of Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Helmut Grubmüller
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Thomas Brüser
- Institute of Microbiology, Leibniz Universität Hannover, Schneiderberg 50, 30167, Hannover, Germany
- * E-mail:
| |
Collapse
|
8
|
Patel R, Smith SM, Robinson C. Protein transport by the bacterial Tat pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1620-8. [PMID: 24583120 DOI: 10.1016/j.bbamcr.2014.02.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/10/2014] [Accepted: 02/15/2014] [Indexed: 10/25/2022]
Abstract
The twin-arginine translocation (Tat) system accomplishes the remarkable feat of translocating large - even dimeric - proteins across tightly sealed energy-transducing membranes. All of the available evidence indicates that it is unique in terms of both structure and mechanism; however its very nature has hindered efforts to probe the core translocation events. At the heart of the problem is the fact that two large sub-complexes are believed to coalesce to form the active translocon, and 'capturing' this translocation event has been too difficult. Nevertheless, studies on the individual components have come a long way in recent years, and structural studies have reached the point where educated guesses can be made concerning the most interesting aspects of Tat. In this article we review these studies and the emerging ideas in this field. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Roshani Patel
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Sarah M Smith
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Colin Robinson
- Centre for Molecular Processing, School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom.
| |
Collapse
|
9
|
Goosens VJ, Monteferrante CG, van Dijl JM. The Tat system of Gram-positive bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1698-706. [PMID: 24140208 DOI: 10.1016/j.bbamcr.2013.10.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
Abstract
The twin-arginine protein translocation (Tat) system has a unique ability to translocate folded and co-factor-containing proteins across lipid bilayers. The Tat pathway is present in bacteria, archaea and in the thylakoid membranes of chloroplasts and, depending on the organism and environmental conditions, it can be deemed important for cell survival, virulence or bioproduction. This review provides an overview of the current understanding of the Tat system with specific focus on Gram-positive bacteria. The 'universal minimal Tat system' is composed of a TatA and a TatC protein. However, this pathway is more commonly composed of two TatA-like proteins and one TatC protein. Often the TatA-like proteins have diverged to have two different functions and, in this case, the second TatA-like protein is usually referred to as TatB. The correct folding and/or incorporation of co-factors are requirements for translocation, and the known quality control mechanisms are examined in this review. A number of examples of crosstalk between the Tat system and other protein transport systems, such as the Sec-YidC translocon and signal peptidases or sheddases are also discussed. Further, an overview of specific Gram-positive bacterial Tat systems found in monoderm and diderm species is detailed. Altogether, this review highlights the unique features of Gram-positive bacterial Tat systems and pinpoints key questions that remain to be addressed in future research. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Vivianne J Goosens
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | - Carmine G Monteferrante
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
10
|
Kudva R, Denks K, Kuhn P, Vogt A, Müller M, Koch HG. Protein translocation across the inner membrane of Gram-negative bacteria: the Sec and Tat dependent protein transport pathways. Res Microbiol 2013; 164:505-34. [DOI: 10.1016/j.resmic.2013.03.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/11/2013] [Indexed: 11/28/2022]
|
11
|
Dynamic localization of Tat protein transport machinery components in Streptomyces coelicolor. J Bacteriol 2012; 194:6272-81. [PMID: 23002216 DOI: 10.1128/jb.01425-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The Tat pathway transports folded proteins across the bacterial cytoplasmic membrane and is a major route of protein export in the Streptomyces genus of bacteria. In this study, we have examined the localization of Tat components in the model organism Streptomyces coelicolor by constructing enhanced green fluorescent protein (eGFP) and mCherry fusions with the TatA, TatB, and TatC proteins. All three components colocalized dynamically in the vegetative hyphae, with foci of each tagged protein being prominent at the tips of emerging germ tubes and of the vegetative hyphae, suggesting that this may be a primary site of Tat secretion. Time-lapse imaging revealed that localization of the Tat components was highly dynamic during tip growth and again demonstrated a strong preference for apical sites in growing hyphae. During aerial hypha formation, TatA-eGFP and TatB-eGFP fusions relocalized to prespore compartments, indicating repositioning of Tat components during the Streptomyces life cycle.
