1
|
Jaramillo-Granada AM, Li J, Flores Villarreal A, Lozano O, Ruiz-Suárez JC, Monje-Galvan V, Sierra-Valdez FJ. Modulation of Phospholipase A 2 Membrane Activity by Anti-inflammatory Drugs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7038-7048. [PMID: 38511880 DOI: 10.1021/acs.langmuir.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The phospholipase A2 (PLA2) superfamily consists of lipolytic enzymes that hydrolyze specific cell membrane phospholipids and have long been considered a central hub of biosynthetic pathways, where their lipid metabolites exert a variety of physiological roles. A misregulated PLA2 activity is associated with mainly inflammatory-derived pathologies and thus has shown relevant therapeutic potential. Many natural and synthetic anti-inflammatory drugs (AIDs) have been proposed as direct modulators of PLA2 activity. However, despite the specific chemical properties that these drugs share in common, little is known about the indirect modulation able to finely tune membrane structural changes at the precise lipid-binding site. Here, we use a novel experimental strategy based on differential scanning calorimetry to systematically study the structural properties of lipid membrane systems during PLA2 cleavage and under the influence of several AIDs. For a better understanding of the AIDs-membrane interaction, we present a comprehensive and comparative set of molecular dynamics (MD) simulations. Our thermodynamic results clearly demonstrate that PLA2 cleavage is hindered by those AIDs that significantly reduce the lipid membrane cooperativity, while the rest of the AIDs oppositely tend to catalyze PLA2 activity to different extents. On the other hand, our MD simulations support experimental results by providing atomistic details on the binding, insertion, and dynamics of each AID on a pure lipid system; the drug efficacy to impact membrane cooperativity is related to the lipid order perturbation. This work suggests a membrane-based mechanism of action for diverse AIDs against PLA2 activity and provides relevant clues that must be considered in its modulation.
Collapse
Affiliation(s)
- Angela M Jaramillo-Granada
- Centro de Investigación y de Estudios Avanzados-Monterrey, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León 66600, Mexico
| | - Jinhui Li
- Department of Chemical and Biological Engineering, State University of New York (SUNY) at Buffalo, Buffalo, New York 14260, United States
| | | | - Omar Lozano
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Nuevo León 64460, Mexico
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo León 64849, Mexico
| | - J C Ruiz-Suárez
- Centro de Investigación y de Estudios Avanzados-Monterrey, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León 66600, Mexico
| | - Viviana Monje-Galvan
- Department of Chemical and Biological Engineering, State University of New York (SUNY) at Buffalo, Buffalo, New York 14260, United States
| | | |
Collapse
|
2
|
Touaibia M, Faye DC, Doiron JA, Chiasson AI, Blanchard S, Roy PP, Surette ME. Structure-Activity Relationship Studies of New Sinapic Acid Phenethyl Ester Analogues Targeting the Biosynthesis of 5-Lipoxygenase Products: The Role of Phenolic Moiety, Ester Function, and Bioisosterism. JOURNAL OF NATURAL PRODUCTS 2022; 85:225-236. [PMID: 34995066 DOI: 10.1021/acs.jnatprod.1c00982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sinapic acid is found in many edible plants and fruits, such as rapeseed, where it is the predominant phenolic compound. New sinapic acid phenethyl ester (SAPE) analogues were synthesized and screened as inhibitors of the biosynthesis of 5-lipoxygenase (5-LO) in stimulated HEK293 cells and polymorphonuclear leukocytes (PMNL). Inhibition of leukotriene biosynthesis catalyzed by 5-LO is a validated therapeutic strategy against certain inflammatory diseases and allergies. Unfortunately, the only inhibitor approved to date has limited clinical use because of its poor pharmacokinetic profile and liver toxicity. With the new analogues synthesized in this study, the role of the phenolic moiety, ester function, and bioisosterism was investigated. Several of the 34 compounds inhibited the biosynthesis of 5-LO products, and 20 compounds were 2-11 times more potent than zileuton in PMNL, which are important producers of 5-LO products. Compounds 5i (IC50: 0.20 μM), 5l (IC50: 0.20 μM), and 5o (IC50: 0.21 μM) bearing 4-trifluoromethyl, methyl, or methoxy substituent at meta-position of the phenethyl moiety were 1.5 and 11.5 times more potent than SAPE (IC50: 0.30 μM) and zileuton (IC50: 2.31 μM), respectively. Additionally, compound 9 (IC50: 0.27 μM), which was obtained after acetylation of the 4-hydroxyl of SAPE, was equivalent to SAPE and 8 times more active than zileuton. Furthermore, compound 20b (IC50: 0.27 μM) obtained after the bioisosteric replacement of the ester function of SAPE by the 1,2,4-oxadiazole heterocycle was equivalent to SAPE and 8 times more active than zileuton. Thus, this study provides a basis for the rational design of new molecules that could be developed further as anti 5-LO therapeutics.
Collapse
Affiliation(s)
- Mohamed Touaibia
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick E1A 3E9, Canada
| | - Diene Codou Faye
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick E1A 3E9, Canada
| | - Jérémie A Doiron
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick E1A 3E9, Canada
| | - Audrey Isabel Chiasson
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick E1A 3E9, Canada
| | - Sébastien Blanchard
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick E1A 3E9, Canada
| | - Pierre-Philippe Roy
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick E1A 3E9, Canada
| | - Marc E Surette
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick E1A 3E9, Canada
| |
Collapse
|
3
|
Abstract
Significance: Coronary artery disease (CAD) continues to be a leading cause of morbidity and mortality across the world despite significant progress in the prevention, diagnosis, and treatment of atherosclerotic disease. Recent Advances: The focus of the cardiovascular community has shifted toward seeking a better understanding of the inflammatory mechanisms driving residual CAD risk that is not modulated by current therapies. Significant progress has been achieved in revealing both proinflammatory and anti-inflammatory mechanisms, and how shift of the balance in favor of the former can drive the development of disease. Critical Issues: Advances in the noninvasive detection of coronary artery inflammation have been forthcoming. These advances include multiple imaging modalities, with novel applications of computed tomography both with and without positron emission tomography, and experimental ultrasound techniques. These advances will enable better selection of patients for anti-inflammatory treatments and assessment of treatment response. The rapid advancement in pharmaceutical design has enabled the production of specific antibodies against inflammatory pathways of atherosclerosis, with modest success to date. The pursuit of demonstrating the efficacy and safety of novel anti-inflammatory and/or proinflammatory resolution therapies for atherosclerotic CAD has become a major focus. Future Directions: This review seeks to provide an update of the latest evidence of all three of these highly related but disparate areas of inquiry: Our current understanding of the key mechanisms by which inflammation contributes to coronary artery atherosclerosis, the evidence for noninvasive assessment of coronary artery inflammation, and finally, the evidence for targeted therapies to treat coronary inflammation for the reduction of CAD risk. Antioxid. Redox Signal. 34, 1217-1243.
Collapse
Affiliation(s)
- Henry W West
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
He Z, Tao D, Xiong J, Lou F, Zhang J, Chen J, Dai W, Sun J, Wang Y. Phosphorylation of 5-LOX: The Potential Set-point of Inflammation. Neurochem Res 2020; 45:2245-2257. [PMID: 32671628 DOI: 10.1007/s11064-020-03090-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/11/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
Inflammation secondary to tissue injuries serves as a double-edged sword that determines the prognosis of tissue repair. As one of the most important enzymes controlling the inflammation process by producing leukotrienes, 5-lipoxygenase (5-LOX, also called 5-LO) has been one of the therapeutic targets in regulating inflammation for a long time. Although a large number of 5-LOX inhibitors have been explored, only a few of them can be applied clinically. Surprisingly, phosphorylation of 5-LOX reveals great significance in regulating the subcellular localization of 5-LOX, which has proven to be an important mechanism underlying the enzymatic activities of 5-LOX. There are at least three phosphorylation sites in 5-LOX jointly to determine the final inflammatory outcomes, and adjustment of phosphorylation of 5-LOX at different phosphorylation sites brings hope to provide an unrecognized means to regulate inflammation. The present review intends to shed more lights into the set-point-like mechanisms of phosphorylation of 5-LOX and its possible clinical application by summarizing the biological properties of 5-LOX, the relationship of 5-LOX with neurodegenerative diseases and brain injuries, the phosphorylation of 5-LOX at different sites, the regulatory effects and mechanisms of phosphorylated 5-LOX upon inflammation, as well as the potential anti-inflammatory application through balancing the phosphorylation-depended set-point.
