1
|
Anerillas C, Perramon-Güell A, Altés G, Cuesta S, Vaquero M, Olomí A, Rodríguez-Barrueco R, Llobet-Navàs D, Egea J, Dolcet X, Yeramian A, Encinas M. Sprouty1 is a broad mediator of cellular senescence. Cell Death Dis 2024; 15:296. [PMID: 38670941 PMCID: PMC11053034 DOI: 10.1038/s41419-024-06689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Genes of the Sprouty family (Spry1-4) restrain signaling by certain receptor tyrosine kinases. Consequently, these genes participate in several developmental processes and function as tumor suppressors in adult life. Despite these important roles, the biology of this family of genes still remains obscure. Here we show that Sprouty proteins are general mediators of cellular senescence. Induction of cellular senescence by several triggers in vitro correlates with upregulation of Sprouty protein levels. More importantly, overexpression of Sprouty genes is sufficient to cause premature cellular senescence, via a conserved N-terminal tyrosine (Tyrosine 53 of Sprouty1). Accordingly, fibroblasts from knockin animals lacking that tyrosine escape replicative senescence. In vivo, heterozygous knockin mice display delayed induction of cellular senescence during cutaneous wound healing and upon chemotherapy-induced cellular senescence. Unlike other functions of this family of genes, induction of cellular senescence appears to be independent of activation of the ERK1/2 pathway. Instead, we show that Sprouty proteins induce cellular senescence upstream of the p38 pathway in these in vitro and in vivo paradigms.
Collapse
Affiliation(s)
- Carlos Anerillas
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain.
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, USA.
- Homeostasis de tejidos y órganos program, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Autónoma de Madrid, Madrid, Spain.
| | - Aida Perramon-Güell
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
| | - Gisela Altés
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
| | - Sara Cuesta
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
- Fundación de Investigación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Novena Planta, Investigación, Av Ana de Viya, 21, Cádiz, Spain
| | - Marta Vaquero
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
- Hospital Universitari Arnau de Vilanova, Rovira Roure, 80, Lleida, Spain
| | - Anna Olomí
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
| | - Ruth Rodríguez-Barrueco
- Laboratory of Precision Medicine, Oncobell Program. Bellvitge Biomedical Research Institute (IDIBELL), Gran via De l'Hospitalet, Barcelona, Spain
| | - David Llobet-Navàs
- Laboratory of Precision Medicine, Oncobell Program. Bellvitge Biomedical Research Institute (IDIBELL), Gran via De l'Hospitalet, Barcelona, Spain
| | - Joaquim Egea
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
| | - Xavi Dolcet
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
| | - Andrée Yeramian
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
| | - Mario Encinas
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain.
| |
Collapse
|
2
|
Shendy NAM, Broadhurst AL, Shoemaker K, Read R, Abell AN. MAP3K4 kinase activity dependent control of mouse gonadal sex determination†. Biol Reprod 2021; 105:491-502. [PMID: 33912929 DOI: 10.1093/biolre/ioab083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/22/2021] [Accepted: 04/21/2021] [Indexed: 01/24/2023] Open
Abstract
Sex determination requires the commitment of bipotential gonads to either a testis or an ovarian fate. Gene deletion of the kinase Map3k4 results in gonadal sex reversal in XY mice, and transgenic re-expression of Map3k4 rescues the sex reversal phenotype. Map3k4 encodes a large, multi-functional protein possessing a kinase domain and several, additional protein-protein interaction domains. Although MAP3K4 plays a critical role in male gonadal sex determination, it is unknown if the kinase activity of MAP3K4 is required. Here, we use mice expressing full-length, kinase-inactive MAP3K4 from the endogenous Map3k4 locus to examine the requirement of MAP3K4 kinase activity in sex determination. Although homozygous kinase-inactivation of MAP3K4 (Map3k4KI/KI) is lethal, a small fraction survive to adulthood. We show Map3k4KI/KI adults exhibit a 4:1 female-biased sex ratio. Many adult Map3k4KI/KI phenotypic females have a Y chromosome. XY Map3k4KI/KI adults with sex reversal display female mating behavior, but do not give rise to offspring. Reproductive organs are overtly female, but there is a broad spectrum of ovarian phenotypes, including ovarian absence, primitive ovaries, reduced ovarian size, and ovaries having follicles in all stages of development. Further, XY Map3k4KI/KI adults are smaller than either male or female Map3k4WT/WT mice. Examination of the critical stage of gonadal sex determination at E11.5 shows that loss of MAP3K4 kinase activity results in the loss of Sry expression in XY Map3k4KI/KI embryos, indicating embryonic male gonadal sex reversal. Together, these findings demonstrate the essential role for kinase activity of MAP3K4 in male gonadal sex determination.