Collapse
|
12
|
Fröbel J, Rose P, Müller M. Twin-arginine-dependent translocation of folded proteins. Philos Trans R Soc Lond B Biol Sci 2012; 367:1029-46. [PMID: 22411976 PMCID: PMC3297433 DOI: 10.1098/rstb.2011.0202] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Twin-arginine translocation (Tat) denotes a protein transport pathway in bacteria, archaea and plant chloroplasts, which is specific for precursor proteins harbouring a characteristic twin-arginine pair in their signal sequences. Many Tat substrates receive cofactors and fold prior to translocation. For a subset of them, proofreading chaperones coordinate maturation and membrane-targeting. Tat translocases comprise two kinds of membrane proteins, a hexahelical TatC-type protein and one or two members of the single-spanning TatA protein family, called TatA and TatB. TatC- and TatA-type proteins form homo- and hetero-oligomeric complexes. The subunits of TatABC translocases are predominantly recovered from two separate complexes, a TatBC complex that might contain some TatA, and a homomeric TatA complex. TatB and TatC coordinately recognize twin-arginine signal peptides and accommodate them in membrane-embedded binding pockets. Advanced binding of the signal sequence to the Tat translocase requires the proton-motive force (PMF) across the membranes and might involve a first recruitment of TatA. When targeted in this manner, folded twin-arginine precursors induce homo-oligomerization of TatB and TatA. Ultimately, this leads to the formation of a transmembrane protein conduit that possibly consists of a pore-like TatA structure. The translocation step again is dependent on the PMF.
Collapse
Affiliation(s)
- Julia Fröbel
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzle-Strasse 1, 79104 Freiburg, Germany
| | - Patrick Rose
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzle-Strasse 1, 79104 Freiburg, Germany
| | - Matthias Müller
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, 79104 Freiburg, Germany
| |
Collapse
|
13
|
|
14
|
Fan E, Jakob M, Klösgen RB. One signal is enough: Stepwise transport of two distinct passenger proteins by the Tat pathway across the thylakoid membrane. Biochem Biophys Res Commun 2010; 398:438-43. [DOI: 10.1016/j.bbrc.2010.06.095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 06/24/2010] [Indexed: 11/25/2022]
|
15
|
Vrancken K, Anné J. Secretory production of recombinant proteins by Streptomyces. Future Microbiol 2009; 4:181-8. [DOI: 10.2217/17460913.4.2.181] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacterial systems are widely applied as production platforms for proteins of biopharmaceutical or therapeutic interest and industrial enzymes. Among these prokaryotic systems, streptomycetes are attractive host cells because several strains of these Gram-positive bacteria have a high innate secretion capacity and extensive knowledge on their fermentation is available. A survey of the literature and our own experience suggests that several proteins are secreted to commercially acceptable levels. However, many heterologous proteins, most often of eukaryotic origin, are currently only poorly secreted by this host, indicating the need for further optimization of Streptomyces as a production host. In this review, the considerable efforts and strategies made in recent years aimed at improving streptomycetes as a host for the production of recombinant proteins will be discussed.
Collapse
Affiliation(s)
- Kristof Vrancken
- Rega Institute, Laboratory of Bacteriology, KU Leuven, Minderbroedersstraat 10, Leuven, B-3000, Belgium
| | - Jozef Anné
- Rega Institute, Laboratory of Bacteriology, KU Leuven, Minderbroedersstraat 10, Leuven, B-3000, Belgium
| |
Collapse
|
16
|
TatABC overexpression improves Corynebacterium glutamicum Tat-dependent protein secretion. Appl Environ Microbiol 2008; 75:603-7. [PMID: 19074606 DOI: 10.1128/aem.01874-08] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway in Corynebacterium glutamicum has been described previously. The minimal functional Tat system in C. glutamicum required TatA and TatC but did not require TatB, although this component was required for maximal efficiency of Tat-dependent secretion. We previously demonstrated that Chryseobacterium proteolyticum pro-protein glutaminase (pro-PG) and Streptomyces mobaraensis pro-transglutaminase (pro-TG) could be secreted via the Tat pathway in C. glutamicum. Here we report that the amounts of pro-PG secreted were more than threefold larger when TatC or TatAC was overexpressed, and there was a further threefold increase when TatABC was overexpressed. These results show that the amount of TatC protein is the first bottleneck and the amount of TatB protein is the second bottleneck in Tat-dependent protein secretion in C. glutamicum. In addition, the amount of pro-TG that accumulated via the Tat pathway when TatABC was overexpressed with the TorA signal peptide in C. glutamicum was larger than the amount that accumulated via the Sec pathway. We concluded that TatABC overexpression improves Tat-dependent pro-PG and pro-TG secretion in C. glutamicum.