Collapse
Affiliation(s)
- Zonglin He
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China.,Faculty of Medicine, International school, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Di Tao
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China.,Faculty of Medicine, International school, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Jiaming Xiong
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Fangfang Lou
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Jiayuan Zhang
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Jinxia Chen
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Weixi Dai
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China.,Faculty of Medicine, International school, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Jing Sun
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Yuechun Wang
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China.
| |
Collapse
|
5
|
Bäck M, Yurdagul A, Tabas I, Öörni K, Kovanen PT. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol 2020; 16:389-406. [PMID: 30846875 DOI: 10.1038/s41569-019-0169-2] [Citation(s) in RCA: 635] [Impact Index Per Article: 127.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a lipid-driven inflammatory disease of the arterial intima in which the balance of pro-inflammatory and inflammation-resolving mechanisms dictates the final clinical outcome. Intimal infiltration and modification of plasma-derived lipoproteins and their uptake mainly by macrophages, with ensuing formation of lipid-filled foam cells, initiate atherosclerotic lesion formation, and deficient efferocytotic removal of apoptotic cells and foam cells sustains lesion progression. Defective efferocytosis, as a sign of inadequate inflammation resolution, leads to accumulation of secondarily necrotic macrophages and foam cells and the formation of an advanced lesion with a necrotic lipid core, indicative of plaque vulnerability. Resolution of inflammation is mediated by specialized pro-resolving lipid mediators derived from omega-3 fatty acids or arachidonic acid and by relevant proteins and signalling gaseous molecules. One of the major effects of inflammation resolution mediators is phenotypic conversion of pro-inflammatory macrophages into macrophages that suppress inflammation and promote healing. In advanced atherosclerotic lesions, the ratio between specialized pro-resolving mediators and pro-inflammatory lipids (in particular leukotrienes) is strikingly low, providing a molecular explanation for the defective inflammation resolution features of these lesions. In this Review, we discuss the mechanisms of the formation of clinically dangerous atherosclerotic lesions and the potential of pro-resolving mediator therapy to inhibit this process.
Collapse
Affiliation(s)
- Magnus Bäck
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Arif Yurdagul
- Columbia University Irving Medical Center, New York, NY, USA
| | - Ira Tabas
- Columbia University Irving Medical Center, New York, NY, USA
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland.,Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Petri T Kovanen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland.
| |
Collapse
|
6
|
Zileuton, a 5-Lipoxygenase Inhibitor, Exerts Anti-Angiogenic Effect by Inducing Apoptosis of HUVEC via BK Channel Activation. Cells 2019; 8:cells8101182. [PMID: 31575085 PMCID: PMC6829222 DOI: 10.3390/cells8101182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 02/06/2023] Open
Abstract
The arachidonic acid metabolism through 5-lipoxygenase (5-LO) pathways is involved in modulating both tumorigenesis and angiogenesis. Although anti-carcinogenic activities of certain 5-LO inhibitors have been reported, the role of zileuton, a well known 5-LO inhibitor, on the endothelial cell proliferation and angiogenesis has not been fully elucidated. Here, we report that zileuton has an anti-angiogenic effect, and the underlying mechanisms involved activation of the large-conductance Ca2+-activated K+ (BK) channel. Our results show that zileuton significantly prevented vascular endothelial growth factor (VEGF)-induced proliferation of human umbilical vein endothelial cells (HUVECs) in vitro, as well as in vivo. However, such anti-angiogenic effect of zileuton was abolished by iberiotoxin (IBTX), a BK channel blocker, suggesting zileuton-induced activation of BK channel was critical for the observed anti-angiogenic effect of zileuton. Furthermore, the anti-angiogenic effect of zileuton was, at least, due to the activation of pro-apoptotic signaling cascades which was also abolished by IBTX. Additionally, zileuton suppressed the expression of VCAM-1, ICAM-1, ETS related gene (Erg) and the production of nitric oxide (NO). Taken together, our results show that zileuton prevents angiogenesis by activating the BK channel dependent-apoptotic pathway, thus highlighting its therapeutic capacity in angiogenesis-related diseases, such as cancer.
Collapse
|
7
|
Sorgi CA, Zarini S, Martin SA, Sanchez RL, Scandiuzzi RF, Gijón MA, Guijas C, Flamand N, Murphy RC, Faccioli LH. Dormant 5-lipoxygenase in inflammatory macrophages is triggered by exogenous arachidonic acid. Sci Rep 2017; 7:10981. [PMID: 28887514 PMCID: PMC5591212 DOI: 10.1038/s41598-017-11496-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/25/2017] [Indexed: 11/15/2022] Open
Abstract
The differentiation of resident tissue macrophages from embryonic precursors and that of inflammatory macrophages from bone marrow cells leads to macrophage heterogeneity. Further plasticity is displayed through their ability to be polarized as subtypes M1 and M2 in a cell culture microenvironment. However, the detailed regulation of eicosanoid production and its involvement in macrophage biology remains unclear. Using a lipidomics approach, we demonstrated that eicosanoid production profiles between bone marrow-derived (BMDM) and peritoneal macrophages differed drastically. In polarized BMDMs, M1 and M2 phenotypes were distinguished by thromboxane B2, prostaglandin (PG) E2, and PGD2 production, in addition to lysophospholipid acyltransferase activity. Although Alox5 expression and the presence of 5-lipoxygenase (5-LO) protein in BMDMs was observed, the absence of leukotrienes production reflected an impairment in 5-LO activity, which could be triggered by addition of exogenous arachidonic acid (AA). The BMDM 5-LO regulatory mechanism was not responsive to PGE2/cAMP pathway modulation; however, treatment to reduce glutathione peroxidase activity increased 5-LO metabolite production after AA stimulation. Understanding the relationship between the eicosanoids pathway and macrophage biology may offer novel strategies for macrophage-associated disease therapy.
Collapse
Affiliation(s)
- Carlos A Sorgi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Simona Zarini
- Department of Pharmacology, University of Colorado Denver, Aurora, 80045, CO, USA
| | - Sarah A Martin
- Department of Pharmacology, University of Colorado Denver, Aurora, 80045, CO, USA
| | - Raphael L Sanchez
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Rodrigo F Scandiuzzi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Miguel A Gijón
- Department of Pharmacology, University of Colorado Denver, Aurora, 80045, CO, USA
| | - Carlos Guijas
- Scripps Center for Metabolomics, The Scripps Research Institute, La Jolla, 92037, CA, USA
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Quebec City, G1V 4G5, Quebec, Canada
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, 80045, CO, USA
| | - Lucia H Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
8
|
Short-Term Regulation of Fc γR-Mediated Phagocytosis by TLRs in Macrophages: Participation of 5-Lipoxygenase Products. Mediators Inflamm 2017; 2017:2086840. [PMID: 28894350 PMCID: PMC5574301 DOI: 10.1155/2017/2086840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/08/2017] [Indexed: 12/19/2022] Open
Abstract
TLRs recognize a broad spectrum of microorganism molecules, triggering a variety of cellular responses. Among them, phagocytosis is a critical process for host defense. Leukotrienes (LTs), lipid mediators produced from 5-lipoxygenase (5-LO) enzyme, increase FcγR-mediated phagocytosis. Here, we evaluated the participation of TLR2, TLR3, TLR4, and TLR9 in FcγR-mediated phagocytosis and whether this process is modulated by LTs. Rat alveolar macrophages (AMs), murine bone marrow-derived macrophages (BMDMs), and peritoneal macrophages (PMs) treated with TLR2, TLR3, and TLR4 agonists, but not TLR9, enhanced IgG-opsonized sheep red blood cell (IgG-sRBC) phagocytosis. Pretreatment of AMs or BMDMs with drugs that block LT synthesis impaired the phagocytosis promoted by TLR ligands, and TLR potentiation was also abrogated in PMs and BMDMs from 5-LO−/− mice. LTB4 production induced by IgG engagement was amplified by TLR ligands, while cys-LTs were amplified by activation of TLR2 and TLR4, but not by TLR3. We also noted higher ERK1/2 phosphorylation in IgG-RBC-challenged cells when preincubated with TLR agonists. Furthermore, ERK1/2 inhibition by PD98059 reduced the phagocytic activity evoked by TLR agonists. Together, these data indicate that TLR2, TLR3, and TLR4 ligands, but not TLR9, amplify IgG-mediated phagocytosis by a mechanism which requires LT production and ERK-1/2 pathway activation.
Collapse
|
9
|
Mittal M, Kumar RB, Balagunaseelan N, Hamberg M, Jegerschöld C, Rådmark O, Haeggström JZ, Rinaldo-Matthis A. Kinetic investigation of human 5-lipoxygenase with arachidonic acid. Bioorg Med Chem Lett 2016; 26:3547-51. [DOI: 10.1016/j.bmcl.2016.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 11/16/2022]
|
10
|
MerTK cleavage limits proresolving mediator biosynthesis and exacerbates tissue inflammation. Proc Natl Acad Sci U S A 2016; 113:6526-31. [PMID: 27199481 DOI: 10.1073/pnas.1524292113] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The acute inflammatory response requires a coordinated resolution program to prevent excessive inflammation, repair collateral damage, and restore tissue homeostasis, and failure of this response contributes to the pathology of numerous chronic inflammatory diseases. Resolution is mediated in part by long-chain fatty acid-derived lipid mediators called specialized proresolving mediators (SPMs). However, how SPMs are regulated during the inflammatory response, and how this process goes awry in inflammatory diseases, are poorly understood. We now show that signaling through the Mer proto-oncogene tyrosine kinase (MerTK) receptor in cultured macrophages and in sterile inflammation in vivo promotes SPM biosynthesis by a mechanism involving an increase in the cytoplasmic:nuclear ratio of a key SPM biosynthetic enzyme, 5-lipoxygenase. This action of MerTK is linked to the resolution of sterile peritonitis and, after ischemia-reperfusion (I/R) injury, to increased circulating SPMs and decreased remote organ inflammation. MerTK is susceptible to ADAM metallopeptidase domain 17 (ADAM17)-mediated cell-surface cleavage under inflammatory conditions, but the functional significance is not known. We show here that SPM biosynthesis is increased and inflammation resolution is improved in a new mouse model in which endogenous MerTK was replaced with a genetically engineered variant that is cleavage-resistant (Mertk(CR)). Mertk(CR) mice also have increased circulating levels of SPMs and less lung injury after I/R. Thus, MerTK cleavage during inflammation limits SPM biosynthesis and the resolution response. These findings contribute to our understanding of how SPM synthesis is regulated during the inflammatory response and suggest new therapeutic avenues to boost resolution in settings where defective resolution promotes disease progression.