Collapse
Affiliation(s)
- Noha A M Shendy
- Department of Biological Sciences, University of Memphis, Memphis, TN, USA.,Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Amber L Broadhurst
- Department of Biological Sciences, University of Memphis, Memphis, TN, USA
| | - Kristin Shoemaker
- Department of Biological Sciences, University of Memphis, Memphis, TN, USA
| | - Robert Read
- Department of Biological Sciences, University of Memphis, Memphis, TN, USA
| | - Amy N Abell
- Department of Biological Sciences, University of Memphis, Memphis, TN, USA
| |
Collapse
|
3
|
Jia J, Sun J, Liao W, Qin L, Su K, He Y, Zhang J, Yang R, Zhang Z, Sun Y. Knockdown of long non‑coding RNA AK094629 attenuates the interleukin‑1β induced expression of interleukin‑6 in synovium‑derived mesenchymal stem cells from the temporomandibular joint. Mol Med Rep 2020; 22:1195-1204. [PMID: 32468015 PMCID: PMC7339665 DOI: 10.3892/mmr.2020.11193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Interleukin (IL)‑1β is a key promotor in the pathogenesis of temporomandibular joint osteoarthritis. Differentiation of stem cells to cartilage is a crucial repair mechanism of articular cartilage damage, and IL‑1β has been reported to impede the differentiation by upregulating the secretion of IL‑6, an important inflammatory factor. Long non‑coding RNAs (lncRNAs) regulate a number of physiological and pathological processes, but whether lncRNA AK094629 contributes to the IL‑1β mediated induction of inflammation remains unclear. Therefore, the aim of the present study was to investigate the effect of AK094629 on IL‑1β‑induced IL‑6 expression in synovial‑derived mesenchymal stem cells (SMSCs) of the temporomandibular joints. The results of the present study demonstrated that the expression of AK094629 in the synovial tissue of patients with osteoarthritis was positively correlated with IL‑1β. In addition, IL‑1β upregulated the expression of AK094629 in the SMSCs in vitro, and AK094629 knockdown inhibited the IL‑1β mediated upregulation of IL‑6. The present study also demonstrated that AK094629 knockdown downregulated the expression of the mitogen‑activated protein kinase kinase kinase 4 (MAP3K4), which is upregulated by IL‑1β, whereas knockdown of MAP3K4 did not affect the expression of AK094629, but reversed the upregulation of IL‑6 in SMSCs. In conclusion, AK094629 knockdown attenuated the expression of IL‑1β‑regulated IL‑6 in the SMSCs of the temporomandibular joint by inhibiting MAP3K4. Therefore, AK094629 may be a potential novel therapeutic target for the treatment of temporomandibular joint osteoarthritis.
Collapse
Affiliation(s)
- Jiaxin Jia
- Guangdong Provincial Key Laboratory of Stomatology, Stomatology Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Jiadong Sun
- Guangdong Provincial Key Laboratory of Stomatology, Stomatology Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Wenting Liao
- Guangdong Provincial Key Laboratory of Stomatology, Stomatology Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Lingling Qin
- Guangdong Provincial Key Laboratory of Stomatology, Stomatology Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Kai Su
- Guangdong Provincial Key Laboratory of Stomatology, Stomatology Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yiqing He
- Guangdong Provincial Key Laboratory of Stomatology, Stomatology Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Jiaqiang Zhang
- Guangdong Provincial Key Laboratory of Stomatology, Stomatology Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Ronchung Yang
- Guangdong Provincial Key Laboratory of Stomatology, Stomatology Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Zhiguang Zhang
- Guangdong Provincial Key Laboratory of Stomatology, Stomatology Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yangpeng Sun
- Guangdong Provincial Key Laboratory of Stomatology, Stomatology Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
4
|
Salces-Ortiz J, Vargas-Chavez C, Guio L, Rech GE, González J. Transposable elements contribute to the genomic response to insecticides in Drosophila melanogaster. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190341. [PMID: 32075557 PMCID: PMC7061994 DOI: 10.1098/rstb.2019.0341] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Most of the genotype–phenotype analyses to date have largely centred attention on single nucleotide polymorphisms. However, transposable element (TE) insertions have arisen as a plausible addition to the study of the genotypic–phenotypic link because of to their role in genome function and evolution. In this work, we investigate the contribution of TE insertions to the regulation of gene expression in response to insecticides. We exposed four Drosophila melanogaster strains to malathion, a commonly used organophosphate insecticide. By combining information from different approaches, including RNA-seq and ATAC-seq, we found that TEs can contribute to the regulation of gene expression under insecticide exposure by rewiring cis-regulatory networks. This article is part of a discussion meeting issue ‘Crossroads between transposons and gene regulation’.