Collapse
|
17
|
Zhou M, Boekhorst J, Francke C, Siezen RJ. LocateP: genome-scale subcellular-location predictor for bacterial proteins. BMC Bioinformatics 2008; 9:173. [PMID: 18371216 PMCID: PMC2375117 DOI: 10.1186/1471-2105-9-173] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 03/27/2008] [Indexed: 11/10/2022] Open
Abstract
Background In the past decades, various protein subcellular-location (SCL) predictors have been developed. Most of these predictors, like TMHMM 2.0, SignalP 3.0, PrediSi and Phobius, aim at the identification of one or a few SCLs, whereas others such as CELLO and Psortb.v.2.0 aim at a broader classification. Although these tools and pipelines can achieve a high precision in the accurate prediction of signal peptides and transmembrane helices, they have a much lower accuracy when other sequence characteristics are concerned. For instance, it proved notoriously difficult to identify the fate of proteins carrying a putative type I signal peptidase (SPIase) cleavage site, as many of those proteins are retained in the cell membrane as N-terminally anchored membrane proteins. Moreover, most of the SCL classifiers are based on the classification of the Swiss-Prot database and consequently inherited the inconsistency of that SCL classification. As accurate and detailed SCL prediction on a genome scale is highly desired by experimental researchers, we decided to construct a new SCL prediction pipeline: LocateP. Results LocateP combines many of the existing high-precision SCL identifiers with our own newly developed identifiers for specific SCLs. The LocateP pipeline was designed such that it mimics protein targeting and secretion processes. It distinguishes 7 different SCLs within Gram-positive bacteria: intracellular, multi-transmembrane, N-terminally membrane anchored, C-terminally membrane anchored, lipid-anchored, LPxTG-type cell-wall anchored, and secreted/released proteins. Moreover, it distinguishes pathways for Sec- or Tat-dependent secretion and alternative secretion of bacteriocin-like proteins. The pipeline was tested on data sets extracted from literature, including experimental proteomics studies. The tests showed that LocateP performs as well as, or even slightly better than other SCL predictors for some locations and outperforms current tools especially where the N-terminally anchored and the SPIase-cleaved secreted proteins are concerned. Overall, the accuracy of LocateP was always higher than 90%. LocateP was then used to predict the SCLs of all proteins encoded by completed Gram-positive bacterial genomes. The results are stored in the database LocateP-DB [1]. Conclusion LocateP is by far the most accurate and detailed protein SCL predictor for Gram-positive bacteria currently available.
Collapse
Affiliation(s)
- Miaomiao Zhou
- Centre for Molecular and Biomolecular Informatics, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
18
|
Abstract
Phage shock protein (Psp) is induced by extracytoplasmic stress that may reduce the energy status of the cell. It is encoded in Escherichia coli by the phage shock protein regulon consisting of pspABCDE and by pspF and pspG. The phage shock protein system is highly conserved among a large number of gram-negative bacteria. However, many bacterial genomes contain only a pspA homologue but no homologues of the other genes of the Psp system. This conservation indicates that PspA alone might play an important role in these bacteria. In Streptomyces lividans, a soil-borne gram-positive bacterium, the phage shock protein system consists only of the pspA gene. In this report, we showed that pspA encodes a 28-kDa protein that is present in both the cytoplasmic and the membrane fractions of the S. lividans mycelium. We demonstrated that the pspA gene is strongly induced under stress conditions that attack membrane integrity and that it is essential for growth and survival under most of these conditions. The data reported here clearly show that PspA plays an important role in S. lividans under stress conditions despite the absence of other psp homologues, suggesting that PspA may be more important in most bacteria than previously thought.
