1
|
Farinha CM, Matos P. Rab GTPases regulate the trafficking of channels and transporters - a focus on cystic fibrosis. Small GTPases 2017; 9:136-144. [PMID: 28463591 DOI: 10.1080/21541248.2017.1317700] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The amount of ion channels and transporters present at the plasma membrane is a crucial component of the overall regulation of ion transport. The number of channels present result from an intricate network of proteins that controls the late events of channel trafficking, such as endocytosis, recycling and targeting to lysosomal degradation. Small GTPases of the Rab family are key players in these processes thus contributing to regulation of fluid secretion and ion homeostasis. In epithelia, this involves mainly the balance between the chloride channel CFTR and the sodium channel ENaC, whose misfunction is a hallmark of cystic fibrosis - the commonest recessive disorder in Caucasians. Here, we review the role of GTPases in regulating trafficking of ion channels and transporters, comparing what is known for CFTR and ENaC with other types of channels. We also discuss how feasible would be to target the Rab machinery to handle a disorder such as CF.
Collapse
Affiliation(s)
- Carlos M Farinha
- a University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute , Campo Grande, Lisboa , Portugal
| | - Paulo Matos
- a University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute , Campo Grande, Lisboa , Portugal.,b Department of Human Genetics , National Health Institute 'Dr. Ricardo Jorge' , Av. Padre Cruz, Lisboa , Portugal
| |
Collapse
|
2
|
Liu C, Zhu LL, Xu SG, Ji HL, Li XM. ENaC/DEG in Tumor Development and Progression. J Cancer 2016; 7:1888-1891. [PMID: 27698929 PMCID: PMC5039373 DOI: 10.7150/jca.15693] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/29/2016] [Indexed: 11/05/2022] Open
Abstract
The epithelial Na+ channel/degenerin (ENaC/DEG) superfamily, including the acid-sensing ion channels (ASICs), is characterized by a high degree of similarity in structure but highly diverse in physiological functions. These ion channels have been shown to be important in several physiological functions of normal epithelial cells, including salt homeostasis, fluid transportation and cell mobility. There is increasing evidence suggesting that ENaC/DEG channels are critically engaged in cancer cell biology, such as proliferation, migration, invasion and apoptosis, playing a role in tumor development and progression. In this review, we will discuss recent studies showing the role of ENaC and ASIC channels in epithelial cells and its relationship to the oncogenesis.
Collapse
Affiliation(s)
- Cui Liu
- School of Nursing, Xinxiang Medical University, Xinxiang 453003, Henan Province, P. R. China
| | - Li-Li Zhu
- School of Nursing, Xinxiang Medical University, Xinxiang 453003, Henan Province, P. R. China
| | - Si-Guang Xu
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang 453003, Henan Province, P. R. China
| | - Hong-Long Ji
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang 453003, Henan Province, P. R. China
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
- Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Xiu-Min Li
- Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, P. R. China
- Department Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Henan Province, P. R. China
| |
Collapse
|
3
|
Chapter Five - Ubiquitination of Ion Channels and Transporters. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:161-223. [DOI: 10.1016/bs.pmbts.2016.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Reichhart N, Markowski M, Ishiyama S, Wagner A, Crespo-Garcia S, Schorb T, Ramalho JS, Milenkovic VM, Föckler R, Seabra MC, Strauß O. Rab27a GTPase modulates L-type Ca2+ channel function via interaction with the II-III linker of CaV1.3 subunit. Cell Signal 2015; 27:2231-40. [PMID: 26235199 DOI: 10.1016/j.cellsig.2015.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/28/2015] [Indexed: 12/31/2022]
Abstract
In a variety of cells, secretory processes require the activation of both Rab27a and L-type channels of the Ca(V)1.3 subtype. In the retinal pigment epithelium (RPE), Rab27a and Ca(V)1.3 channels regulate growth-factor secretion towards its basolateral side. Analysis of murine retina sections revealed a co-localization of both Rab27a and Ca(V)1.3 at the basolateral membrane of the RPE. Heterologously expressed Ca(V)1.3/β3/α2δ1 channels showed negatively shifted voltage-dependence and decreased current density of about 70% when co-expressed with Rab27a. However, co-localization analysis using α(5)β(1) integrin as a membrane marker revealed that Rab27a co-expression reduced the surface expression of Ca(V)1.3 only about 10%. Physical binding of heterologously expressed Rab27a with Ca(V)1.3 channels was shown by co-localization in immunocytochemistry as well as co-immunoprecipitation which was abolished after deletion of a MyRIP-homologous amino acid sequence at the II-III linker of the Ca(V)1.3 subunit. Rab27a over-expression in ARPE-19 cells positively shifted the voltage dependence, decreased current density of endogenous Ca(V)1.3 channels and reduced VEGF-A secretion. We show the first evidence of a direct functional modulation of an ion channel by Rab27a suggesting a new mechanism of Rab and ion channel interaction in the control of VEGF-A secretion in the RPE.