Collapse
Affiliation(s)
- Judit Salces-Ortiz
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Carlos Vargas-Chavez
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Lain Guio
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Gabriel E Rech
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Josefa González
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
5
|
Barata AG, Dick TP. A role for peroxiredoxins in H 2O 2- and MEKK-dependent activation of the p38 signaling pathway. Redox Biol 2020; 28:101340. [PMID: 31629169 PMCID: PMC6807362 DOI: 10.1016/j.redox.2019.101340] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 12/30/2022] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) signaling pathway plays an important role in the cellular response to various stresses and its deregulation accompanies pathological conditions such as cancer and chronic inflammation. Hydrogen peroxide (H2O2) is a well-established activator of the p38 MAPK signaling pathway. However, the mechanisms of H2O2-induced p38 activation are not yet fully understood. In Drosophila cells, we find that H2O2-induced activation of p38 depends on the MAPK kinase kinase (MAP3K) Mekk1. In line with the emerging role of peroxiredoxins as H2O2 sensors and signal transmitters we observe an H2O2-dependent interaction between Mekk1 and the cytosolic peroxiredoxin of Drosophila, Jafrac1. In human cells, MEKK4 (the homologue of Mekk1) and peroxiredoxin-2 (Prx2) interact in a similar manner, suggesting an evolutionarily conserved mechanism. In both organisms, H2O2 induces transient disulfide-linked conjugates between the MAP3K and a typical 2-Cys peroxiredoxin. We propose that these conjugates represent the relaying of oxidative equivalents from H2O2 to the MAP3K and that the oxidation of Mekk1/MEKK4 leads to the downstream activation of p38 MAPK. Indeed, the depletion of cytosolic 2-Cys peroxiredoxins in human cells diminished H2O2-induced activation of p38 MAPK.
Collapse
Affiliation(s)
- Ana G Barata
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
6
|
Cruz-Rivera YE, Perez-Morales J, Santiago YM, Gonzalez VM, Morales L, Cabrera-Rios M, Isaza CE. A Selection of Important Genes and Their Correlated Behavior in Alzheimer's Disease. J Alzheimers Dis 2019; 65:193-205. [PMID: 30040709 PMCID: PMC6087431 DOI: 10.3233/jad-170799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In 2017, approximately 5 million Americans were living with Alzheimer’s disease (AD), and it is estimated that by 2050 this number could increase to 16 million. In this study, we apply mathematical optimization to approach microarray analysis to detect differentially expressed genes and determine the most correlated structure among their expression changes. The analysis of GSE4757 microarray dataset, which compares expression between AD neurons without neurofibrillary tangles (controls) and with neurofibrillary tangles (cases), was casted as a multiple criteria optimization (MCO) problem. Through the analysis it was possible to determine a series of Pareto efficient frontiers to find the most differentially expressed genes, which are here proposed as potential AD biomarkers. The Traveling Sales Problem (TSP) model was used to find the cyclical path of maximal correlation between the expression changes among the genes deemed important from the previous stage. This leads to a structure capable of guiding biological exploration with enhanced precision and repeatability. Ten genes were selected (FTL, GFAP, HNRNPA3, COX1, ND2, ND3, ND4, NUCKS1, RPL41, and RPS10) and their most correlated cyclic structure was found in our analyses. The biological functions of their products were found to be linked to inflammation and neurodegenerative diseases and some of them had not been reported for AD before. The TSP path connects genes coding for mitochondrial electron transfer proteins. Some of these proteins are closely related to other electron transport proteins already reported as important for AD.
