1
|
Piskol F, Lukat P, Kaufhold L, Heger A, Blankenfeldt W, Jahn D, Moser J. Biochemical and structural elucidation of the L-carnitine degradation pathway of the human pathogen Acinetobacter baumannii. Front Microbiol 2024; 15:1446595. [PMID: 39206375 PMCID: PMC11353897 DOI: 10.3389/fmicb.2024.1446595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Acinetobacter baumannii is an opportunistic human pathogen which can use host-derived L-carnitine as sole carbon and energy source. Recently, an L-carnitine transporter (Aci1347) and a specific monooxygense (CntA/CntB) for the intracellular cleavage of L-carnitine have been characterized. Subsequent conversion of the resulting malic semialdehyde into the central metabolite L-malate was hypothesized. Alternatively, L-carnitine degradation via D-malate with subsequent oxidation into pyruvate was proposed. Here we describe the in vitro and in vivo reconstitution of the entire pathway, starting from the as yet uncharacterized gene products of the carnitine degradation gene operon. Using recombinantly purified enzymes, enantiomer-specific formation of D-malate by the NAD(P)+-dependent malic semialdehyde dehydrogenase (MSA-DH) is demonstrated. The solved X-ray crystal structure of tetrameric MSA-DH reveals the key catalytic residues Cys290 and Glu256, accessible through opposing substrate and cofactor funnels. Specific substrate binding is enabled by Arg166, Arg284 and Ser447 while dual cofactor specificity for NAD+ and NADP+ is mediated by Asn184. The subsequent conversion of the unusual D-malate reaction product by an uncharacterized NAD+-dependent malate dehydrogenase (MDH) is shown. Tetrameric MDH is a β-decarboxylating dehydrogenase that synthesizes pyruvate. MDH experiments with alternative substrates showed a high degree of substrate specificity. Finally, the entire A. baumannni pathway was heterologously reconstituted, allowing E. coli to grow on L-carnitine as a carbon and energy source. Overall, the metabolic conversion of L-carnitine via malic semialdehyde and D-malate into pyruvate, CO2 and trimethylamine was demonstrated. Trimethylamine is also an important gut microbiota-dependent metabolite that is associated with an increased risk of cardiovascular disease. The pathway reconstitution experiments allowed us to assess the TMA forming capacity of gut microbes which is related to human cardiovascular health.
Collapse
Affiliation(s)
- Fabian Piskol
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Peer Lukat
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Laurin Kaufhold
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Alexander Heger
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Wulf Blankenfeldt
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Biochemistry, Biotechnology and Bioinformatic, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dieter Jahn
- Braunschweig Centre of Integrated Systems Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jürgen Moser
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
2
|
Khan MS, Gargiulo S, Soumillion P. Promiscuous activity of 3-isopropylmalate dehydrogenase produced at physiological level affords Escherichia coli growth on d-malate. FEBS Lett 2020; 594:2421-2430. [PMID: 32412093 DOI: 10.1002/1873-3468.13814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 11/08/2022]
Abstract
Promiscuous activities of enzymes may serve as starting points for the evolution of new functions. However, most experimental examples of promiscuity affording an observable phenotype necessitate the artificial overexpression of the target enzyme. Here, we show that 3-isopropylmalate dehydrogenase (IPMDH), an enzyme involved in leucine biosynthesis, has a secondary activity on d-malate, which is sufficient for d-malate assimilation under physiological conditions where the enzyme is upregulated. In vitro, the turnover constant (kcat ) of IPMDH for d-malate is about 30-fold lower than the kcat for 3-isopropylmalate, yet sufficiently high to support the growth on d-malate. From an evolutionary perspective, our results highlight the possibility of phenotype emergence triggered by arbitrary changes in environmental conditions and prior to any mutational event.