Collapse
|
19
|
Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane--distinct translocases and mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:1735-56. [PMID: 17935691 DOI: 10.1016/j.bbamem.2007.07.015] [Citation(s) in RCA: 347] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 07/23/2007] [Accepted: 07/24/2007] [Indexed: 11/20/2022]
Abstract
In bacteria, two major pathways exist to secrete proteins across the cytoplasmic membrane. The general Secretion route, termed Sec-pathway, catalyzes the transmembrane translocation of proteins in their unfolded conformation, whereupon they fold into their native structure at the trans-side of the membrane. The Twin-arginine translocation pathway, termed Tat-pathway, catalyses the translocation of secretory proteins in their folded state. Although the targeting signals that direct secretory proteins to these pathways show a high degree of similarity, the translocation mechanisms and translocases involved are vastly different.
Collapse
|
20
|
Brüser T. The twin-arginine translocation system and its capability for protein secretion in biotechnological protein production. Appl Microbiol Biotechnol 2007; 76:35-45. [PMID: 17476499 DOI: 10.1007/s00253-007-0991-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 04/05/2007] [Accepted: 04/10/2007] [Indexed: 11/28/2022]
Abstract
The biotechnological production of recombinant proteins is challenged by processes that decrease the yield, such as protease action, aggregation, or misfolding. Today, the variation of strains and vector systems or the modulation of inducible promoter activities is commonly used to optimize expression systems. Alternatively, aggregation to inclusion bodies may be a desired starting point for protein isolation and refolding. The discovery of the twin-arginine translocation (Tat) system for folded proteins now opens new perspectives because in most cases, the Tat machinery does not allow the passage of unfolded proteins. This feature of the Tat system can be exploited for biotechnological purposes, as expression systems may be developed that ensure a virtually complete folding of a recombinant protein before purification. This review focuses on the characteristics that make recombinant Tat systems attractive for biotechnology and discusses problems and possible solutions for an efficient translocation of folded proteins.
Collapse
Affiliation(s)
- Thomas Brüser
- Institute of Biology, Division of Microbiology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle, Germany.
| |
Collapse
|
21
|
De Keersmaeker S, Vrancken K, Van Mellaert L, Anné J, Geukens N. The Tat pathway in Streptomyces lividans: interaction of Tat subunits and their role in translocation. Microbiology (Reading) 2007; 153:1087-1094. [PMID: 17379717 DOI: 10.1099/mic.0.2006/003053-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway transports folded proteins across bacterial cytoplasmic membranes. The Tat system of Streptomyces lividans consists of TatA, TatB and TatC, unlike most Gram-positive bacteria, which only have TatA and TatC subunits. Interestingly, in S. lividans TatA and TatB are localized in both the cytoplasm and the membrane. In the cytoplasm soluble TatA and TatB were found as monomers or as part of a hetero-oligomeric complex. Further analysis showed that specific information for recognition of the precursor by the soluble Tat components is mainly present in the twin-arginine signal peptide. Study of the role of the Tat subunits in complex assembly and stability in the membrane and cytoplasm showed that TatB stabilizes TatC whereas a key role in driving Tat complex assembly is suggested for TatC. Finally, by analysis of the oligomeric properties of TatA in the membrane of S. lividans and study of the affinity of membrane-embedded TatA for Tat/Sec precursors, a role for TatA as a translocator is postulated.
Collapse
Affiliation(s)
- Sophie De Keersmaeker
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Kristof Vrancken
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Lieve Van Mellaert
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Jozef Anné
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Nick Geukens
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| |
Collapse
|
22
|
Vrancken K, De Keersmaeker S, Geukens N, Lammertyn E, Anné J, Van Mellaert L. pspA overexpression in Streptomyces lividans improves both Sec- and Tat-dependent protein secretion. Appl Microbiol Biotechnol 2007; 73:1150-7. [PMID: 17106680 DOI: 10.1007/s00253-006-0571-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 07/07/2006] [Accepted: 07/09/2006] [Indexed: 11/27/2022]
Abstract
Streptomyces is an interesting host for the secretory production of recombinant proteins because of its innate capacity to secrete proteins at high level in the culture medium. In this report, we evaluated the importance of the phage-shock protein A (PspA) homologue on the protein secretion yield in Streptomyces lividans. The PspA protein is supposed to play a role in the maintenance of the proton motive force (PMF). As the PMF is an energy source for both Sec- and Tat-dependent secretion, we evaluated the influence of the PspA protein on both pathways by modulating the pspA expression. Results indicated that pspA overexpression can improve the Tat-dependent protein secretion as illustrated for the Tat-dependent xylanase C and enhanced green fluorescent protein (EGFP). The effect on Sec-dependent secretion was less pronounced and appeared to be protein dependent as evidenced by the increase in subtilisin inhibitor (Sti-1) secretion but the lack of increase in human tumour necrosis factor (hTNFalpha) secretion in a pspA-overexpressing strain.