Collapse
|
11
|
Smyrniotis CJ, Barbour SR, Xia Z, Hixon MS, Holman TR. ATP allosterically activates the human 5-lipoxygenase molecular mechanism of arachidonic acid and 5(S)-hydroperoxy-6(E),8(Z),11(Z),14(Z)-eicosatetraenoic acid. Biochemistry 2014; 53:4407-19. [PMID: 24893149 PMCID: PMC4215895 DOI: 10.1021/bi401621d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
5-Lipoxygenase
(5-LOX) reacts with arachidonic acid (AA) to first
generate 5(S)-hydroperoxy-6(E),8(Z),11(Z),14(Z)-eicosatetraenoic
acid [5(S)-HpETE] and then an epoxide from 5(S)-HpETE to form leukotriene A4, from a single
polyunsaturated fatty acid. This work investigates the kinetic mechanism
of these two processes and the role of ATP in their activation. Specifically,
it was determined that epoxidation of 5(S)-HpETE
(dehydration of the hydroperoxide) has a rate of substrate capture
(Vmax/Km)
significantly lower than that of AA hydroperoxidation (oxidation of
AA to form the hydroperoxide); however, hyperbolic kinetic parameters
for ATP activation indicate a similar activation for AA and 5(S)-HpETE. Solvent isotope effect results for both hydroperoxidation
and epoxidation indicate that a specific step in its molecular mechanism
is changed, possibly because of a lowering of the dependence of the
rate-limiting step on hydrogen atom abstraction and an increase in
the dependency on hydrogen bond rearrangement. Therefore, changes
in ATP concentration in the cell could affect the production of 5-LOX
products, such as leukotrienes and lipoxins, and thus have wide implications
for the regulation of cellular inflammation.
Collapse
Affiliation(s)
- Christopher J Smyrniotis
- Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| | | | | | | | | |
Collapse
|
12
|
Porter KM, Kang BY, Adesina SE, Murphy TC, Hart CM, Sutliff RL. Chronic hypoxia promotes pulmonary artery endothelial cell proliferation through H2O2-induced 5-lipoxygenase. PLoS One 2014; 9:e98532. [PMID: 24906007 PMCID: PMC4048210 DOI: 10.1371/journal.pone.0098532] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 05/05/2014] [Indexed: 01/11/2023] Open
Abstract
Pulmonary Hypertension (PH) is a progressive disorder characterized by endothelial dysfunction and proliferation. Hypoxia induces PH by increasing vascular remodeling. A potential mediator in hypoxia-induced PH development is arachidonate 5-Lipoxygenase (ALOX5). While ALOX5 metabolites have been shown to promote pulmonary vasoconstriction and endothelial cell proliferation, the contribution of ALOX5 to hypoxia-induced proliferation remains unknown. We hypothesize that hypoxia exposure stimulates HPAEC proliferation by increasing ALOX5 expression and activity. To test this, human pulmonary artery endothelial cells (HPAEC) were cultured under normoxic (21% O2) or hypoxic (1% O2) conditions for 24-, 48-, or 72 hours. In a subset of cells, the ALOX5 inhibitor, zileuton, or the 5-lipoxygenase activating protein inhibitor, MK-886, was administered during hypoxia exposure. ALOX5 expression was measured by qRT-PCR and western blot and HPAEC proliferation was assessed. Our results demonstrate that 24 and 48 hours of hypoxia exposure have no effect on HPAEC proliferation or ALOX5 expression. Seventy two hours of hypoxia significantly increases HPAEC ALOX5 expression, hydrogen peroxide (H2O2) release, and HPAEC proliferation. We also demonstrate that targeted ALOX5 gene silencing or inhibition of the ALOX5 pathway by pharmacological blockade attenuates hypoxia-induced HPAEC proliferation. Furthermore, our findings indicate that hypoxia-induced increases in cell proliferation and ALOX5 expression are dependent on H2O2 production, as administration of the antioxidant PEG-catalase blocks these effects and addition of H2O2 to HPAEC promotes proliferation. Overall, these studies indicate that hypoxia exposure induces HPAEC proliferation by activating the ALOX5 pathway via the generation of H2O2.
Collapse
Affiliation(s)
- Kristi M. Porter
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
| | - Bum-Yong Kang
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
| | - Sherry E. Adesina
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
| | - Tamara C. Murphy
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
| | - C. Michael Hart
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
| | - Roy L. Sutliff
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
13
|
Sharma MC. Molecular modeling studies of substituted 3,4-dihydroxychalcone derivatives as 5-lipoxygenase and cyclooxygenase inhibitors. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0745-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Molecular modeling and pharmacophore approach for structural requirements of some 2-substituted-1-naphthols derivatives as potent 5-lipoxygenase inhibitors. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0499-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Karelina TA, Zhudenkov KV, Demin OO, Svetlichny DV, Agoram B, Fairman D, Demin OV. Regulation of leukotriene and 5oxoETE synthesis and the effect of 5-lipoxygenase inhibitors: a mathematical modeling approach. BMC SYSTEMS BIOLOGY 2012; 6:141. [PMID: 23146124 PMCID: PMC3546923 DOI: 10.1186/1752-0509-6-141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 10/18/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND 5-lipoxygenase (5-LO) is a key enzyme in the synthesis of leukotrienes and 5-Oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (oxoETE). These inflammatory signaling molecules play a role in the pathology of asthma and so 5-LO inhibition is a promising target for asthma therapy. The 5-LO redox inhibitor zileuton (Zyflo IR/CR(®)) is currently marketed for the treatment of asthma in adults and children, but widespread use of zileuton is limited by its efficacy/safety profile, potentially related to its redox characteristics. Thus, a quantitative, mechanistic description of its functioning may be useful for development of improved anti-inflammatory targeting this mechanism. RESULTS A mathematical model describing the operation of 5-LO, phospholipase A2, glutathione peroxidase and 5-hydroxyeicosanoid dehydrogenase was developed. The catalytic cycles of the enzymes were reconstructed and kinetic parameters estimated on the basis of available experimental data. The final model describes each stage of cys-leukotriene biosynthesis and the reactions involved in oxoETE production. Regulation of these processes by substrates (phospholipid concentration) and intracellular redox state (concentrations of reduced glutathione, glutathione (GSH), and lipid peroxide) were taken into account. The model enabled us to reveal differences between redox and non-redox 5-LO inhibitors under conditions of oxidative stress. Despite both redox and non-redox inhibitors suppressing leukotriene A4 (LTA4) synthesis, redox inhibitors are predicted to increase oxoETE production, thus compromising efficacy. This phenomena can be explained in terms of the pseudo-peroxidase activity of 5-LO and the ability of lipid peroxides to transform 5-LO into its active form even in the presence of redox inhibitors. CONCLUSIONS The mathematical model developed described quantitatively different mechanisms of 5-LO inhibition and simulations revealed differences between the potential therapeutic outcomes for these mechanisms.
Collapse
|
16
|
Isikdemir F, Kurcer Z, Dengiz GO, Sipahi EY, Banoglu ZN, Baba F, Acikgoz S, Kelek S. Effects of montelukast and zileuton on testicular torsion/detorsion injury in rats. Andrologia 2012; 46:59-64. [PMID: 23137139 DOI: 10.1111/and.12042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2012] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to evaluate and compare the effects of 5-lipoxygenase enzyme (5-LO) inhibitor zileuton and cysteinyl leukotriene receptor (CysLT1R) antagonist montelukast in testicular torsion/detorsion (T/D) injury model in rats. Rats were anaesthetised with 75 mg kg(-1) ketamine hydrochloride and 8 mg kg(-1) xylazine intraperitoneal before the operation. Torsion was created by rotating the right testis 720° clockwise and maintained by fixing the testis. The rats were treated with CysLT1R antagonist montelukast (10 mg kg(-1); i.p.), 5-LO inhibitor zileuton (3 mg kg(-1); i.p.), and vehicle, at 30 min prior detorsion. After 1 h of torsion, the testis was counter-rotated to the natural position and replaced into the scrotum. Malondialdehyde (MDA) level was measured in testicular tissue after 3 h of reperfusion. Histological examination was performed after 24 h of reperfusion. T/D caused a significant increase in MDA level and histopathological injury in testes. Montelukast and zileuton treatments prevented the T/D-induced augmentation in MDA levels. Only zileuton treatment significantly reduced the T/D-induced histopathological injury. In this study, we demonstrated for the first time that zileuton had protective effects on testicular T/D injury. We have also found that zileuton is more effective than montelukast on histopathological injury.