Collapse
Affiliation(s)
- Mohammad Shahneawz Khan
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium.,University of Dhaka, Bangladesh
| | - Serena Gargiulo
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Patrice Soumillion
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Structure and function of an ancestral-type β-decarboxylating dehydrogenase from Thermococcus kodakarensis. Biochem J 2016; 474:105-122. [PMID: 27831491 DOI: 10.1042/bcj20160699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/05/2016] [Accepted: 11/09/2016] [Indexed: 11/17/2022]
Abstract
β-Decarboxylating dehydrogenases, which are involved in central metabolism, are considered to have diverged from a common ancestor with broad substrate specificity. In a molecular phylogenetic analysis of 183 β-decarboxylating dehydrogenase homologs from 84 species, TK0280 from Thermococcus kodakarensis was selected as a candidate for an ancestral-type β-decarboxylating dehydrogenase. The biochemical characterization of recombinant TK0280 revealed that the enzyme exhibited dehydrogenase activities toward homoisocitrate, isocitrate, and 3-isopropylmalate, which correspond to key reactions involved in the lysine biosynthetic pathway, tricarboxylic acid cycle, and leucine biosynthetic pathway, respectively. In T. kodakarensis, the growth characteristics of the KUW1 host strain and a TK0280 deletion strain suggested that TK0280 is involved in lysine biosynthesis in this archaeon. On the other hand, gene complementation analyses using Thermus thermophilus as a host revealed that TK0280 functions as both an isocitrate dehydrogenase and homoisocitrate dehydrogenase in this organism, but not as a 3-isopropylmalate dehydrogenase, most probably reflecting its low catalytic efficiency toward 3-isopropylmalate. A crystallographic study on TK0280 binding each substrate indicated that Thr71 and Ser80 played important roles in the recognition of homoisocitrate and isocitrate while the hydrophobic region consisting of Ile82 and Leu83 was responsible for the recognition of 3-isopropylmalate. These analyses also suggested the importance of a water-mediated hydrogen bond network for the stabilization of the β3-α4 loop, including the Thr71 residue, with respect to the promiscuity of the substrate specificity of TK0280.
Collapse
|
4
|
Takahashi K, Tomita T, Kuzuyama T, Nishiyama M. Determinants of dual substrate specificity revealed by the crystal structure of homoisocitrate dehydrogenase from Thermus thermophilus in complex with homoisocitrate·Mg(2+)·NADH. Biochem Biophys Res Commun 2016; 478:1688-93. [PMID: 27601325 DOI: 10.1016/j.bbrc.2016.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 11/17/2022]
Abstract
HICDH (Homoisocitrate dehydrogenase) is a member of the β-decarboxylating dehydrogenase family that catalyzes the conversion of homoisocitrate to α-ketoadipate using NAD(+) as a coenzyme, which is the fourth reaction involved in lysine biosynthesis through the α-aminoadipate pathway. Although typical HICDHs from fungi and yeast exhibit strict substrate specificities toward homoisocitrate (HIC), HICDH from a thermophilic bacterium Thermus thermophilus (TtHICDH) catalyzes the reactions using both HIC and isocitrate (IC) as substrates at similar efficiencies. We herein determined the crystal structure of the quaternary complex of TtHICDH with HIC, NADH, and Mg(2+) ion at a resolution of 2.5 Å. The structure revealed that the distal carboxyl group of HIC was recognized by the side chains of Ser72 and Arg85 from one subunit, and Asn173 from another subunit of a dimer unit. Model structures were constructed for TtHICDH in complex with IC and also for HICDH from Saccharomyces cerevisiae (ScHICDH) in complex with HIC. TtHICDH recognized the distal carboxyl group of IC by Arg85 in the model. In ScHICDH, the distal carboxyl group of HIC was recognized by the side chains of Ser98 and Ser108 from one subunit and Asn208 from another subunit of a dimer unit. By contrast, in ScHICDH, which lacks an Arg residue at the position corresponding to Arg85 in TtHICDH, these residues may not interact with the distal carboxyl group of shorter IC. These results provide a molecular basis for the differences in substrate specificities between TtHICDH and ScHICDH.
Collapse
Affiliation(s)
- Kento Takahashi
- Biotechnology Research Center, The University of Tokyo, Japan
| | - Takeo Tomita
- Biotechnology Research Center, The University of Tokyo, Japan
| | | | | |
Collapse
|
5
|
Vorobieva AA, Khan MS, Soumillion P. Escherichia coli D-malate dehydrogenase, a generalist enzyme active in the leucine biosynthesis pathway. J Biol Chem 2014; 289:29086-96. [PMID: 25160617 DOI: 10.1074/jbc.m114.595363] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzymes of the β-decarboxylating dehydrogenase superfamily catalyze the oxidative decarboxylation of D-malate-based substrates with various specificities. Here, we show that, in addition to its natural function affording bacterial growth on D-malate as a carbon source, the D-malate dehydrogenase of Escherichia coli (EcDmlA) naturally expressed from its chromosomal gene is capable of complementing leucine auxotrophy in a leuB(-) strain lacking the paralogous isopropylmalate dehydrogenase enzyme. To our knowledge, this is the first example of an enzyme that contributes with a physiologically relevant level of activity to two distinct pathways of the core metabolism while expressed from its chromosomal locus. EcDmlA features relatively high catalytic activity on at least three different substrates (L(+)-tartrate, D-malate, and 3-isopropylmalate). Because of these properties both in vivo and in vitro, EcDmlA may be defined as a generalist enzyme. Phylogenetic analysis highlights an ancient origin of DmlA, indicating that the enzyme has maintained its generalist character throughout evolution. We discuss the implication of these findings for protein evolution.