Collapse
Affiliation(s)
- Yazeli E Cruz-Rivera
- The Applied Optimization Group/Department of Industrial Engineering, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| | - Jaileene Perez-Morales
- Department of Basic Science-Biochemistry Division, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Yaritza M Santiago
- The Applied Optimization Group/Department of Industrial Engineering, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| | - Valerie M Gonzalez
- The Applied Optimization Group/Department of Industrial Engineering, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| | - Luisa Morales
- Public Health Program, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Mauricio Cabrera-Rios
- The Applied Optimization Group/Department of Industrial Engineering, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| | - Clara E Isaza
- The Applied Optimization Group/Department of Industrial Engineering, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico.,Public Health Program, Ponce Health Sciences University, Ponce, Puerto Rico
| |
Collapse
|
7
|
Rak MA, Buehler J, Zeltzer S, Reitsma J, Molina B, Terhune S, Goodrum F. Human Cytomegalovirus UL135 Interacts with Host Adaptor Proteins To Regulate Epidermal Growth Factor Receptor and Reactivation from Latency. J Virol 2018; 92:e00919-18. [PMID: 30089695 PMCID: PMC6158428 DOI: 10.1128/jvi.00919-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/27/2018] [Indexed: 01/03/2023] Open
Abstract
Human cytomegalovirus, HCMV, is a betaherpesvirus that establishes a lifelong latent infection in its host that is marked by recurrent episodes of reactivation. The molecular mechanisms by which the virus and host regulate entry into and exit from latency remain poorly understood. We have previously reported that UL135 is critical for reactivation, functioning in part by overcoming suppressive effects of the latency determinant UL138 We have demonstrated a role for UL135 in diminishing cell surface levels and targeting epidermal growth factor receptor (EGFR) for turnover. The attenuation of EGFR signaling promotes HCMV reactivation in combination with cellular differentiation. In this study, we sought to define the mechanisms by which UL135 functions in regulating EGFR turnover and viral reactivation. Screens to identify proteins interacting with pUL135 identified two host adaptor proteins, CIN85 and Abi-1, with overlapping activities in regulating EGFR levels in the cell. We mapped the amino acids in pUL135 necessary for interaction with Abi-1 and CIN85 and generated recombinant viruses expressing variants of pUL135 that do not interact with CIN85 or Abi-1. These recombinant viruses replicate in fibroblasts but are defective for reactivation in an experimental model for latency using primary CD34+ hematopoietic progenitor cells (HPCs). These UL135 variants have altered trafficking of EGFR and are defective in targeting EGFR for turnover. These studies demonstrate a requirement for pUL135 interactions with Abi-1 and CIN85 for regulation of EGFR and mechanistically link the regulation of EGFR to reactivation.IMPORTANCE Human cytomegalovirus (HCMV) establishes a lifelong latent infection in the human host. While the infection is typically asymptomatic in healthy individuals, HCMV infection poses life-threatening disease risk in immunocompromised individuals and is the leading cause of birth defects. Understanding how HCMV controls the lifelong latent infection and reactivation of replication from latency is critical to developing strategies to control HCMV disease. Here, we identify the host factors targeted by a viral protein that is required for reactivation. We define the importance of this virus-host interaction in reactivation from latency, providing new insights into the molecular underpinnings of HCMV latency and reactivation.
Collapse
Affiliation(s)
- Michael A Rak
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Jason Buehler
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Sebastian Zeltzer
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Justin Reitsma
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Belen Molina
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| | - Scott Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Felicia Goodrum
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- University of Arizona Center on Aging, Tucson, Arizona, USA
| |
Collapse
|
8
|
Nagai K, Doi T. CIN85: Implications for the Development of Proteinuria in Diabetic Nephropathy. Diabetes 2016; 65:3532-3534. [PMID: 27879403 DOI: 10.2337/dbi16-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kojiro Nagai
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Toshio Doi
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
9
|
Yang LX, Gao Q, Shi JY, Wang ZC, Zhang Y, Gao PT, Wang XY, Shi YH, Ke AW, Shi GM, Cai JB, Liu WR, Duan M, Zhao YJ, Ji Y, Gao DM, Zhu K, Zhou J, Qiu SJ, Cao Y, Tang QQ, Fan J. Mitogen-activated protein kinase kinase kinase 4 deficiency in intrahepatic cholangiocarcinoma leads to invasive growth and epithelial-mesenchymal transition. Hepatology 2015; 62:1804-1816. [PMID: 26340507 DOI: 10.1002/hep.28149] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/02/2015] [Indexed: 12/15/2022]
Abstract
UNLABELLED The molecular pathogenesis of intrahepatic cholangiocarcinoma (iCCA) is poorly understood, and its incidence continues to increase worldwide. Deficiency of mitogen-activated protein kinase kinase kinase 4 (MAP3K4) has been reported to induce the epithelial-mesenchymal transition (EMT) process of placental and embryonic development, yet its role in human cancer remains unknown. MAP3K4 has somatic mutation in iCCA so we sequenced all exons of MAP3K4 in 124 iCCA patients. We identified nine somatic mutations in 10 (8.06%) patients, especially in those with lymph node metastasis and intrahepatic metastasis. We also showed that messenger RNA and protein levels of MAP3K4 were significantly reduced in iCCA versus paired nontumor tissues. Furthermore, knockdown of MAP3K4 in cholangiocarcinoma cells markedly enhanced cell proliferation and invasiveness in vitro and tumor progression in vivo, accompanied by a typical EMT process. In contrast, overexpression of MAP3K4 in cholangiocarcinoma cells obviously reversed EMT and inhibited cell invasion. Mechanistically, MAP3K4 functioned as a negative regulator of EMT in iCCA by antagonizing the activity of the p38/nuclear factor κB/snail pathway. We found that the tumor-inhibitory effect of MAP3K4 was abolished by inactivating mutations. Clinically, a tissue microarray study containing 322 iCCA samples from patients revealed that low MAP3K4 expression in iCCA positively correlated with aggressive tumor characteristics, such as vascular invasion and intrahepatic or lymph node metastases, and was independently associated with poor survival and increased recurrence after curative surgery. CONCLUSIONS MAP3K4, significantly down-regulated, frequently mutated, and potently regulating the EMT process in iCCA, was a putative tumor suppressor of iCCA.