Collapse
Affiliation(s)
- F Isikdemir
- Department of Pharmacology, Faculty of Medicine, Bulent Ecevit University, Zonguldak, Turkey
| | - Z Kurcer
- Department of Pharmacology, Faculty of Medicine, Bulent Ecevit University, Zonguldak, Turkey
| | - G O Dengiz
- Department of Pharmacology, Faculty of Medicine, Bulent Ecevit University, Zonguldak, Turkey
| | - E Y Sipahi
- Department of Pharmacology, Faculty of Medicine, Bulent Ecevit University, Zonguldak, Turkey
| | - Z N Banoglu
- Department of Pharmacology, Faculty of Medicine, Bulent Ecevit University, Zonguldak, Turkey
| | - F Baba
- Department of Pathology, Selcuklu Faculty of Medicine, Selcuk University, Konya, Turkey
| | - S Acikgoz
- Department of Medical Biochemistry, Faculty of Medicine, Bulent Ecevit University, Zonguldak, Turkey
| | - S Kelek
- Department of Medical Biochemistry, Faculty of Medicine, Bulent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
17
|
Song J, Liu X, Wu J, Meehan MJ, Blevitt JM, Dorrestein PC, Milla ME. A highly efficient, high-throughput lipidomics platform for the quantitative detection of eicosanoids in human whole blood. Anal Biochem 2012; 433:181-8. [PMID: 23103340 DOI: 10.1016/j.ab.2012.10.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/10/2012] [Accepted: 10/15/2012] [Indexed: 12/31/2022]
Abstract
We have developed an ultra-performance liquid chromatography-multiple reaction monitoring/mass spectrometry (UPLC-MRM/MS)-based, high-content, high-throughput platform that enables simultaneous profiling of multiple lipids produced ex vivo in human whole blood (HWB) on treatment with calcium ionophore and its modulation with pharmacological agents. HWB samples were processed in a 96-well plate format compatible with high-throughput sample processing instrumentation. We employed a scheduled MRM (sMRM) method, with a triple-quadrupole mass spectrometer coupled to a UPLC system, to measure absolute amounts of 122 distinct eicosanoids using deuterated internal standards. In a 6.5-min run, we resolved and detected with high sensitivity (lower limit of quantification in the range of 0.4-460 pg) all targeted analytes from a very small HWB sample (2.5 μl). Approximately 90% of the analytes exhibited a dynamic range exceeding 1000. We also developed a tailored software package that dramatically sped up the overall data quantification and analysis process with superior consistency and accuracy. Matrix effects from HWB and precision of the calibration curve were evaluated using this newly developed automation tool. This platform was successfully applied to the global quantification of changes on all 122 eicosanoids in HWB samples from healthy donors in response to calcium ionophore stimulation.
Collapse
Affiliation(s)
- Jiao Song
- Immunology Discovery, Janssen Research and Development, La Jolla, CA 92121, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Yin H, Zhou Y, Zhu M, Hou S, Li Z, Zhong H, Lu J, Meng T, Wang J, Xia L, Xu Y, Wu Y. Role of mitochondria in programmed cell death mediated by arachidonic acid-derived eicosanoids. Mitochondrion 2012; 13:209-24. [PMID: 23063711 DOI: 10.1016/j.mito.2012.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/24/2012] [Accepted: 10/02/2012] [Indexed: 01/28/2023]
Abstract
Arachidonic acid-derived eicosanoids from cyclooxygenases, lipoxygenases, and cytochrome P450 are important lipid mediators involved in numerous homeostatic and pathophysiological processes. Most eicosanoids act primarily on their respective cell surface G-protein coupled receptors to elicit downstream signaling in an autocrine and paracrine fashion. Emerging evidence indicates that these hormones are also critical in apoptosis in a cell/tissue specific manner. In this review, we summarize the formation of eicosanoids and their roles as mediators in apoptosis, specifically on the roles of mitochondria in mediating these events and the signaling pathways involved. The biological relevance of eicosanoid-mediated apoptosis is also discussed.
Collapse
Affiliation(s)
- Huiyong Yin
- Laboratory of Lipid Metabolism in Human Nutrition and Related Diseases, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Maciolek CM, Ma B, Menzel K, Laliberte S, Bateman K, Krolikowski P, Gibson CR. Novel cytochrome P450-mediated ring opening of the 1,3,4-oxadiazole in setileuton, a 5-lipoxygenase inhibitor. Drug Metab Dispos 2011; 39:763-70. [PMID: 21325431 DOI: 10.1124/dmd.110.037366] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Setileuton [4-(4-fluorophenyl)-7-[({5-[(1S)-1-hydroxy-1-(trifluoromethyl)propyl]-1,3,4-oxadiazol-2-yl}amino)methyl]-2H-1-benzopyran-2-one] is a selective inhibitor of the 5-lipoxygenase enzyme, which is under investigation for the treatment of asthma and atherosclerosis. During the development of setileuton, a metabolite (M5) was identified in incubations with rat, dog, and human liver microsomes that represented the addition of 18 Da to the 1,3,4-oxadiazole portion of the molecule. Based on mass spectral data, a ring opened structure was proposed and confirmed through comparison with a synthetic standard. The metabolic ring opening was examined in vitro in rat liver microsomes and was determined to be mediated by cytochrome P450s (P450s). Upon examination of the specific P450s involved using cDNA-expressed rat P450s, it was shown that CYP1A2 likely was the major isoform contributing to the formation of M5. Studies using stable labeled molecular oxygen and water demonstrated that the oxygen was incorporated from molecular oxygen, rather than water, and confirmed that the metabolic formation was oxidative. An alternative, comparatively slow pathway of chemical hydrolysis also was identified and described. Three potential mechanisms for the two-step metabolic ring opening of the 1,3,4-oxadizole are proposed.
Collapse
Affiliation(s)
- Cheri M Maciolek
- Department of Drug Metabolism and Pharmacokinetics, Merck Research Laboratories, WP75A-203, P.O. Box 4, West Point, PA 19486, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Kawamura F, Nakanishi M, Hirashima N. Effects of menadione, a reactive oxygen generator, on leukotriene secretion from RBL-2H3 cells. Biol Pharm Bull 2010; 33:881-5. [PMID: 20460770 DOI: 10.1248/bpb.33.881] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species (ROS) are produced in various cells and affect many biological processes. We previously reported that 2-methyl-1,4-naphtoquinone (menadione) inhibited Ca(2+) influx from the extracellular medium and exocytosis evoked by antigen stimulation in the mast cell line, RBL-2H3. Mast cells release various inflammatory mediators such as leukotrienes (LTs) and cytokines in addition to the exocytotic secretion of histamine. In this study, we investigated the effects of menadione on LT release in RBL-2H3. Treatment of RBL cells with menadione inhibited LTC(4) secretion induced by antigen stimulation. To elucidate the mechanism of this inhibition, we examined the effects of menadione on the activation process of 5-lipoxygenase that is responsible for the synthesis of LTs from arachidonic acid. Menadione did not affect the phosophorylation of mitogen activated protein (MAP) kinases, extracellular signal-regulated kinase (ERK) and p38, which regulates phosphorylation of 5-lipoxygenase. However, menadione inhibited the translocation of 5-lipoxygenase from the cytoplasm to the nuclear membrane. Together with the result that LT secretion was severely impaired in the absence of extracellular Ca2(2+), it is suggested that ROS produced by menadione inhibited LT secretion through impaired Ca2(2+) influx and 5-lipoxygenase translocation to the nuclear membrane.
Collapse
Affiliation(s)
- Fumio Kawamura
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | | | | |
Collapse
|
21
|
Jiang Z, Yin X, Jiang Q. Natural forms of vitamin E and 13'-carboxychromanol, a long-chain vitamin E metabolite, inhibit leukotriene generation from stimulated neutrophils by blocking calcium influx and suppressing 5-lipoxygenase activity, respectively. THE JOURNAL OF IMMUNOLOGY 2010; 186:1173-9. [PMID: 21169551 DOI: 10.4049/jimmunol.1002342] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leukotrienes generated by 5-lipoxygenase (5-LOX)-catalyzed reaction are key regulators of inflammation. In ionophore-stimulated (A23187; 1-2.5 μM) human blood neutrophils or differentiated HL-60 cells, vitamin E forms differentially inhibited leukotriene B(4) (LTB(4)) with an IC(50) of 5-20 μM for γ-tocopherol, δ-tocopherol (δT), and γ-tocotrienol, but a much higher IC(50) for α-tocopherol. 13'-Carboxychromanol, a long-chain metabolite of δT, suppressed neutrophil- and HL-60 cell-generated LTB(4) with an IC(50) of 4-7 μM and potently inhibited human recombinant 5-LOX activity with an IC(50) of 0.5-1 μM. In contrast, vitamin E forms had no effect on human 5-LOX activity but impaired ionophore-induced intracellular calcium increase and calcium influx as well as the subsequent signaling including ERK1/2 phosphorylation and 5-LOX translocation from cytosol to the nucleus, a key event for 5-LOX activation. Further investigation showed that δT suppressed cytosolic Ca(2+) increase and/or LTB(4) formation triggered by ionophores, sphingosine 1-phosphate, and lysophosphatidic acid but not by fMLP or thapsigargin, whereas 13'-carboxychromanol decreased cellular production of LTB(4) regardless of different stimuli, consistent with its strong inhibition of the 5-LOX activity. These observations suggest that δT does not likely affect fMLP receptor-mediated signaling or store depletion-induced calcium entry. Instead, we found that δT prevented ionophore-caused cytoplasmic membrane disruption, which may account for its blocking of calcium influx. These activities by vitamin E forms and long-chain carboxychromanol provide potential molecular bases for the differential anti-inflammatory effects of vitamin E forms in vivo.