Collapse
Affiliation(s)
- Anastassia A Vorobieva
- From the Laboratoire de Biochimie, Biophysique et Génétique des Microorganismes (BBGM), Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium and
| | | | - Patrice Soumillion
- From the Laboratoire de Biochimie, Biophysique et Génétique des Microorganismes (BBGM), Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium and
| |
Collapse
|
6
|
Miller SP, Gonçalves S, Matias PM, Dean AM. Evolution of a transition state: role of Lys100 in the active site of isocitrate dehydrogenase. Chembiochem 2014; 15:1145-53. [PMID: 24797066 DOI: 10.1002/cbic.201400040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Indexed: 11/09/2022]
Abstract
An active site lysine essential to catalysis in isocitrate dehydrogenase (IDH) is absent from related enzymes. As all family members catalyze the same oxidative β-decarboxylation at the (2R)-malate core common to their substrates, it seems odd that an amino acid essential to one is not found in all. Ordinarily, hydride transfer to a nicotinamide C4 neutralizes the positive charge at N1 directly. In IDH, the negatively charged C4-carboxylate of isocitrate stabilizes the ground state positive charge on the adjacent nicotinamide N1, opposing hydride transfer. The critical lysine is poised to stabilize-and perhaps even protonate-an oxyanion formed on the nicotinamide 3-carboxamide, thereby enabling the hydride to be transferred while the positive charge at N1 is maintained. IDH might catalyze the same overall reaction as other family members, but dehydrogenation proceeds through a distinct, though related, transition state. Partial activation of lysine mutants by K(+) and NH4 (+) represents a throwback to the primordial state of the first promiscuous substrate family member.
Collapse
Affiliation(s)
- Stephen P Miller
- Biotechnology Institute, The University of Minnesota, 1479 Gortner Avenue, St. Paul, MN 55108 (USA)
| | | | | | | |
Collapse
|
7
|
Gabriel I, Vetter ND, Palmer DRJ, Milewska MJ, Wojciechowski M, Milewski S. Homoisocitrate dehydrogenase from Candida albicans: properties, inhibition, and targeting by an antifungal pro-drug. FEMS Yeast Res 2012; 13:143-55. [PMID: 23107040 DOI: 10.1111/1567-1364.12014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/16/2012] [Accepted: 10/21/2012] [Indexed: 11/30/2022] Open
Abstract
The LYS12 gene from Candida albicans, coding for homoisocitrate dehydrogenase was cloned and expressed as a His-tagged protein in Escherichia coli. The purified gene product catalyzes the Mg(2+)- and K(+)-dependent oxidative decarboxylation of homoisocitrate to α-ketoadipate. The recombinant enzyme demonstrates strict specificity for homoisocitrate. SDS-PAGE of CaHIcDH revealed its molecular mass of 42.6 ± 1 kDa, whereas in size-exclusion chromatography, the enzyme eluted in a single peak corresponding to a molecular mass of 158 ± 3 kDa. Native electrophoresis showed that CaHIcDH may exist as a monomer and as a tetramer and the latter form is favored by homoisocitrate binding. CaHIcDH is an hysteretic enzyme. The K(M) values of the purified His-tagged enzyme for NAD(+) and homoisocitrate were 1.09 mM and 73.7 μM, respectively, and k(cat) was 0.38 s(-1). Kinetic parameters determined for the wild-type CaHIcDH were very similar. The enzyme activity was inhibited by (2R,3S)-3-(p-carboxybenzyl)malate (CBMA), with IC(50) = 3.78 mM. CBMA demonstrated some moderate antifungal activity in minimal media that could be enhanced upon conversion of the enzyme inhibitor into its trimethyl ester derivative (TMCBMA). TMCBMA is the first reported antifungal for which an enzyme of the AAP was identified as a molecular target.