Collapse
Affiliation(s)
- Liu-Xiao Yang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
| | - Qiang Gao
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
| | - Jie-Yi Shi
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
| | - Zhi-Chao Wang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
| | - Yong Zhang
- Department of General Surgery, Zhongshang Hospital (South), Fudan University, Shanghai, P.R. China
| | - Ping-Ting Gao
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
| | - Xiao-Ying Wang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
| | - Ying-Hong Shi
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
| | - Ai-Wu Ke
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
| | - Guo-Ming Shi
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
| | - Jia-Bin Cai
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
| | - Wei-Ren Liu
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
| | - Meng Duan
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
| | - Ying-Jun Zhao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Dong-Mei Gao
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
| | - Kai Zhu
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
- Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Shuang-Jian Qiu
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
| | - Ya Cao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, P.R. China
| | - Qi-Qun Tang
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, P.R. China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
- Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| |
Collapse
|
10
|
Yakymovych I, Yakymovych M, Zang G, Mu Y, Bergh A, Landström M, Heldin CH. CIN85 modulates TGFβ signaling by promoting the presentation of TGFβ receptors on the cell surface. J Cell Biol 2015; 210:319-32. [PMID: 26169354 PMCID: PMC4508896 DOI: 10.1083/jcb.201411025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 06/03/2015] [Indexed: 11/22/2022] Open
Abstract
Members of the transforming growth factor β (TGFβ) family initiate cellular responses by binding to TGFβ receptor type II (TβRII) and type I (TβRI) serine/threonine kinases, whereby Smad2 and Smad3 are phosphorylated and activated, promoting their association with Smad4. We report here that TβRI interacts with the SH3 domains of the adaptor protein CIN85 in response to TGFβ stimulation in a TRAF6-dependent manner. Small interfering RNA-mediated knockdown of CIN85 resulted in accumulation of TβRI in intracellular compartments and diminished TGFβ-stimulated Smad2 phosphorylation. Overexpression of CIN85 instead increased the amount of TβRI at the cell surface. This effect was inhibited by a dominant-negative mutant of Rab11, suggesting that CIN85 promoted recycling of TGFβ receptors. CIN85 enhanced TGFβ-stimulated Smad2 phosphorylation, transcriptional responses, and cell migration. CIN85 expression correlated with the degree of malignancy of prostate cancers. Collectively, our results reveal that CIN85 promotes recycling of TGFβ receptors and thereby positively regulates TGFβ signaling.
Collapse
Affiliation(s)
- Ihor Yakymovych
- Science for Life Laboratory, Ludwig Institute for Cancer Research Ltd., Uppsala University, SE-75124 Uppsala, Sweden
| | - Mariya Yakymovych
- Science for Life Laboratory, Ludwig Institute for Cancer Research Ltd., Uppsala University, SE-75124 Uppsala, Sweden
| | - Guangxiang Zang
- Department of Medical Biosciences and Pathology, Umeå University, SE-90185 Umeå, Sweden
| | - Yabing Mu
- Department of Medical Biosciences and Pathology, Umeå University, SE-90185 Umeå, Sweden
| | - Anders Bergh
- Department of Medical Biosciences and Pathology, Umeå University, SE-90185 Umeå, Sweden
| | - Maréne Landström
- Science for Life Laboratory, Ludwig Institute for Cancer Research Ltd., Uppsala University, SE-75124 Uppsala, Sweden Department of Medical Biosciences and Pathology, Umeå University, SE-90185 Umeå, Sweden
| | - Carl-Henrik Heldin
- Science for Life Laboratory, Ludwig Institute for Cancer Research Ltd., Uppsala University, SE-75124 Uppsala, Sweden
| |
Collapse
|
11
|
Sollome JJ, Thavathiru E, Camenisch TD, Vaillancourt RR. HER2/HER3 regulates extracellular acidification and cell migration through MTK1 (MEKK4). Cell Signal 2013; 26:70-82. [PMID: 24036211 DOI: 10.1016/j.cellsig.2013.08.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 08/30/2013] [Indexed: 12/13/2022]
Abstract