Collapse
Affiliation(s)
- Ziying Jiang
- Department of Foods and Nutrition, Interdepartmental Nutrition Program, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
22
|
Rådmark O, Samuelsson B. Regulation of the activity of 5-lipoxygenase, a key enzyme in leukotriene biosynthesis. Biochem Biophys Res Commun 2010; 396:105-10. [PMID: 20494120 DOI: 10.1016/j.bbrc.2010.02.173] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 02/28/2010] [Indexed: 01/22/2023]
Abstract
5-Lipoxygenase (5LO) catalyzes two steps in the biosynthesis of leukotrienes (LTs), lipid mediators of inflammation derived from arachidonic acid. LTs function in normal host defense, and have pathophysiological roles in chronic inflammatory diseases as asthma and atherosclerosis. Also, possible effects of 5LO products in relation to tumorigenesis have been described. Thus, insight regarding the biochemistry of 5LO is relevant for better understanding of normal physiology, and for development of therapy.
Collapse
Affiliation(s)
- Olof Rådmark
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, 17177 Stockholm, Sweden.
| | | |
Collapse
|
23
|
Kwak HJ, Park KM, Choi HE, Lim HJ, Park JH, Park HY. The cardioprotective effects of zileuton, a 5-lipoxygenase inhibitor, are mediated by COX-2 via activation of PKCδ. Cell Signal 2010; 22:80-7. [DOI: 10.1016/j.cellsig.2009.09.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 09/12/2009] [Accepted: 09/14/2009] [Indexed: 10/20/2022]
|
24
|
Silva AR, Pacheco P, Vieira-de-Abreu A, Maya-Monteiro CM, D'Alegria B, Magalhães KG, de Assis EF, Bandeira-Melo C, Castro-Faria-Neto HC, Bozza PT. Lipid bodies in oxidized LDL-induced foam cells are leukotriene-synthesizing organelles: a MCP-1/CCL2 regulated phenomenon. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:1066-75. [DOI: 10.1016/j.bbalip.2009.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 06/09/2009] [Accepted: 06/23/2009] [Indexed: 12/01/2022]
|
25
|
Feißt C, Pergola C, Rakonjac M, Rossi A, Koeberle A, Dodt G, Hoffmann M, Hoernig C, Fischer L, Steinhilber D, Franke L, Schneider G, Rådmark O, Sautebin L, Werz O. Hyperforin is a novel type of 5-lipoxygenase inhibitor with high efficacy in vivo. Cell Mol Life Sci 2009; 66:2759-71. [PMID: 19579006 PMCID: PMC11115900 DOI: 10.1007/s00018-009-0078-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 06/12/2009] [Accepted: 06/15/2009] [Indexed: 01/02/2023]
Abstract
We previously showed that, in vitro, hyperforin from St. John's wort (Hypericum perforatum) inhibits 5-lipoxygenase (5-LO), the key enzyme in leukotriene biosynthesis. Here, we demonstrate that hyperforin possesses a novel and unique molecular pharmacological profile as a 5-LO inhibitor with remarkable efficacy in vivo. Hyperforin (4 mg/kg, i.p.) significantly suppressed leukotriene B(4) formation in pleural exudates of carrageenan-treated rats associated with potent anti-inflammatory effectiveness. Inhibition of 5-LO by hyperforin, but not by the iron-ligand type 5-LO inhibitor BWA4C or the nonredox-type inhibitor ZM230487, was abolished in the presence of phosphatidylcholine and strongly reduced by mutation (W13A-W75A-W102A) of the 5-LO C2-like domain. Moreover, hyperforin impaired the interaction of 5-LO with coactosin-like protein and abrogated 5-LO nuclear membrane translocation in ionomycin-stimulated neutrophils, processes that are typically mediated via the regulatory 5-LO C2-like domain. Together, hyperforin is a novel type of 5-LO inhibitor apparently acting by interference with the C2-like domain, with high effectiveness in vivo.
Collapse
Affiliation(s)
- Christian Feißt
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Carlo Pergola
- Department of Pharmaceutical Analytics, Pharmaceutical Institute, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Marija Rakonjac
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Andreas Koeberle
- Department of Pharmaceutical Analytics, Pharmaceutical Institute, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Gabriele Dodt
- Interfakultäres Institut für Biochemie, Hoppe-Seyler-Straße 4, University of Tuebingen, 72076 Tübingen, Germany
| | - Marika Hoffmann
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Christina Hoernig
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Lutz Fischer
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Lutz Franke
- Institute of Organic Chemistry and Chemical Biology, University of Frankfurt, Siesmayerstr. 70, 60323 Frankfurt, Germany
| | - Gisbert Schneider
- Institute of Organic Chemistry and Chemical Biology, University of Frankfurt, Siesmayerstr. 70, 60323 Frankfurt, Germany
| | - Olof Rådmark
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Lidia Sautebin
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | - Oliver Werz
- Department of Pharmaceutical Analytics, Pharmaceutical Institute, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
26
|
Shimizu T. Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu Rev Pharmacol Toxicol 2009; 49:123-50. [PMID: 18834304 DOI: 10.1146/annurev.pharmtox.011008.145616] [Citation(s) in RCA: 434] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Prostaglandins, leukotrienes, platelet-activating factor, lysophosphatidic acid, sphingosine 1-phosphate, and endocannabinoids, collectively referred to as lipid mediators, play pivotal roles in immune regulation and self-defense, and in the maintenance of homeostasis in living systems. They are produced by multistep enzymatic pathways, which are initiated by the de-esterification of membrane phospholipids by phospholipase A2s or sphingo-myelinase. Lipid mediators exert their biological effects by binding to cognate receptors, which are members of the G protein-coupled receptor superfamily. The synthesis of the lipid mediators and subsequent induction of receptor activity is tightly regulated under normal physiological conditions, and enzyme and/or receptor dysfunction can lead to a variety of disease conditions. Thus, the manipulation of lipid mediator signaling, through either enzyme inhibitors or receptor antagonists and agonists, has great potential as a therapeutic approach to disease. In this review, I summarize our current state of knowledge of the synthesis of lipid mediators and the function of their cognate receptors, and discuss the effects of genetic or pharmacological ablation of enzyme or receptor function on various pathophysiological processes.
Collapse
Affiliation(s)
- Takao Shimizu
- Department of Biochemistry and Molecular Biology, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
27
|
Synthesis of lipoxin A4 by 5-lipoxygenase mediates PPARgamma-dependent, neuroprotective effects of rosiglitazone in experimental stroke. J Neurosci 2009; 29:3875-84. [PMID: 19321784 DOI: 10.1523/jneurosci.5529-08.2009] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Peroxisome proliferator-activated receptors gamma (PPARgamma) are nuclear receptors with essential roles as transcriptional regulators of glucose and lipid homeostasis. PPARgamma are also potent anti-inflammatory receptors, a property that contributes to the neuroprotective effects of PPARgamma agonists in experimental stroke. The mechanism of these beneficial actions, however, is not fully elucidated. Therefore, we have explored further the actions of the PPARgamma agonist rosiglitazone in experimental stroke induced by permanent middle cerebral artery occlusion (MCAO) in rodents. Rosiglitazone induced brain 5-lipoxygenase (5-LO) expression in ischemic rat brain, concomitantly with neuroprotection. Rosiglitazone also increased cerebral lipoxin A(4) (LXA(4)) levels and inhibited MCAO-induced production of leukotriene B4 (LTB(4)). Furthermore, pharmacological inhibition and/or genetic deletion of 5-LO inhibited rosiglitazone-induced neuroprotection and downregulation of inflammatory gene expression, LXA(4) synthesis and PPARgamma transcriptional activity in rodents. Finally, LXA(4) caused neuroprotection, which was partly inhibited by the PPARgamma antagonist T0070907, and increased PPARgamma transcriptional activity in isolated nuclei, showing for the first time that LXA(4) has PPARgamma agonistic actions. Altogether, our data illustrate that some effects of rosiglitazone are attributable to de novo synthesis of 5-LO, able to induce a switch from the synthesis of proinflammatory LTB(4) to the synthesis of the proresolving LXA(4). Our study suggests novel lines of study such as the interest of lipoxin-like anti-inflammatory drugs or the use of these molecules as prognostic and/or diagnostic markers for pathologies in which inflammation is involved, such as stroke.