Collapse
Affiliation(s)
- Kristof Vrancken
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
23
|
Kikuchi Y, Date M, Itaya H, Matsui K, Wu LF. Functional analysis of the twin-arginine translocation pathway in Corynebacterium glutamicum ATCC 13869. Appl Environ Microbiol 2006; 72:7183-92. [PMID: 16997984 PMCID: PMC1636197 DOI: 10.1128/aem.01528-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Compared to those of other gram-positive bacteria, the genetic structure of the Corynebacterium glutamicum Tat system is unique in that it contains the tatE gene in addition to tatA, tatB, and tatC. The tatE homologue has been detected only in the genomes of gram-negative enterobacteria. To assess the function of the C. glutamicum Tat pathway, we cloned the tatA, tatB, tatC, and tatE genes from C. glutamicum ATCC 13869 and constructed mutants carrying deletions of each tat gene or of both the tatA and tatE genes. Using green fluorescent protein (GFP) fused with the twin-arginine signal peptide of the Escherichia coli TorA protein, we demonstrated that the minimal functional Tat system required TatA and TatC. TatA and TatE provide overlapping function. Unlike the TatB proteins from gram-negative bacteria, C. glutamicum TatB was dispensable for Tat function, although it was required for maximal efficiency of secretion. The signal peptide sequence of the isomaltodextranase (IMD) of Arthrobacter globiformis contains a twin-arginine motif. We showed that both IMD and GFP fused with the signal peptide of IMD were secreted via the C. glutamicum Tat pathway. These observations indicate that IMD is a bona fide Tat substrate and imply great potential of the C. glutamicum Tat system for industrial production of heterologous folded proteins.
Collapse
Affiliation(s)
- Yoshimi Kikuchi
- Institute of Life Sciences, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan.
| | | | | | | | | |
Collapse
|
24
|
De Keersmaeker S, Vrancken K, Van Mellaert L, Lammertyn E, Anné J, Geukens N. Evaluation of TatABC overproduction on Tat- and Sec-dependent protein secretion in Streptomyces lividans. Arch Microbiol 2006; 186:507-12. [PMID: 16944098 DOI: 10.1007/s00203-006-0161-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 05/17/2006] [Accepted: 07/28/2006] [Indexed: 11/24/2022]
Abstract
The majority of bacterial proteins are exported across the cytoplasmic membrane via the Sec pathway, but also the more recently discovered twin-arginine translocation (Tat) route seems to play an important role for protein secretion in Streptomyces lividans in whose genome tatA, tatB and tatC have been identified. In the present work we showed that simultaneous overproduction of TatABC improved the Tat-dependent secretion capacity as could be concluded from the increased amount of secreted xylanase C, an exclusive Tat-dependent substrate. This result demonstrates that next to the availability of energy to drive secretion, also the number of translocases can be rate-limiting for Tat-dependent secretion. On the other hand, tatABC overexpression was found to diminish secretion of the Sec-dependent proteins xylanase B and subtilisin inhibitor in S. lividans. These results reveal cross-talk between both pathways in S. lividans.