Human MAP3K4 (MTK1) functions upstream of mitogen activated protein kinases (MAPKs). In this study we show MTK1 is required for human epidermal growth factor receptor 2/3 (HER2/HER3)-heregulin beta1 (HRG) induced cell migration in MCF-7 breast cancer cells. We demonstrate that HRG stimulation leads to association of MTK1 with activated HER3 in MCF-7 and T-47D breast cancer cells. Activated HER3 association with MTK1 is dependent on HER2 activation and is decreased by pre-treatment with the HER2 inhibitor, lapatinib. Moreover, we also identify the actin interacting region (AIR) on MTK1. Disruption of actin cytoskeletal polymerization with cytochalasin D inhibited HRG induced MTK1/HER3 association. Additionally, HRG stimulation leads to extracellular acidification that is independent of cellular proliferation. HRG induced extracellular acidification is significantly inhibited when MTK1 is knocked down in MCF-7 cells. Similarly, pre-treatment with lapatinib significantly decreased HRG induced extracellular acidification. Extracellular acidification is linked with cancer cell migration. We performed scratch assays that show HRG induced cell migration in MCF-7 cells. Knockdown of MTK1 significantly inhibited HRG induced cell migration. Furthermore, pre-treatment with lapatinib also significantly decreased cell migration. Cell migration is required for cancer cell metastasis, which is the major cause of cancer patient mortality. We identify MTK1 in the HER2/HER3-HRG mediated extracellular acidification and cell migration pathway in breast cancer cells.
Collapse
Affiliation(s)
- James J Sollome
- The Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
12
|
Kim J, Kang D, Sun BK, Kim JH, Song JJ. TRAIL/MEKK4/p38/HSP27/Akt survival network is biphasically modulated by the Src/CIN85/c-Cbl complex. Cell Signal 2012; 25:372-9. [PMID: 23085457 DOI: 10.1016/j.cellsig.2012.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/01/2012] [Accepted: 10/16/2012] [Indexed: 12/30/2022]
Abstract
Previously, we showed that mitogen-activated protein kinase/extracellular signal-related kinase 4 (MEKK4) is responsible for p38 activation and that its activation during tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment also increases the catalytic activity of Akt. Here, we further investigated how the TRAIL-induced MEKK4/p38/heat shock protein (HSP27)/Akt survival network is modulated by the Src/c-Cbl interacting protein of 85kDa (CIN85)/c-Cbl complex. TRAIL-induced activation of Akt catalytic activity and phosphorylation were highly correlated with p38/HSP27 phosphorylation, whereas the phosphorylation of p38/HSP27 increased further during incubation with curcumin and TRAIL, which caused significant apoptotic cell death. CIN85, a c-Cbl-binding protein, plays an essential role in connecting cell survival to cell death. The interaction of CIN85 with MEKK4 was increased during the late phase of TRAIL incubation, suggesting that sustained p38 and HSP27 phosphorylation protects cells by preventing further cell death. However, further increases in p38/HSP27 phosphorylation induced by cotreatment with curcumin and TRAIL converted cell fate to death. Taken together, these data demonstrate that phosphorylated p38/HSP27 as biphasic modulators act in conjunction with CIN85 to determine whether cells survive or die in response to apoptotic stress.
Collapse
Affiliation(s)
- Jina Kim
- Institute for Cancer Research, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
13
|
Gain of CBL-interacting protein, a possible alternative to CBL mutations in myeloid malignancies. Leukemia 2010; 24:1539-41. [PMID: 20555362 DOI: 10.1038/leu.2010.135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
Havrylov S, Redowicz MJ, Buchman VL. Emerging roles of Ruk/CIN85 in vesicle-mediated transport, adhesion, migration and malignancy. Traffic 2010; 11:721-31. [PMID: 20331533 DOI: 10.1111/j.1600-0854.2010.01061.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ruk/CIN85 is an adaptor protein. Similar to many other proteins of this type, Ruk/CIN85 is known to take part in multiple cellular processes including signal transduction, vesicle-mediated transport, cytoskeleton remodelling, programmed cell death and viral infection. Recent studies have also revealed the potential importance of Ruk/CIN85 in cancer cell invasiveness. In this review we summarize the various roles of this protein as well as the potential contribution of Ruk/CIN85 to malignancy and the invasiveness of cancer cells. In the last section of the paper we also speculate on the utility of Ruk/CIN85 as a target for novel anti-cancer therapies.