Collapse
Affiliation(s)
- Iwona Gabriel
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, Gdańsk, Poland.
| | | | | | | | | | | |
Collapse
|
8
|
Nango E, Yamamoto T, Kumasaka T, Eguchi T. Structure of Thermus thermophilus homoisocitrate dehydrogenase in complex with a designed inhibitor. J Biochem 2011; 150:607-14. [DOI: 10.1093/jb/mvr097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
9
|
Stokke R, Madern D, Fedøy AE, Karlsen S, Birkeland NK, Steen IH. Biochemical characterization of isocitrate dehydrogenase from Methylococcus capsulatus reveals a unique NAD+-dependent homotetrameric enzyme. Arch Microbiol 2006; 187:361-70. [PMID: 17160675 DOI: 10.1007/s00203-006-0200-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 10/31/2006] [Accepted: 11/17/2006] [Indexed: 11/30/2022]
Abstract
The gene encoding isocitrate dehydrogenase (IDH) of Methylococcus capsulatus (McIDH) was cloned and overexpressed in Escherichia coli. The purified enzyme was NAD+-dependent with a thermal optimum for activity at 55-60 degrees C and an apparent midpoint melting temperature (Tm) of 70 degrees C. Analytical ultracentrifugation (AUC) revealed a homotetrameric state, and McIDH thus represents the first homotetrameric NAD+-dependent IDH that has been characterized. Based on a structural alignment of McIDH and homotetrameric homoisocitrate dehydrogenase (HDH) from Thermus thermophilus (TtHDH), we identified the clasp-like domain of McIDH as a likely site for tetramerization. McIDH showed moreover, higher sequence identity (48%) to TtHDH than to previously characterized IDHs. Putative NAD+-IDHs with high sequence identity (48-57%) to McIDH were however identified in a variety of bacteria showing that NAD+-dependent IDHs are indeed widespread within the domain, Bacteria. Phylogenetic analysis including these new sequences revealed a close relationship with eukaryal allosterically regulated NAD+-IDH and the subfamily III of IDH was redefined to include bacterial NAD+- and NADP+-dependent IDHs. This apparent relationship suggests that the mitochondrial genes encoding NAD+-IDH are derived from the McIDH-like IDHs.
Collapse
Affiliation(s)
- Runar Stokke
- Department of Biology, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway
| | | | | | | | | | | |
Collapse
|
10
|
Karlström M, Steen IH, Madern D, Fedöy AE, Birkeland NK, Ladenstein R. The crystal structure of a hyperthermostable subfamily II isocitrate dehydrogenase from Thermotoga maritima. FEBS J 2006; 273:2851-68. [PMID: 16759231 DOI: 10.1111/j.1742-4658.2006.05298.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Isocitrate dehydrogenase (IDH) from the hyperthermophile Thermotoga maritima (TmIDH) catalyses NADP+- and metal-dependent oxidative decarboxylation of isocitrate to alpha-ketoglutarate. It belongs to the beta-decarboxylating dehydrogenase family and is the only hyperthermostable IDH identified within subfamily II. Furthermore, it is the only IDH that has been characterized as both dimeric and tetrameric in solution. We solved the crystal structure of the dimeric apo form of TmIDH at 2.2 A. The R-factor of the refined model was 18.5% (R(free) 22.4%). The conformation of the TmIDH structure was open and showed a domain rotation of 25-30 degrees compared with closed IDHs. The separate domains were found to be homologous to those of the mesophilic mammalian IDHs of subfamily II and were subjected to a comparative analysis in order to find differences that could explain the large difference in thermostability. Mutational studies revealed that stabilization of the N- and C-termini via long-range electrostatic interactions were important for the higher thermostability of TmIDH. Moreover, the number of intra- and intersubunit ion pairs was higher and the ionic networks were larger compared with the mesophilic IDHs. Other factors likely to confer higher stability in TmIDH were a less hydrophobic and more charged accessible surface, a more hydrophobic subunit interface, more hydrogen bonds per residue and a few loop deletions. The residues responsible for the binding of isocitrate and NADP+ were found to be highly conserved between TmIDH and the mammalian IDHs and it is likely that the reaction mechanism is the same.
Collapse
Affiliation(s)
- Mikael Karlström
- Center for Structural Biochemistry, Karolinska Institutet, NOVUM, Huddinge, Sweden.
| | | | | | | | | | | |
Collapse
|