Collapse
|
28
|
Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev 2009; 89:193-277. [PMID: 19126758 DOI: 10.1152/physrev.00037.2007] [Citation(s) in RCA: 1054] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The ability to control cell volume is pivotal for cell function. Cell volume perturbation elicits a wide array of signaling events, leading to protective (e.g., cytoskeletal rearrangement) and adaptive (e.g., altered expression of osmolyte transporters and heat shock proteins) measures and, in most cases, activation of volume regulatory osmolyte transport. After acute swelling, cell volume is regulated by the process of regulatory volume decrease (RVD), which involves the activation of KCl cotransport and of channels mediating K(+), Cl(-), and taurine efflux. Conversely, after acute shrinkage, cell volume is regulated by the process of regulatory volume increase (RVI), which is mediated primarily by Na(+)/H(+) exchange, Na(+)-K(+)-2Cl(-) cotransport, and Na(+) channels. Here, we review in detail the current knowledge regarding the molecular identity of these transport pathways and their regulation by, e.g., membrane deformation, ionic strength, Ca(2+), protein kinases and phosphatases, cytoskeletal elements, GTP binding proteins, lipid mediators, and reactive oxygen species, upon changes in cell volume. We also discuss the nature of the upstream elements in volume sensing in vertebrate organisms. Importantly, cell volume impacts on a wide array of physiological processes, including transepithelial transport; cell migration, proliferation, and death; and changes in cell volume function as specific signals regulating these processes. A discussion of this issue concludes the review.
Collapse
Affiliation(s)
- Else K Hoffmann
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
29
|
Abstract
5-lipoxygenase (5-LO) catalyzes two steps in biosynthesis of leukotrienes (LTs), a group of lipid mediators of inflammation derived from arachidonic acid (AA). LT antagonists are used in treatment of asthma; more recently a potential role also in atherosclerosis has raised considerable interest. Furthermore, possible effects of 5-LO metabolites in relation to tumorigenesis have emerged. Thus, an understanding of the biochemistry of this lipoxygenase has potential implications for treatment of various diseases.
Collapse
Affiliation(s)
- Olof Rådmark
- Department Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | |
Collapse
|
30
|
Ye Y, Lin Y, Perez-Polo JR, Uretsky BF, Ye Z, Tieu BC, Birnbaum Y. Phosphorylation of 5-Lipoxygenase at Ser523 by Protein Kinase A Determines Whether Pioglitazone and Atorvastatin Induce Proinflammatory Leukotriene B4 or Anti-Inflammatory 15-Epi-Lipoxin A4 Production. THE JOURNAL OF IMMUNOLOGY 2008; 181:3515-23. [DOI: 10.4049/jimmunol.181.5.3515] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Souza DG, Fagundes CT, Amaral FA, Cisalpino D, Sousa LP, Vieira AT, Pinho V, Nicoli JR, Vieira LQ, Fierro IM, Teixeira MM. The required role of endogenously produced lipoxin A4 and annexin-1 for the production of IL-10 and inflammatory hyporesponsiveness in mice. THE JOURNAL OF IMMUNOLOGY 2008; 179:8533-43. [PMID: 18056401 DOI: 10.4049/jimmunol.179.12.8533] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The appropriate development of an inflammatory response is central for the ability of a host to deal with any infectious insult. However, excessive, misplaced, or uncontrolled inflammation may lead to acute or chronic diseases. The microbiota plays an important role in the control of inflammatory responsiveness. In this study, we investigated the role of lipoxin A4 and annexin-1 for the IL-10-dependent inflammatory hyporesponsiveness observed in germfree mice. Administration of a 15-epi-lipoxin A4 analog or an annexin-1-derived peptide to conventional mice prevented tissue injury, TNF-alpha production, and lethality after intestinal ischemia/reperfusion. This was associated with enhanced IL-10 production. Lipoxin A4 and annexin-1 failed to prevent reperfusion injury in IL-10-deficient mice. In germfree mice, there was enhanced expression of both lipoxin A4 and annexin-1. Blockade of lipoxin A4 synthesis with a 5-lipoxygenase inhibitor or Abs against annexin-1 partially prevented IL-10 production and this was accompanied by partial reversion of inflammatory hyporesponsiveness in germfree mice. Administration of BOC-1, an antagonist of ALX receptors (at which both lipoxin A4 and annexin-1 act), or simultaneous administration of 5-lipoxygenase inhibitor and anti-annexin-1 Abs, was associated with tissue injury, TNF-alpha production, and lethality similar to that found in conventional mice. Thus, our data demonstrate that inflammatory responsiveness is tightly controlled by the presence of the microbiota and that the innate capacity of germfree mice to produce IL-10 is secondary to their endogenous greater ability to produce lipoxin A4 and annexin-1.
Collapse
Affiliation(s)
- Danielle G Souza
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Substituted 2,2-bisaryl-bicycloheptanes as novel and potent inhibitors of 5-lipoxygenase activating protein. Bioorg Med Chem Lett 2008; 18:2023-7. [DOI: 10.1016/j.bmcl.2008.01.105] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 01/28/2008] [Accepted: 01/29/2008] [Indexed: 11/20/2022]
|
33
|
Xu S, McKeever BM, Wisniewski D, Miller DK, Spencer RH, Chu L, Ujjainwalla F, Yamin TT, Evans JF, Becker JW, Ferguson AD. Expression, purification and crystallization of human 5-lipoxygenase-activating protein with leukotriene-biosynthesis inhibitors. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:1054-7. [PMID: 18084092 PMCID: PMC2344111 DOI: 10.1107/s1744309107055571] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 11/02/2007] [Indexed: 02/02/2023]
Abstract
The nuclear membrane protein 5-lipoxygenase-activating protein (FLAP) plays an essential role in leukotriene synthesis. Recombinant full-length human FLAP with a C-terminal hexahistidine tag has been expressed and purified from the cytoplasmic membrane of Escherichia coli. Diffraction-quality crystals of FLAP in complex with leukotriene-synthesis inhibitor MK-591 and with an iodinated analogue of MK-591 have been grown using the sitting-drop vapor-diffusion method. The crystals exhibit tetragonal symmetry (P42(1)2) and diffracted to a resolution limit of 4 A.
Collapse
Affiliation(s)
- Shihua Xu
- Department of Medicinal Chemistry, Merck Research Laboratories, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lindberg U, Karlsson R, Lassing I, Schutt CE, Höglund AS. The microfilament system and malignancy. Semin Cancer Biol 2007; 18:2-11. [PMID: 18024149 DOI: 10.1016/j.semcancer.2007.10.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Increased motile activity, increased rate of cell proliferation and removal of growth inhibiting cell-cell contacts are hallmarks of tumorigenesis. Activation of cell motility and migration is caused by activation of receptors, turning on the growth cycle. Increased expression of metalloproteinases, breaking cell:cell contacts and organ confines, allows the spread of malignant cancer cells to other sites in the organism. It has become increasingly clear that most transmembrane proteins (growth factor receptors, adhesion proteins and ion channels) are either permanently or transiently associated with the sub-membraneous system of actin microfilaments (MF), whose force generating capacity they control. Although there has been great progress in our understanding of the physiological importance of the MF-system, as will be exemplified in this issue of SCB, many aspects of actin microfilament formation and its regulation are still unclear. Redox control of the actin (MF)-system in cell motility and migration and its perturbations in pathophysiology, including cancer, is an emerging field of research.
Collapse
Affiliation(s)
- Uno Lindberg
- Department of Microbiology, Tumor Biology, and Cell Biology, The Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
35
|
Ferguson AD, McKeever BM, Xu S, Wisniewski D, Miller DK, Yamin TT, Spencer RH, Chu L, Ujjainwalla F, Cunningham BR, Evans JF, Becker JW. Crystal Structure of Inhibitor-Bound Human 5-Lipoxygenase-Activating Protein. Science 2007; 317:510-2. [PMID: 17600184 DOI: 10.1126/science.1144346] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Leukotrienes are proinflammatory products of arachidonic acid oxidation by 5-lipoxygenase that have been shown to be involved in respiratory and cardiovascular diseases. The integral membrane protein FLAP is essential for leukotriene biosynthesis. We describe the x-ray crystal structures of human FLAP in complex with two leukotriene biosynthesis inhibitors at 4.0 and 4.2 angstrom resolution, respectively. The structures show that inhibitors bind in membrane-embedded pockets of FLAP, which suggests how these inhibitors prevent arachidonic acid from binding to FLAP and subsequently being transferred to 5-lipoxygenase, thereby preventing leukotriene biosynthesis. This structural information provides a platform for the development of therapeutics for respiratory and cardiovascular diseases.