Collapse
Affiliation(s)
- Nadine Reichhart
- Experimental Ophthalmology, Eye Hospital, University Medical Center Regensburg, Regensburg, Germany; Experimental Ophthalmology, Eye Hospital, Charité University Medicine, Campus Virchow-Clinic, Berlin, Germany
| | - Magdalena Markowski
- Experimental Ophthalmology, Eye Hospital, Charité University Medicine, Campus Virchow-Clinic, Berlin, Germany
| | - Shimpei Ishiyama
- Experimental Ophthalmology, Eye Hospital, University Medical Center Regensburg, Regensburg, Germany
| | - Andrea Wagner
- Experimental Ophthalmology, Eye Hospital, University Medical Center Regensburg, Regensburg, Germany
| | - Sergio Crespo-Garcia
- Experimental Ophthalmology, Eye Hospital, Charité University Medicine, Campus Virchow-Clinic, Berlin, Germany
| | - Talitha Schorb
- Experimental Ophthalmology, Eye Hospital, Charité University Medicine, Campus Virchow-Clinic, Berlin, Germany
| | - José S Ramalho
- CEDOC, Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, Lisbon, Portugal
| | - Vladimir M Milenkovic
- Experimental Ophthalmology, Eye Hospital, University Medical Center Regensburg, Regensburg, Germany; Department of Psychiatry and Psychotherapy, Molecular Neuroscience, University of Regensburg, Germany
| | - Renate Föckler
- Experimental Ophthalmology, Eye Hospital, University Medical Center Regensburg, Regensburg, Germany
| | - Miguel C Seabra
- CEDOC, Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, Lisbon, Portugal
| | - Olaf Strauß
- Experimental Ophthalmology, Eye Hospital, University Medical Center Regensburg, Regensburg, Germany; Experimental Ophthalmology, Eye Hospital, Charité University Medicine, Campus Virchow-Clinic, Berlin, Germany.
| |
Collapse
|
5
|
Su H, Liu B, Fröhlich O, Ma H, Sands JM, Chen G. Small GTPase Rab14 down-regulates UT-A1 urea transport activity through enhanced clathrin-dependent endocytosis. FASEB J 2013; 27:4100-7. [PMID: 23796783 PMCID: PMC4046183 DOI: 10.1096/fj.13-229294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/11/2013] [Indexed: 11/11/2022]
Abstract
The UT-A1 urea transporter plays an important role in the urinary concentration mechanism. However, the molecular mechanisms regarding UT-A1 trafficking, endocytosis, and degradation are still unclear. In this study, we identified the small GTPase Rab14 as a binding partner to the C terminus of UT-A1 in a yeast 2-hybrid assay. Interestingly, UT-A1 binding is preferential for the GDP-bound inactive form of Rab14. Coinjection of Rab14 in Xenopus oocytes results in a decrease of UT-A1 urea transport activity, suggesting that Rab14 acts as a negative regulator of UT-A1. We subsequently found that Rab14 reduces the cell membrane expression of UT-A1, as evidenced by cell surface biotinylation. This effect is blocked by chlorpromazine, an inhibitor of the clathrin-mediated endocytic pathway, but not by filipin, an inhibitor of the caveolin-mediated endocytic pathway. In kidney, Rab14 is mainly expressed in IMCD epithelial cells with a pattern identical to UT-A1 expression. Consistent with its role in participating in clathrin-mediated endocytosis, Rab14 localizes in nonlipid raft microdomains and codistributes with Rab5, a marker of the clathrin-mediated endocytic pathway. Taken together, our study suggests that Rab14, as a novel UT-A1 partner, may have an important regulatory function for UT-A1 urea transport activity in the kidney inner medulla.
Collapse
Affiliation(s)
- Hua Su
- 1Department of Physiology, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Raghunathan S, Patel BM. Therapeutic implications of small interfering RNA in cardiovascular diseases. Fundam Clin Pharmacol 2012; 27:1-20. [DOI: 10.1111/j.1472-8206.2012.01051.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 04/17/2012] [Accepted: 06/01/2012] [Indexed: 01/07/2023]
Affiliation(s)
- Suchi Raghunathan
- Institute of Pharmacy; Nirma University; Ahmedabad; 382 481; Gujarat; India
| | - Bhoomika M. Patel
- Institute of Pharmacy; Nirma University; Ahmedabad; 382 481; Gujarat; India
| |
Collapse
|
7
|
Butterworth MB, Edinger RS, Silvis MR, Gallo LI, Liang X, Apodaca G, Frizzell RA, Fizzell RA, Johnson JP. Rab11b regulates the trafficking and recycling of the epithelial sodium channel (ENaC). Am J Physiol Renal Physiol 2012; 302:F581-90. [PMID: 22129970 PMCID: PMC3353647 DOI: 10.1152/ajprenal.00304.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 11/22/2011] [Indexed: 11/22/2022] Open
Abstract
Expression of the epithelial sodium channel (ENaC) at the apical membrane of cortical collecting duct (CCD) principal cells is modulated by regulated trafficking mediated by vesicle insertion and retrieval. Small GTPases are known to facilitate vesicle trafficking, recycling, and membrane fusion events; however, little is known about the specific Rab family members that modify ENaC surface density. Using a mouse CCD cell line that endogenously expresses ENaC (mpkCCD), the channel was localized to both Rab11a- and Rab11b-positive endosomes by immunoisolation and confocal fluorescent microscopy. Expression of a dominant negative (DN) form of Rab11a or Rab11b significantly reduced the basal and cAMP-stimulated ENaC-dependent sodium (Na(+)) transport. The greatest reduction in Na(+) transport was observed with the expression of DN-Rab11b. Furthermore, small interfering RNA-mediated knockdown of each Rab11 isoform demonstrated the requirement for Rab11b in ENaC surface expression. These data indicate that Rab11b, and to a lesser extent Rab11a, is involved in establishing the constitutive and cAMP-stimulated Na(+) transport in mpkCCD cells.