Collapse
Affiliation(s)
- Serhiy Havrylov
- Nencki Institute of Experimental Biology, Pasteura 3 Street, 02-093 Warsaw, Poland
| | | | | |
Collapse
|
15
|
Kedar VP, Darby MK, Williams JG, Blackshear PJ. Phosphorylation of human tristetraprolin in response to its interaction with the Cbl interacting protein CIN85. PLoS One 2010; 5:e9588. [PMID: 20221403 PMCID: PMC2833206 DOI: 10.1371/journal.pone.0009588] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 02/09/2010] [Indexed: 12/20/2022] Open
Abstract
Background Tristetraprolin (TTP) is the prototype member of a family of CCCH tandem zinc finger proteins and is considered to be an anti-inflammatory protein in mammals. TTP plays a critical role in the decay of tumor necrosis factor alpha (TNF) mRNA, among others, by binding AU-rich RNA elements in the 3′-untranslated regions of this transcript and promoting its deadenylation and degradation. Methodology/Principal Findings We used yeast two-hybrid analysis to identify potential protein binding partners for human TTP (hTTP). Various regions of hTTP recovered 31 proteins that fell into 12 categories based on sequence similarities. Among these, the interactions between hTTP and CIN85, cytoplasmic poly (A) binding protein (PABP), nucleolin and heat shock protein 70 were confirmed by co-immunoprecipitation experiments. CIN85 and hTTP co-localized in the cytoplasm of cells as determined by confocal microscopy. CIN85 contains three SH3 domains that specifically bind a unique proline-arginine motif (PXXXPR) found in several CIN85 effectors. We found that the SH3 domains of CIN85 bound to a PXXXPR motif located near the C-terminus of hTTP. Co-expression of CIN85 with hTTP resulted in the increased phosphorylation of hTTP at serine residues in positions 66 and 93, possibly due in part to the demonstrated association of mitogen-activated protein kinase kinase kinase 4 (MEKK4) to both proteins. The presence of CIN85 did not appear to alter hTTP's binding to RNA probes or its stimulated breakdown of TNF mRNA. Conclusions/Significance These studies describe interactions between hTTP and nucleolin, cytoplasmic PABP, heat shock protein 70 and CIN85; these interactions were initially discovered by two-hybrid analysis, and confirmed by co-immunoprecipitation. We found that CIN85 binding to a C-terminal motif within hTTP led to the increased phosphorylation of hTTP, possibly through enhanced association with MEKK4. The functional consequences to each of the members of this putative complex remain to be determined.
Collapse
Affiliation(s)
- Vishram P. Kedar
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Martyn K. Darby
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Jason G. Williams
- Protein Microcharacterization Core Facility, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Perry J. Blackshear
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
16
|
Novel Insights into the Mechanisms of CIN85 SH3 Domains Binding to Cbl Proteins: Solution-Based Investigations and In Vivo Implications. J Mol Biol 2009; 387:1120-36. [DOI: 10.1016/j.jmb.2009.02.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 02/20/2009] [Accepted: 02/24/2009] [Indexed: 11/21/2022]
|
17
|
Nikolaienko O, Skrypkina I, Tsyba L, Fedyshyn Y, Morderer D, Buchman V, de la Luna S, Drobot L, Rynditch A. Intersectin 1 forms a complex with adaptor protein Ruk/CIN85 in vivo independently of epidermal growth factor stimulation. Cell Signal 2009; 21:753-9. [PMID: 19166927 DOI: 10.1016/j.cellsig.2009.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 01/03/2009] [Indexed: 10/21/2022]
Abstract
Intersectin 1 (ITSN1) is an adaptor protein involved in clathrin-mediated endocytosis, apoptosis, signal transduction and cytoskeleton organization. Here, we show that ITSN1 forms a complex with adaptor protein Ruk/CIN85, implicated in downregulation of receptor tyrosine kinases. The interaction is mediated by the SH3A domain of ITSN1 and the third or fourth proline-rich blocks of Ruk/CIN85, and does not depend on epidermal growth factor stimulation, suggesting a constitutive association of ITSN1 with Ruk/CIN85. Moreover, both proteins colocalize in MCF-7 cells with their common binding partner, the ubiquitin ligase c-Cbl. The possible biological role of the interaction between ITSN1 and Ruk/CIN85 is discussed.