Collapse
Affiliation(s)
- Andrew D Ferguson
- Department of Medicinal Chemistry, Merck Research Laboratories, Rahway, NJ 07065, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Several other proteins, including cPLA2α (cytosolic phospholipase A2α) and FLAP (5-LO-activating protein) also assemble at the perinuclear region before production of LTA4. LTC4 synthase is an integral membrane protein that is present at the nuclear envelope; however, LTA4 hydrolase remains cytosolic. Biologically active LTB4 is metabolized by ω-oxidation carried out by specific cytochrome P450s (CYP4F) followed by β-oxidation from the ω-carboxy position and after CoA ester formation. Other specific pathways of leukotriene metabolism include the 12-hydroxydehydrogenase/15-oxo-prostaglandin-13-reductase that forms a series of conjugated diene metabolites that have been observed to be excreted into human urine. Metabolism of LTC4 occurs by sequential peptide cleavage reactions involving a γ-glutamyl transpeptidase that forms LTD4 (leukotriene D4) and a membrane-bound dipeptidase that converts LTD4 into LTE4 (leukotriene E4) before ω-oxidation. These metabolic transformations of the primary leukotrienes are critical for termination of their biological activity, and defects in expression of participating enzymes may be involved in specific genetic disease.
Collapse
Affiliation(s)
- Robert C Murphy
- Department of Pharmacology, Mail Stop 8303, University of Colorado at Denver and Health Sciences Center, 12801 E. 17th Avenue, P.O. Box 6511, Aurora, CO 80045-0511, USA
| | | |
Collapse
|
37
|
Rådmark O, Werz O, Steinhilber D, Samuelsson B. 5-Lipoxygenase: regulation of expression and enzyme activity. Trends Biochem Sci 2007; 32:332-41. [PMID: 17576065 DOI: 10.1016/j.tibs.2007.06.002] [Citation(s) in RCA: 360] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 05/01/2007] [Accepted: 06/04/2007] [Indexed: 11/16/2022]
Abstract
5-Lipoxygenase (5-LO) catalyzes the first two steps in the biosynthesis of leukotrienes, a group of pro-inflammatory lipid mediators derived from arachidonic acid. Leukotriene antagonists are used in the treatment of asthma, and the potential role of leukotrienes in atherosclerosis, another chronic inflammatory disease, has recently received considerable attention. In addition, some possible effects of 5-LO metabolites in tumorigenesis have emerged. Thus, knowledge of the biochemistry of this enzyme has potential implications for the treatment of various diseases. Recent advances have expanded our understanding of the regulatory mechanisms underlying the expression and control of 5-LO activity. With regard to the control of enzyme activity, many of these findings focus on the N-terminal domain of 5-LO.
Collapse
Affiliation(s)
- Olof Rådmark
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, S-17177 Stockholm, Sweden.
| | | | | | | |
Collapse
|
38
|
Lassing I, Schmitzberger F, Björnstedt M, Holmgren A, Nordlund P, Schutt CE, Lindberg U. Molecular and structural basis for redox regulation of beta-actin. J Mol Biol 2007; 370:331-48. [PMID: 17521670 DOI: 10.1016/j.jmb.2007.04.056] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 04/18/2007] [Accepted: 04/18/2007] [Indexed: 12/20/2022]
Abstract
An essential consequence of growth factor-mediated signal transduction is the generation of intracellular H(2)O(2). It operates as a second messenger in the control of actin microfilament dynamics, causing rapid and dramatic changes in the morphology and motile activity of stimulated cells. Little is understood about the molecular mechanisms causing these changes in the actin system. Here, it is shown that H(2)O(2) acts directly upon several levels of this system, and some of the mechanistic effects are detailed. We describe the impact of oxidation on the polymerizability of non-muscle beta/gamma-actin and compare with that of muscle alpha-actin. Oxidation of beta/gamma-actin can cause a complete loss of polymerizability, crucially, reversible by the thioredoxin system. Further, oxidation of the actin impedes its interaction with profilin and causes depolymerization of filamentous actin. The effects of oxidation are critically dependent on the nucleotide state and the concentration of Ca(2+). We have determined the crystal structure of oxidized beta-actin to a resolution of 2.6 A. The arrangement in the crystal implies an antiparallel homodimer connected by an intermolecular disulfide bond involving cysteine 374. Our data indicate that this dimer forms under non-polymerizing and oxidizing conditions. We identify oxidation of cysteine 272 in the crystallized actin dimer, likely to a cysteine sulfinic acid. In beta/gamma-actin, this is the cysteine residue most reactive towards H(2)O(2) in solution, and we suggest plausible structural determinants for its reactivity. No other oxidative modification was obvious in the structure, highlighting the specificity of the oxidation by H(2)O(2). Possible consequences of the observed effects in a cellular context and their potential relevance are discussed.
Collapse
Affiliation(s)
- Ingrid Lassing
- Department of Microbiology, Tumor Biology, and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
39
|
Imbesi M, Zavoreo I, Uz T, Sharma RP, Dimitrijevic N, Manev H, Manev R. 5-Lipoxygenase inhibitor MK-886 increases GluR1 phosphorylation in neuronal cultures in vitro and in the mouse cortex in vivo. Brain Res 2007; 1147:148-53. [PMID: 17349982 DOI: 10.1016/j.brainres.2007.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 02/07/2007] [Accepted: 02/08/2007] [Indexed: 10/23/2022]
Abstract
Modifications of AMPA glutamate receptor GluR1 phosphorylation are critical for neuroplastic mechanisms. Previous in vitro studies in brain slices employed MK-886, a functional inhibitor of the enzyme 5-lipoxygenase (5-LOX), and found increased GluR1 phosphorylation. Since slice preparations have accompanying postmortem phosphorylation changes, e.g., decreased GluR1 phosphorylation, it remains to be clarified whether MK-886 can affect GluR1 phosphorylation in intact neurons and in the brain in vivo. We used primary neuronal cultures prepared from embryonic mouse brain and in vivo drug administration to investigate the effects of MK-886 on GluR1 phosphorylation using quantitative Western immunoblotting assays. In vitro, MK-886 increased GluR1 phosphorylation at both serine 831 and serine 845. In vivo, repeated but not a single MK-886 injection increased GluR1 phosphorylation in the prefrontal cortex. These findings indicate that MK-886 has an intrinsic effect on neuronal phosphorylation both in vitro and in vivo and support the use of MK-886 as a pharmacological tool in studies of not only the 5-LOX pathway but also neuronal GluR1 functioning.
Collapse
Affiliation(s)
- Marta Imbesi
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 West Taylor Street, MC912, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Pufahl RA, Kasten TP, Hills R, Gierse JK, Reitz BA, Weinberg RA, Masferrer JL. Development of a fluorescence-based enzyme assay of human 5-lipoxygenase. Anal Biochem 2007; 364:204-12. [PMID: 17376394 DOI: 10.1016/j.ab.2007.02.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 02/05/2007] [Accepted: 02/06/2007] [Indexed: 10/23/2022]
Abstract
Leukotrienes are important mediators in a number of inflammatory diseases and therefore are a target of several therapeutic approaches. The first committed step in the synthesis of leukotrienes is the conversion of arachidonic acid to leukotriene A(4) (LTA(4)) in two successive reactions catalyzed by 5-lipoxygenase (5-LOX). Assays to measure 5-LOX activity typically have been low throughput and time consuming. In this article, we describe a fluorescence assay that is amenable to high-throughput screening in a 384-well microplate format. The fluorescent signal is measured during oxidation of 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) by human 5-LOX. The assay has been found to reliably identify small molecule inhibitors of human 5-LOX. The IC(50) values of several 5-LOX inhibitors in this new assay are comparable to those determined in a standard spectrophotometric assay that measures the formation of the 5(S)-hydroperoxyeicosatetraenoic acid (5-HpETE) product. In addition, we demonstrate the use of the assay in a high-throughput screen of the Pfizer compound collection to identify inhibitors of 5-LOX.
Collapse
Affiliation(s)
- Robert A Pufahl
- Pfizer Global Research and Development, Chesterfield, MO 63017, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Hattermann K, Picard S, Borgeat M, Leclerc P, Pouliot M, Borgeat P. The Toll‐like receptor 7/8‐ligand resiquimod (R‐848) primes human neutrophils for leukotriene B4, prostaglandin E2and platelet‐activating factor biosynthesis. FASEB J 2007; 21:1575-85. [PMID: 17264163 DOI: 10.1096/fj.06-7457com] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Toll-like receptors (TLR) recognize pathogen-associated molecular patterns and play important roles in the innate immune system. While single-stranded viral RNA is the natural ligand of TLR7/TLR8, the imidazoquinoline resiquimod (R-848) is recognized as a potent synthetic agonist of TLR7/TLR8. We investigated the effects of TLR7/8 activation on lipid mediator production in polymorphonuclear leukocytes exposed to R-848. Although R-848 had minimal effects by itself, it strongly enhanced leukotriene B4 formation on subsequent stimulation by fMLP, platelet-activating factor, and the ionophore A23187. R-848 acted via TLR8 but not TLR7 as shown by the lack of effect of the TLR7-specific ligand imiquimod. Priming with R-848 also resulted in enhanced arachidonic acid release and platelet-activating factor formation following fMLP stimulation, as well as enhanced prostaglandin E2 synthesis following the addition of arachidonic acid. Western blot analysis demonstrated that R-848 induced the phosphorylation of the cytosolic phospholipase A2alpha, promoted 5-lipoxygenase translocation and potently stimulated the expression of the type 2 cyclooxygenase. Bafilomycin A1, an inhibitor of endosomal acidification, efficiently inhibited all R-848-induced effects. These studies demonstrate that TLR8 signaling strongly promotes inflammatory lipid mediator biosynthesis and provide novel insights on innate immune response to viral infections.