Collapse
Affiliation(s)
- Michael B Butterworth
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Cayouette S, Bousquet SM, Francoeur N, Dupré É, Monet M, Gagnon H, Guedri YB, Lavoie C, Boulay G. Involvement of Rab9 and Rab11 in the intracellular trafficking of TRPC6. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:805-12. [DOI: 10.1016/j.bbamcr.2010.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 03/10/2010] [Accepted: 03/16/2010] [Indexed: 01/30/2023]
|
9
|
Xue X, Jaulin F, Espenel C, Kreitzer G. PH-domain-dependent selective transport of p75 by kinesin-3 family motors in non-polarized MDCK cells. J Cell Sci 2010; 123:1732-41. [PMID: 20427314 DOI: 10.1242/jcs.056366] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A key process during epithelial polarization involves establishment of polarized transport routes from the Golgi to distinct apical and basolateral membrane domains. To do this, the machinery involved in selective trafficking must be regulated during differentiation. Our previous studies showed that KIF5B selectively transports vesicles containing p75-neurotrophin receptors to the apical membrane of polarized, but not non-polarized MDCK cells. To identify the kinesin(s) responsible for p75 trafficking in non-polarized MDCK cells we expressed KIF-specific dominant-negative constructs and assayed for changes in post-Golgi transport of p75 by time-lapse fluorescence microscopy. Overexpression of the tail domains of kinesin-3 family members that contain a C-terminal pleckstrin homology (PH) domain, KIF1A or KIF1Bbeta, attenuated the rate of p75 exit from the Golgi in non-polarized MDCK cells but not in polarized cells. Analysis of p75 post-Golgi transport in cells expressing KIF1A or KIF1Bbeta with their PH domains deleted revealed that vesicle transport by these motors depends on the PH domains. Furthermore, purified KIF1A and KIF1Bbeta tails interact with p75 vesicles and these interactions require the PH domain. Knockdown of canine KIF1A also inhibited exit of p75 from the Golgi, and this was rescued by expression of human KIF1A. Together these data demonstrate that post-Golgi transport of p75 in non-polarized epithelial cells is mediated by kinesin-3 family motors in a PH-domain-dependent process.
Collapse
Affiliation(s)
- Xiaoxiao Xue
- Department of Cell and Developmental Biology, Weill Medical College, Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
10
|
Butterworth MB. Regulation of the epithelial sodium channel (ENaC) by membrane trafficking. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1166-77. [PMID: 20347969 DOI: 10.1016/j.bbadis.2010.03.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/15/2010] [Accepted: 03/20/2010] [Indexed: 02/07/2023]
Abstract
The epithelial Na(+) channel (ENaC) is a major regulator of salt and water reabsorption in a number of epithelial tissues. Abnormalities in ENaC function have been directly linked to several human disease states including Liddle syndrome, psuedohypoaldosteronism, and cystic fibrosis and may be implicated in salt-sensitive hypertension. ENaC activity in epithelial cells is regulated both by open probability and channel number. This review focuses on the regulation of ENaC in the cells of the kidney cortical collecting duct by trafficking and recycling. The trafficking of ENaC is discussed in the broader context of epithelial cell vesicle trafficking. Well-characterized pathways and protein interactions elucidated using epithelial model cells are discussed, and the known overlap with ENaC regulation is highlighted. In following the life of ENaC in CCD epithelial cells the apical delivery, internalization, recycling, and destruction of the channel will be discussed. While a number of pathways presented still need to be linked to ENaC regulation and many details of the regulation of ENaC trafficking remain to be elucidated, knowledge of these mechanisms may provide further insights into ENaC activity in normal and disease states.