Collapse
Affiliation(s)
- Sophie De Keersmaeker
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
25
|
Hicks MG, Guymer D, Buchanan G, Widdick DA, Caldelari I, Berks BC, Palmer T. Formation of functional Tat translocases from heterologous components. BMC Microbiol 2006; 6:64. [PMID: 16854235 PMCID: PMC1550398 DOI: 10.1186/1471-2180-6-64] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 07/19/2006] [Indexed: 12/02/2022] Open
Abstract
Background The Tat pathway transports folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of plants. In Eschericha coli, Tat transport requires the integral membrane proteins TatA, TatB and TatC. In this study we have tested the ability of tat genes from the eubacterial species Pseudomonas syringae, Streptomyces coelicolor and Aquifex aeolicus, to compensate for the absence of the cognate E. coli tat gene, and thus to form functional Tat translocases with E. coli Tat components. Results All three subunits of the Tat system from the Gram positive organism Streptomyces coelicolor were able to form heterologous translocases with substantive Tat transport activity. However, only the TatA and TatB proteins of Pseudomonas syringae were able to functionally interact with the E. coli Tat system even though the two organisms are closely related. Of the Tat components from the phylogenetically distant hyperthermophillic bacterium Aquifex aeolicus only the TatA proteins showed any detectable level of heterologous functionality. The heterologously expressed TatA proteins of S. coelicolor and A. aeolicus were found exclusively in the membrane fraction. Conclusion Our results show that of the three Tat proteins, TatA is most likely to show cross-species complementation. By contrast, TatB and TatC do not always show cross-complementation, probably because they must recognise heterologous signal peptides. Since heterologously-expressed S. coelicolor TatA protein was functional and found only in the membrane fraction, it suggests that soluble forms of Streptomyces TatA reported by others do not play a role in protein export.
Collapse
Affiliation(s)
- Matthew G Hicks
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - David Guymer
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Grant Buchanan
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | - David A Widdick
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Isabelle Caldelari
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | - Ben C Berks
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Tracy Palmer
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
26
|
Schreiber S, Stengel R, Westermann M, Volkmer-Engert R, Pop OI, Müller JP. Affinity of TatCd for TatAd Elucidates Its Receptor Function in the Bacillus subtilis Twin Arginine Translocation (Tat) Translocase System. J Biol Chem 2006; 281:19977-84. [PMID: 16698798 DOI: 10.1074/jbc.m513900200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Twin arginine translocation (Tat) systems catalyze the transport of folded proteins across the bacterial cytosolic membrane or the chloroplast thylakoid membrane. In the Tat systems of Escherichia coli and many other species TatA-, TatB-, and TatC-like proteins have been identified as essential translocase components. In contrast, the Bacillus subtilis phosphodiesterase PhoD-specific system consists only of a pair of TatA(d)/TatC(d) proteins and involves a TatA(d) protein engaged in a cytosolic and a membrane-embedded localization. Because soluble TatA(d) was able to bind the twin arginine signal peptide of prePhoD prior to membrane integration it could serve to recruit its substrate to the membrane via the interaction with TatC(d). By analyzing the distribution of TatA(d) and studying the mutual affinity with TatC(d) we have shown here that TatC(d) assists the membrane localization of TatA(d). Besides detergent-solubilized TatC(d), membrane-integrated TatC(d) showed affinity for soluble TatA(d). By using a peptide library-specific binding of TatA(d) to cytosolic loops of membrane protein TatC(d) was demonstrated. Depletion of TatC(d) in B. subtilis resulted in a drastic reduction of TatA(d), indicating a stabilizing effect of TatC(d) for TatA(d). In addition, the presence of the substrate prePhoD was the prerequisite for appropriate localization in the cytosolic membrane of B. subtilis as demonstrated by freeze-fracture experiments.
Collapse
Affiliation(s)
- Sandra Schreiber
- Institut für Molekulare Zellbiologie, Friedrich-Schiller-Universität Jena, Drackendorfer Strasse 1, D-07747 Jena, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
We identified 1113 articles (103 reviews, 1010 primary research articles) published in 2005 that describe experiments performed using commercially available optical biosensors. While this number of publications is impressive, we find that the quality of the biosensor work in these articles is often pretty poor. It is a little disappointing that there appears to be only a small set of researchers who know how to properly perform, analyze, and present biosensor data. To help focus the field, we spotlight work published by 10 research groups that exemplify the quality of data one should expect to see from a biosensor experiment. Also, in an effort to raise awareness of the common problems in the biosensor field, we provide side-by-side examples of good and bad data sets from the 2005 literature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
28
|
Jongbloed JDH, van der Ploeg R, van Dijl JM. Bifunctional TatA subunits in minimal Tat protein translocases. Trends Microbiol 2006; 14:2-4. [PMID: 16303306 DOI: 10.1016/j.tim.2005.11.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 10/19/2005] [Accepted: 11/11/2005] [Indexed: 10/25/2022]
|