Collapse
Affiliation(s)
- Kim Hattermann
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Quebec Research Center and Faculty of Medicine, Laval University, Québec, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Yamashita M. Peroxisome proliferator-activated receptor alpha-independent effects of peroxisome proliferators on cysteinyl leukotriene production in mast cells. Eur J Pharmacol 2006; 556:172-80. [PMID: 17113579 DOI: 10.1016/j.ejphar.2006.10.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 10/06/2006] [Accepted: 10/10/2006] [Indexed: 11/15/2022]
Abstract
The effects of peroxisome proliferators, the ligands of a nuclear receptor peroxisome proliferator-activated receptor (PPAR) alpha, on cysteinyl leukotriene production were investigated in rodent mast cells. Peroxisome proliferators Wy-14,643 (30 microM) and fenofibrate (100 microM) significantly inhibited the cysteinyl leukotriene production that was induced by antigen (Ag) treatment after overnight sensitization to Ag specific immunoglobulin E (IgE) in a rat basophilic leukemia (RBL)-2H3 mast cell line. Similar inhibition by these drugs was observed in IgE and Ag-treated mouse bone marrow-derived mast cells, A23187-treated RBL-2H3 and A23187-treated mouse peritoneal macrophages. Wy-14,643 (30 microM) and fenofibrate (100 microM) did not affect the release of radioactivity from RBL-2H3 pre-incubated with [(3)H]-arachidonic acid, which is considered an index of phospholipase A(2) activity. Wy-14,643 (30 microM) and fenofibrate (100 microM) did not directly inhibit 5-lipoxygenase activity. Troglitazone was found to directly inhibit the activity of 5-lipoxygenase. The PPARalpha mRNA level was at less than the limit of detection for the realtime polymerase chain reaction both in RBL-2H3 and bone marrow-derived mast cells. Wy-14,643 (30 microM) and fenofibrate (100 microM) did not induce acyl-CoA oxidase mRNA in RBL-2H3, which was reported to be induced by peroxisome proliferators via PPARalpha in hepatocytes. Wy-14,643 (30 microM) and fenofibrate (100 microM) inhibited the cysteinyl leukotriene production in bone marrow-derived mast cells from PPARalpha-null mice. It was concluded that the inhibitory effects of these peroxisome proliferators on cysteinyl leukotriene production are independent of PPARalpha in mast cells.
Collapse
Affiliation(s)
- Masamichi Yamashita
- Department of Pathophysiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan.
| |
Collapse
|
43
|
Rakonjac M, Fischer L, Provost P, Werz O, Steinhilber D, Samuelsson B, Rådmark O. Coactosin-like protein supports 5-lipoxygenase enzyme activity and up-regulates leukotriene A4 production. Proc Natl Acad Sci U S A 2006; 103:13150-5. [PMID: 16924104 PMCID: PMC1559768 DOI: 10.1073/pnas.0605150103] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Regulation of 5-lipoxygenase (5LO) activity is a key determinant for the biosynthesis of proinflammatory leukotrienes. Coactosin-like protein (CLP) is an F-actin-binding protein that can also bind 5LO. Here, we report that CLP can up-regulate and modulate 5LO activity [formation of 5(S)-hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoic acid (5-HPETE)], 5(S)-hydroxy-6-trans-8,11,14-cis-eicosatetraenoic acid (5-HETE), and 5(S)-trans-5,6-oxido-7,9-trans-11,14-cis-eicosatetraenoic acid (LTA(4)) in vitro. Three findings are presented. First, CLP up-regulates Ca(2+)-induced 5LO activity, in the absence of phosphatidylcholine (membrane). Apparently, CLP can function as a scaffold for 5LO, similar to membranes. Second, CLP gives a considerable (3-fold) increase in the amount of LTA(4) formed by 5LO, when present together with phosphatidylcholine. Third, CLP increases the ratio of 5-HETE/5-HPETE. These effects require protein interaction by Trp residues in ligand-binding loops of the 5LO beta-sandwich; both binding and stimulatory effects of CLP were abolished for the mutant 5LO-W13/75/102A. In polymorphonuclear leukocytes stimulated with Ca(2+) ionophore, both CLP and 5LO associated with the nucleus, whereas in resting cells, CLP and 5LO were cytosolic. These findings establish CLP as a factor relevant for 5LO product formation. Functioning as a 5LO scaffold, CLP may provide a basis for the formation of 5-HETE in the cytosol of different cell types. Furthermore, in stimulated cells, CLP appears to function in a complex together with 5LO and membranes, increasing the capacity of 5LO for leukotriene biosynthesis.
Collapse
Affiliation(s)
- Marija Rakonjac
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Lutz Fischer
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, S-171 77 Stockholm, Sweden
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Marie-Curie-Strasse 9, D-60439 Frankfurt, Germany; and
| | - Patrick Provost
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUL), Quebec, QC, Canada G1V 4G2
| | - Oliver Werz
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Marie-Curie-Strasse 9, D-60439 Frankfurt, Germany; and
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Marie-Curie-Strasse 9, D-60439 Frankfurt, Germany; and
| | - Bengt Samuelsson
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, S-171 77 Stockholm, Sweden
- To whom correspondence may be addressed. E-mail:
or
| | - Olof Rådmark
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, S-171 77 Stockholm, Sweden
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
44
|
Seuter S, Sorg BL, Steinhilber D. The coding sequence mediates induction of 5-lipoxygenase expression by Smads3/4. Biochem Biophys Res Commun 2006; 348:1403-10. [PMID: 16919603 DOI: 10.1016/j.bbrc.2006.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 08/02/2006] [Indexed: 12/01/2022]
Abstract
5-Lipoxygenase (5-LO) expression is strongly induced by transforming growth factor-beta (TGFbeta) and 1alpha,25-dihydroxyvitamin D(3) in Mono Mac 6 cells. Since Smads have been described as downstream effectors of TGFbeta, we have investigated the role of the TGFbeta/Smad signalling system in the regulation of 5-LO gene expression. The rapid induction of 5-LO mRNA, determined with real-time quantitative RT-PCR, suggests that 5-LO is a primary TGFbeta target gene. In reporter gene assays with plasmids containing the 5-LO promoter plus different parts of the gene, Smads3/4 mediate a prominent upregulation of reporter activity that strongly depends on the coding sequence and to a lesser extent on the 3'-UTR and introns J-M. Deletion studies revealed the most profound decrease of inducibility by Smads3/4 when exons 10-14 are deleted. Sequence analysis and deletion studies indicate the existence of up to four Smad binding elements and at least one TGFbeta responsive element far downstream of the transcriptional start site.
Collapse
Affiliation(s)
- Sabine Seuter
- Institute of Pharmaceutical Chemistry/ZAFES, University of Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | | | | |
Collapse
|
45
|
Brock TG. Expression of 5-lipoxygenase in specialized epithelial cells of nasopharyngeal-associated lymphoid tissue. J Mol Histol 2006; 36:475-81. [PMID: 16733792 DOI: 10.1007/s10735-006-9022-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 03/16/2006] [Indexed: 01/03/2023]
Abstract
Leukotrienes are lipid mediators that are produced primarily by certain types of leukocytes. The synthesis of the leukotriene LTB(4) is initiated by the enzyme 5-lipoxygenase and completed by LTA(4) hydrolase. Epithelial cells constitutively express LTA(4) hydrolase but normally lack 5-lipoxygenase. In this study, we report that the stratified squamous epithelial cells from inflamed or hyperplastic tissues of palatine and pharyngeal tonsils (nasopharyngeal-associated lymphoid tissue) express 5-lipoxygenase protein. The localization of 5-lipoxygenase was indicated by immunohistochemical staining and presence confirmed by immunoblot. Positive staining for 5-lipoxygenase in infiltrating leukocytes in inflamed tissues served as internal positive controls for immunohistochemical staining. Staining for 5-lipoxygenase in appendix tissue was negative for epithelial cells while positive for polymorphonuclear leukocytes, indicating that 5-lipoxygenase expression is not a general feature of epithelial cells in mucosa-associated lymphoid tissue. In tonsils, 5-lipoxygenase staining was pronounced in broad regions but reduced or absent in others, suggesting regional regulation of expression. Epithelial cells of tonsils were also positive for 5-lipoxygenase activating protein and leukotriene A(4) hydrolase, indicating a capacity to produce LTB(4). Taken together, these results suggest that the specialized epithelial cells of the mucosa-associated lymphoid tissue of human tonsils can synthesize LTB(4). This lipid mediator may serve to modulate the function of cells within the lymphoid tissue as well as promote an inflammatory response.
Collapse
Affiliation(s)
- Thomas G Brock
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-0642, USA.
| |
Collapse
|