Collapse
Affiliation(s)
- Michael B Butterworth
- Department Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
11
|
Bomberger JM, Barnaby RL, Stanton BA. The deubiquitinating enzyme USP10 regulates the post-endocytic sorting of cystic fibrosis transmembrane conductance regulator in airway epithelial cells. J Biol Chem 2009; 284:18778-89. [PMID: 19398555 DOI: 10.1074/jbc.m109.001685] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ABC transporter superfamily, is a cyclic AMP-regulated chloride channel and a regulator of other ion channels and transporters. In epithelial cells CFTR is rapidly endocytosed from the apical plasma membrane and efficiently recycles back to the plasma membrane. Because ubiquitination targets endocytosed CFTR for degradation in the lysosome, deubiquitinating enzymes (DUBs) are likely to facilitate CFTR recycling. Accordingly, the aim of this study was to identify DUBs that regulate the post-endocytic sorting of CFTR. Using an activity-based chemical screen to identify active DUBs in human airway epithelial cells, we demonstrated that Ubiquitin Specific Protease-10 (USP10) is located in early endosomes and regulates the deubiquitination of CFTR and its trafficking in the post-endocytic compartment. small interference RNA-mediated knockdown of USP10 increased the amount of ubiquitinated CFTR and its degradation in lysosomes, and reduced both apical membrane CFTR and CFTR-mediated chloride secretion. Moreover, a dominant negative USP10 (USP10-C424A) increased the amount of ubiquitinated CFTR and its degradation, whereas overexpression of wt-USP10 decreased the amount of ubiquitinated CFTR and increased the abundance of CFTR. These studies demonstrate a novel function for USP10 in facilitating the deubiquitination of CFTR in early endosomes and thereby enhancing the endocytic recycling of CFTR.
Collapse
Affiliation(s)
- Jennifer M Bomberger
- Department of Physiology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| | | | | |
Collapse
|
12
|
Loffing J, Korbmacher C. Regulated sodium transport in the renal connecting tubule (CNT) via the epithelial sodium channel (ENaC). Pflugers Arch 2009; 458:111-35. [PMID: 19277701 DOI: 10.1007/s00424-009-0656-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 02/18/2009] [Accepted: 02/22/2009] [Indexed: 12/29/2022]
Abstract
The aldosterone-sensitive distal nephron (ASDN) includes the late distal convoluted tubule 2, the connecting tubule (CNT) and the collecting duct. The appropriate regulation of sodium (Na(+)) absorption in the ASDN is essential to precisely match urinary Na(+) excretion to dietary Na(+) intake whilst taking extra-renal Na(+) losses into account. There is increasing evidence that Na(+) transport in the CNT is of particular importance for the maintenance of body Na(+) balance and for the long-term control of extra-cellular fluid volume and arterial blood pressure. Na(+) transport in the CNT critically depends on the activity and abundance of the amiloride-sensitive epithelial sodium channel (ENaC) in the luminal membrane of the CNT cells. As a rate-limiting step for transepithelial Na(+) transport, ENaC is the main target of hormones (e.g. aldosterone, angiotensin II, vasopressin and insulin/insulin-like growth factor 1) to adjust transepithelial Na(+) transport in this tubular segment. In this review, we highlight the structural and functional properties of the CNT that contribute to the high Na(+) transport capacity of this segment. Moreover, we discuss some aspects of the complex pathways and molecular mechanisms involved in ENaC regulation by hormones, kinases, proteases and associated proteins that control its function. Whilst cultured cells and heterologous expression systems have greatly advanced our knowledge about some of these regulatory mechanisms, future studies will have to determine the relative importance of the various pathways in the native tubule and in particular in the CNT.
Collapse
|
13
|
Ko ML, Jian K, Shi L, Ko GYP. Phosphatidylinositol 3 kinase-Akt signaling serves as a circadian output in the retina. J Neurochem 2009; 108:1607-20. [PMID: 19166512 DOI: 10.1111/j.1471-4159.2009.05931.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The daily rhythm of L-type voltage-gated calcium channels (L-VGCCs) is part of the cellular mechanism underlying the circadian regulation of retina physiology and function. However, it is not completely understood how the circadian clock regulates L-VGCC current amplitudes without affecting channel gating properties. The phosphatidylinositol 3 kinase-protein kinase B (PI3K-Akt) signaling pathway has been implicated in many vital cellular functions especially in trophic factor-induced ion channel trafficking and membrane insertion. Here, we report that PI3K-Akt signaling participates in the circadian phase-dependent modulation of L-VGCCs. We found that there was a circadian regulation of Akt phosphorylation on Thr308 that peaked at night. Inhibition of PI3K or Akt significantly decreased L-VGCC current amplitudes and the expression of membrane-bound L-VGCCalpha1D subunit only at night but not during the subjective day. Photoreceptors transfected with a dominant negative Ras had significantly less expression of phosphorylated Akt and L-VGCCalpha1D subunit compared with non-transfected photoreceptors. Interestingly, both PI3K-Akt and extracellular signal-related kinase were downstream of Ras, and they appeared to be parallel and equally important pathways to regulate L-VGCC rhythms. Inhibition of either pathway abolished the L-VGCC rhythm indicating that there were multiple mechanisms involved in the circadian regulation of L-VGCC rhythms in retina photoreceptors.
Collapse
Affiliation(s)
- Michael L Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | | | | | | |
Collapse
|
14
|
Regulation of ENaC expression at the cell surface by Rab11. Biochem Biophys Res Commun 2008; 377:521-525. [PMID: 18926797 DOI: 10.1016/j.bbrc.2008.10.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 10/03/2008] [Indexed: 11/20/2022]
Abstract
The epithelial Na(+) channel (ENaC) is an essential channel responsible for Na(+) reabsorption. Coexpression of Rab11a and Rab3a small G proteins with ENaC results in a significant increase in channel activity. In contrast, coexpression of Rab5, Rab27a, and Arf-1 had no effect or slightly decreased ENaC activity. Inhibition of MEK with PD98059, Rho-kinase with Y27632 or PI3-kinase with LY294002 had no effect on ENaC activity in Rab11a-transfected CHO cells. Fluorescence imaging methods demonstrate that Rab11a colocalized with ENaC. Rab11a increases ENaC activity in an additive manner with dominant-negative dynamin, which is a GTPase responsible for endocytosis. Brefeldin A, an inhibitor of intracellular protein translocation, blocked the stimulatory action of Rab11a on ENaC activity. We conclude that ENaC channels, present on the apical plasma membrane, are being exchanged with channels from the intracellular pool in a Rab11-dependent manner.
Collapse
|
15
|
Bhalla V, Hallows KR. Mechanisms of ENaC regulation and clinical implications. J Am Soc Nephrol 2008; 19:1845-54. [PMID: 18753254 DOI: 10.1681/asn.2008020225] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The epithelial Na+ channel (ENaC) transports Na+ across tight epithelia, including the distal nephron. Different paradigms of ENaC regulation include extrinsic and intrinsic factors that affect the expression, single-channel properties, and intracellular trafficking of the channel. In particular, recent discoveries highlight new findings regarding proteolytic processing, ubiquitination, and recycling of the channel. Understanding the regulation of this channel is critical to the understanding of various clinical phenomena, including normal physiology and several diseases of kidney and lung epithelia, such as blood pressure (BP) control, edema, and airway fluid clearance. Significant progress has been achieved in this active field of research. Although ENaC is classically thought to be a mediator of BP and volume status through Na+ reabsorption in the distal nephron, several studies in animal models highlight important roles for ENaC in lung pathophysiology, including in cystic fibrosis. The purpose of this review is to highlight the various modes and mechanisms of ENaC regulation, with a focus on more recent studies and their clinical implications.
Collapse
Affiliation(s)
- Vivek Bhalla
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | | |
Collapse
|
16
|
Butterworth MB, Edinger RS, Frizzell RA, Johnson JP. Regulation of the epithelial sodium channel by membrane trafficking. Am J Physiol Renal Physiol 2008; 296:F10-24. [PMID: 18508877 DOI: 10.1152/ajprenal.90248.2008] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The epithelial Na(+) channel (ENaC) is a major regulator of salt and water reabsorption in a number of epithelial tissues. Abnormalities in ENaC function have been directly linked to several human disease states including Liddle's syndrome, psuedohypoaldosteronism, and cystic fibrosis and may be implicated in states as diverse as salt-sensitive hypertension, nephrosis, and pulmonary edema. ENaC activity in epithelial cells is highly regulated both by open probability and number of channels. Open probability is regulated by a number of factors, including proteolytic processing, while ENaC number is regulated by cellular trafficking. This review discusses current understanding of apical membrane delivery, cell surface stability, endocytosis, retrieval, and recycling of ENaC and the molecular partners that have so far been shown to participate in these processes. We review known sites and mechanisms of hormonal regulation of trafficking by aldosterone, vasopressin, and insulin. While many details of the regulation of ENaC trafficking remain to be elucidated, knowledge of these mechanisms may provide further insights into ENaC activity in normal and disease states.
Collapse
Affiliation(s)
- Michael B Butterworth
- Dept. of Cell Biology and Physiology, Univ. of Pittsburgh, S375 BST, 3500 Terrace St., Pittsburgh, PA 15261, USA.
| | | | | | | |
Collapse
|
17
|
Pochynyuk O, Stockand JD, Staruschenko A. Ion channel regulation by Ras, Rho, and Rab small GTPases. Exp Biol Med (Maywood) 2008; 232:1258-65. [PMID: 17959838 DOI: 10.3181/0703-mr-76] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Regulation of ion channels by heterotrimeric guanosine triphosphatases (GTPases), activated by heptathelical membrane receptors, has been the focus of several recent reviews. In comparison, regulation of ion channels by small monomeric G proteins, activated by cytoplasmic guanine nucleotide exchange factors, has been less well reviewed. Small G proteins, molecular switches that control the activity of cellular and membrane proteins, regulate a wide variety of cell functions. Many upstream regulators and downstream effectors of small G proteins now have been isolated. Their modes of activation and action are understood. Recently, ion channels were recognized as physiologically important effectors of small GTPases. Recent advances in understanding how small G proteins regulate the intracellular trafficking and activity of ion channels are discussed here. We aim to provide critical insight into physiological control of ion channel function and the biological consequences of regulation of these important proteins by small, monomeric G proteins.
Collapse
Affiliation(s)
- Oleh Pochynyuk
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | |
Collapse
|
18
|
Abstract
Plasma membrane voltage-sensitive ion channels classically have been associated with a variety of inherited diseases or "channelopathies" that range in the severity of symptoms from mild to lethal. Ion channels are found throughout the body and are responsible for facilitated diffusion of ions down the electrochemical gradient across cells membranes in various tissues. Voltage-sensitive ion channels open in response to changes in the membrane potential and are primarily found in excitable cells and tissues. Potassium, calcium, and sodium channels play critical roles in the development of major diseases, such as hyperkalemia, epilepsy, congenital myotonia and several cardiac arrythmias. Recently, cancer studies have begun to define the role of voltage-sensitive ion channels in the progression of cancer to a more malignant phenotype. In cancer, the increased expression or increased kinetics of voltage-sensitive ion channels is associated with an increasing malignant potential as evinced by their role in cell proliferation, migration and survival; as such, these channels are becoming the targets of significant drug development efforts to block or reduce voltage-sensitive ion channel activity in order to prevent or combat malignant disease.
Collapse
Affiliation(s)
- Jamie L Fiske
- Laboratory for Cancer Ontogeny and Therapeutics, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | |
Collapse
|
19
|
Saxena SK, Singh M, Kaur S, George C. Distinct domain-dependent effect of syntaxin1A on amiloride-sensitive sodium channel (ENaC) currents in HT-29 colonic epithelial cells. Int J Biol Sci 2006; 3:47-56. [PMID: 17200691 PMCID: PMC1657084 DOI: 10.7150/ijbs.3.47] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 10/30/2006] [Indexed: 11/06/2022] Open
Abstract
The amiloride-sensitive epithelial sodium channel (ENaC), a plasma membrane protein mediates sodium reabsorption in epithelial tissues, including the distal nephron and colon. Syntaxin1A, a trafficking protein of the t-SNARE family has been reported to inhibit ENaC in the Xenopus oocyte expression and artificial lipid bilayer systems. The present report describes the regulation of the epithelial sodium channel by syntaxin1A in a human cell line that is physiologically relevant as it expresses both components and also responds to aldosterone stimulation. In order to evaluate the physiological significance of syntaxin1A interaction with natively expressed ENaC, we over-expressed HT-29 with syntaxin1A constructs comprising various motifs. Unexpectedly, we observed the augmentation of amiloride-sensitive currents with wild-type syntaxin1A full-length construct (1-288) in this cell line. Both γENaC and neutralizing syntaxin1A antibodies blocked native expression as amiloride-sensitive sodium currents were inhibited while munc18-1 antibody reversed this effect. The coiled-coiled domain H3 (194-266) of syntaxin1A inhibited, however the inclusion of the transmembrane domain to this motif (194-288) augmented amiloride sensitive currents. More so, data suggest that ENaC interacts with multiple syntaxin1A domains, which differentially regulate channel function. This functional modulation is the consequence of the physical enhancement of ENaC at the cell surface in cells over-expressed with syntaxin(s). Our data further suggest that syntaxin1A up-regulates ENaC function by multiple mechanisms that include PKA, PLC, PI3 and MAP Kinase (p42/44) signaling systems. We propose that syntaxin1A possesses distinct inhibitory and stimulatory domains that interact with ENaC subunits, which critically determines the overall ENaC functionality/regulation under distinct physiological conditions.
Collapse
Affiliation(s)
- Sunil K Saxena
- Center for Cell and Molecular Biology, Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | | | | | | |
Collapse
|
20
|
Saxena SK, Kaur S. Regulation of epithelial ion channels by Rab GTPases. Biochem Biophys Res Commun 2006; 351:582-7. [PMID: 17084813 DOI: 10.1016/j.bbrc.2006.10.087] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 10/19/2006] [Indexed: 10/24/2022]
Abstract
Epithelial ion channels are crucial to many of life's processes and disruption of their functions can lead to several disorders. Cystic fibrosis, an autosomal recessive disorder, is caused by defects in the biosynthesis or function of the CFTR chloride channel. Similarly, mutations in certain ENaC genes leading to increased or reduced channel activity cause diseases such as Liddle's syndrome or PHA. In order for ion channel proteins to be functional they need to be expressed on the plasma membrane. Thus, molecules that modulate the trafficking of ion channels to and from the membrane are of utmost significance. Among the numerous factors that regulate their functioning is a family of small GTPases known as Rab proteins. While Rabs have always played a pivotal role in membrane trafficking, their diversity of functions and plethora of interacting partners have lately been brought to light. Recent studies reveal that multiple Rab isoforms physically interact with and/or modulate the activity of several ion channels. Rab proteins have the ability to serve as molecular switches and many of the ion channels are regulated differentially by the GTP- or GDP-bound Rab isoforms. This review examines the role of Rab GTPases in the trafficking of ion channels, including CFTR, ENaC, TRPV5/6, and aquaporins, based on recent evidence.
Collapse
Affiliation(s)
- Sunil K Saxena
- Center for Cell and Molecular Biology, Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | | |
Collapse
|
21
|
Saxena SK, Kaur S. Rab27a negatively regulates CFTR chloride channel function in colonic epithelia: Involvement of the effector proteins in the regulatory mechanism. Biochem Biophys Res Commun 2006; 346:259-67. [PMID: 16762324 DOI: 10.1016/j.bbrc.2006.05.102] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 05/17/2006] [Indexed: 10/24/2022]
Abstract
Cystic fibrosis, an autosomal recessive disorder, is caused by the disruption of biosynthesis or function of CFTR. CFTR regulatory mechanisms include channel transport to plasma membrane and protein-protein interactions. Rab proteins are small GTPases involved in vesicle transport, docking, and fusion. The colorectal epithelial HT-29 cells natively express CFTR and respond to cAMP with an increase in CFTR-mediated currents. DPC-inhibited currents could be completely eliminated with CFTR-specific SiRNA. Over-expression of Rab27a inhibited, while isoform specific SiRNA and Rab27a antibody stimulated CFTR-mediated currents in HT-29 cells. CFTR activity is inhibited both by Rab27a (Q78L) (constitutive active GTP-bound form of Rab27a) and Rab27a (T23N) (constitutive negative form that mimics the GDP-bound form). Rab27a mediated effects could be reversed by Rab27a-binding proteins, the synaptotagmin-like protein (SLP-5) and Munc13-4 accessory protein (a putative priming factor for exocytosis). The SLP reversal of Rab27a effect was restricted to C2A/C2B domains while the SHD motif imparted little more inhibition. The CFTR-mediated currents remain unaffected by Rab3 though SLP-5 appears to weakly bind it. The immunoprecipitation experiments suggest protein-protein interactions between Rab27a and CFTR. Rab27a appears to impair CFTR appearance at the cell surface by trapping CFTR in the intracellular compartments. Munc13-4 and SLP-5, on the other hand, limit Rab27a availability to CFTR, thus minimizing its effect on channel function. These observations decisively prove that Rab27a is involved in CFTR channel regulation through protein-protein interactions involving Munc13-4 and SLP-5 effector proteins, and thus could be a potential target for cystic fibrosis therapy.
Collapse
Affiliation(s)
- Sunil K Saxena
- Center for Cell and Molecular Biology, Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | | |
Collapse
|
22
|
Saxena SK, Horiuchi H, Fukuda M. Rab27a regulates epithelial sodium channel (ENaC) activity through synaptotagmin-like protein (SLP-5) and Munc13-4 effector mechanism. Biochem Biophys Res Commun 2006; 344:651-7. [PMID: 16630545 DOI: 10.1016/j.bbrc.2006.03.160] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2006] [Accepted: 03/27/2006] [Indexed: 02/08/2023]
Abstract
Liddle's syndrome (excessive absorption of sodium ions) and PHA-1 (pseudohypoaldosteronism type 1) with decreased sodium absorption are caused by the mutations in the amiloride-sensitive epithelial sodium channel ENaC. Rab proteins are small GTPases involved in vesicle transport, docking, and fusion. Earlier, we reported that Rab27a inhibits ENaC-mediated currents through protein-protein interaction in HT-29 cells. We hereby report that Rab27a-dependent inhibition is associated with the GTP/GDP status as constitutively active or GTPase-deficient mutant Q78L inhibits amiloride-sensitive currents whereas GDP-locked inactive mutant T23N showed no effect. In order to further explore the molecular mechanism of this regulation, we performed competitive assays with two Rab27a-binding proteins: synaptotagmin-like protein (SLP-5) and Munc13-4 (a putative priming factor for exocytosis). Both proteins eliminate negative modulation of Rab27a on ENaC function. The SLP-5 reversal of Rab27a effect was restricted to C-terminal C2A/C2B domains assigned for putative phospholipids-binding function while the Rab27a-binding SHD motif imparted higher inhibition. The ENaC-mediated currents remain unaffected by Rab27a though SLP-5 appears to strongly bind it. The immunoprecipitation experiments suggest that in the presence of excessive Munc13-4 and SLP-5 proteins, Rab27a interaction with ENaC is diminished. Munc13-4 and SLP-5 limit the Rab27a availability to ENaC, thus minimizing its effect on channel function. These observations decisively prove that Rab27a inhibits ENaC function through a complex mechanism that involves GTP/GDP status, and protein-protein interactions involving Munc13-4 and SLP-5 effector proteins.
Collapse
Affiliation(s)
- Sunil K Saxena
- Center for Cell and Molecular Biology, Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | | | | |
Collapse
|
23
|
Saxena SK, George CM, Pinskiy V, McConnell B. Epithelial sodium channel is regulated by SNAP-23/syntaxin 1A interplay. Biochem Biophys Res Commun 2006; 343:1279-85. [PMID: 16581026 DOI: 10.1016/j.bbrc.2006.03.093] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Accepted: 03/16/2006] [Indexed: 11/24/2022]
Abstract
Sodium-selective amiloride-sensitive epithelial channel (ENaC) located in the apical membrane is involved in the reabsorption of sodium in tight epithelia. The soluble N-ethylmaleimide-sensitive attachment receptors (SNAREs) mediate vesicle trafficking in a variety of cell systems. Syntaxin (a t-SNARE) has been shown to interact with and functionally regulate a number of ion channels including ENaC. In this study, we investigated the role of SNAP-23, another SNARE protein, on ENaC activity in the HT-29 colonic epithelial cell system and Xenopus oocytes. Recording of amiloride-sensitive currents in both systems suggest that SNAP-23 modulates channel function, though a much higher concentration is required to inhibit ENaC in Xenopus oocytes. The introduction of Botulinum toxin A (a neurotoxin which cleaves SNAP-23), but not Botulinum toxin B or heat-inactivated Botulinum toxin A, reversed the inhibitory effect of SNAP-23 on amiloride-sensitive currents. However, syntaxin 1A and SNAP-23 combined portray a complex scenario that suggests that this channel interacts within a quaternary complex. Synaptotagmin expression neither interacts with, nor showed any effect on amiloride-sensitive currents when co-expressed with ENaC. Pull down assays suggest mild interaction between ENaC and SNAP-23, which gets stronger in the presence of syntaxin 1A. Data further suggest that SNAP-23 possibly interacts with the N-terminal alphaENaC. These functional and biochemical approaches provide evidence for a complex relationship between ENaC and the exocytotic machinery. Our data suggest that SNARE protein interplay defines the fine regulation of sodium channel function.
Collapse
Affiliation(s)
- Sunil K Saxena
- Center for Cell and Molecular Biology, Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | | | | | | |
Collapse
|
24
|
Saxena SK, Kaur S, George C. Rab4GTPase modulates CFTR function by impairing channel expression at plasma membrane. Biochem Biophys Res Commun 2006; 341:184-91. [PMID: 16413502 DOI: 10.1016/j.bbrc.2005.12.170] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 12/24/2005] [Indexed: 10/25/2022]
Abstract
Cystic fibrosis (CF), an autosomal recessive disorder, is caused by the disruption of biosynthesis or the function of a membrane cAMP-activated chloride channel, CFTR. CFTR regulatory mechanisms include recruitment of channel proteins to the cell surface from intracellular pools and by protein-protein interactions. Rab proteins are small GTPases involved in regulated trafficking controlling vesicle docking and fusion. Rab4 controls recycling events from endosome to the plasma membrane, fusion, and degradation. The colorectal cell line HT-29 natively expresses CFTR and responds to cAMP stimulation with an increase in CFTR-mediated currents. Rab4 over-expression in HT-29 cells inhibits both basal and cAMP-stimulated CFTR-mediated currents. GTPase-deficient Rab4Q67L and GDP locked Rab4S22N both inhibit channel activity, which appears characteristically different. Active status of Rab4 was confirmed by GTP overlay assay, while its expression was verified by Western blotting. The pull-down and immunoprecipitation experiments suggest that Rab4 physically interacts with CFTR through protein-protein interaction. Biotinylation with cell impermeant NHS-Sulfo-SS-Biotin implies that Rab4 impairs CFTR expression at cell surface. The enhanced cytosolic CFTR indicates that Rab4 expression restrains CFTR appearance at the cell membrane. The study suggests that Rab4 regulates the channel through multiple mechanisms that include protein-protein interaction, GTP/GDP exchange, and channel protein trafficking. We propose that Rab4 is a dynamic molecule with a significant role in CFTR function.
Collapse
Affiliation(s)
- Sunil K Saxena
- Center for Cell and Molecular Biology, Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | | | | |
Collapse
|
25
|
Saxena SK, Singh M, Shibata H, Kaur S, George C. Rab4 GTP/GDP modulates amiloride-sensitive sodium channel (ENaC) function in colonic epithelia. Biochem Biophys Res Commun 2005; 340:726-33. [PMID: 16389071 DOI: 10.1016/j.bbrc.2005.12.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 12/06/2005] [Indexed: 01/02/2023]
Abstract
The sodium-selective amiloride-sensitive epithelial sodium channel (ENaC) mediates electrogenic sodium re-absorption in tight epithelia. ENaC expression at the plasma membrane requires regulated transport, processing, and macromolecular assembly of subunit proteins in a defined and highly compartmentalized manner. Ras-related Rab GTPases monitor these processes in a highly regulated sequence of events. In order to evaluate the role of Rab proteins in ENaC function, Rab4 wild-type (WT), the GTPase-deficient mutant Rab4Q67L, and the dominant negative GDP-locked mutant Rab4S22N were over-expressed in the colon cancer cell line, HT-29 and amiloride-sensitive currents were recorded. Rab4 over-expression inhibited amiloride-sensitive currents. The effect was reversed by introducing Rab4-neutralizing antibody and Rab4 specific SiRNA. The GDP-locked Rab4 mutant inhibited, while GTPase-deficient mutant moderately stimulated amiloride-sensitive currents. Active status of Rab4 was confirmed by GTP overlay assay, while its expression was verified by Western blotting. Immunoprecipitation and pull-down assay suggest protein-protein interaction between Rab4 and ENaC. In addition, the functional modulation coincides with concomitant changes in ENaC expression at the cell surface and in intracellular pool. We propose that Rab4 is a critical element that regulates ENaC function by mechanisms that include GTP-GDP status, recycling, and expression level. Our observations imply that channel expression in apical membranes of epithelial cell system incorporates RabGTPase as an essential determinant of channel function and adds an exciting paradigm to ENaC therapeutics.
Collapse
Affiliation(s)
- Sunil K Saxena
- Center for Cell and Molecular Biology, Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | | | | | | | | |
Collapse
|