Collapse
Affiliation(s)
- Oleksii Nikolaienko
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Peruzzi G, Molfetta R, Gasparrini F, Vian L, Morrone S, Piccoli M, Frati L, Santoni A, Paolini R. The adaptor molecule CIN85 regulates Syk tyrosine kinase level by activating the ubiquitin-proteasome degradation pathway. THE JOURNAL OF IMMUNOLOGY 2007; 179:2089-96. [PMID: 17675467 DOI: 10.4049/jimmunol.179.4.2089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Triggering of mast cells and basophils by IgE and Ag initiates a cascade of biochemical events that lead to cell degranulation and the release of allergic mediators. Receptor aggregation also induces a series of biochemical events capable of limiting FcepsilonRI-triggered signals and functional responses. Relevant to this, we have recently demonstrated that Cbl-interacting 85-kDa protein (CIN85), a multiadaptor protein mainly involved in the process of endocytosis and vesicle trafficking, regulates the Ag-dependent endocytosis of the IgE receptor, with consequent impairment of FcepsilonRI-mediated cell degranulation. The purpose of this study was to further investigate whether CIN85 could alter the FcepsilonRI-mediated signaling by affecting the activity and/or expression of molecules directly implicated in signal propagation. We found that CIN85 overexpression inhibits the FcepsilonRI-induced tyrosine phosphorylation of phospholipase Cgamma, thus altering calcium mobilization. This functional defect is associated with a substantial decrease of Syk protein levels, which are restored by the use of selective proteasome inhibitors, and it is mainly due to the action of the ubiquitin ligase c-Cbl. Furthermore, coimmunoprecipitation experiments demonstrate that CIN85 overexpression limits the ability of Cbl to bind suppressor of TCR signaling 1 (Sts1), a negative regulator of Cbl functions, while CIN85 knockdown favors the formation of Cbl/Sts1 complexes. Altogether, our findings support a new role for CIN85 in regulating Syk protein levels in RBL-2H3 cells through the activation of the ubiquitin-proteasome pathway and provide a mechanism for this regulation involving c-Cbl ligase activity.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antigens/immunology
- Antigens/metabolism
- Basophils/immunology
- Basophils/metabolism
- Calcium Signaling/genetics
- Calcium Signaling/immunology
- Cell Degranulation/genetics
- Cell Degranulation/immunology
- Cell Line
- Endocytosis/genetics
- Endocytosis/immunology
- Gene Expression
- Humans
- Immunoglobulin A/immunology
- Immunoglobulin A/metabolism
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/immunology
- Intracellular Signaling Peptides and Proteins/metabolism
- Mast Cells/immunology
- Mast Cells/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Neoplasm Proteins/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/immunology
- Nerve Tissue Proteins/metabolism
- Phospholipase C gamma
- Phosphorylation
- Proteasome Endopeptidase Complex/genetics
- Proteasome Endopeptidase Complex/immunology
- Proteasome Endopeptidase Complex/metabolism
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/immunology
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins c-cbl/genetics
- Proto-Oncogene Proteins c-cbl/immunology
- Proto-Oncogene Proteins c-cbl/metabolism
- Rats
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, IgE/genetics
- Receptors, IgE/immunology
- Receptors, IgE/metabolism
- Syk Kinase
- Ubiquitin/genetics
- Ubiquitin/immunology
- Ubiquitin/metabolism
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/immunology
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- Giovanna Peruzzi
- Department of Experimental Medicine, Institute Pasteur-Fondazione Cenci Bolognetti, University La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tossidou I, Kardinal C, Peters I, Kriz W, Shaw A, Dikic I, Tkachuk S, Dumler I, Haller H, Schiffer M. CD2AP/CIN85 balance determines receptor tyrosine kinase signaling response in podocytes. J Biol Chem 2007; 282:7457-64. [PMID: 17213204 DOI: 10.1074/jbc.m608519200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Defects in podocyte signaling are the basis of many inherited glomerular diseases leading to glomerulosclerosis. CD2-associated protein (CD2AP) is highly expressed in podocytes and is considered to play an important role in the maintenance of the glomerular slit diaphragm. Mice deficient for CD2AP (CD2AP(-/-)) appear normal at birth but develop a rapid onset nephrotic syndrome at 3 weeks of age. We demonstrate that impaired intracellular signaling with subsequent podocyte damage is the reason for this delayed podocyte injury in CD2AP(-/-) mice. We document that CD2AP deficiency in podocytes leads to diminished signal initiation and termination of signaling pathways mediated by receptor tyrosine kinases (RTKs). In addition, we demonstrate that CIN85, a paralog of CD2AP, is involved in termination of RTK signaling in podocytes. CIN85 protein expression is increased in CD2AP(-/-) podocytes in vitro. Stimulation of CD2AP(-/-) podocytes with various growth factors, including insulin-like growth factor 1, vascular endothelial growth factor, and fibroblast growth factor, resulted in a significantly decreased phosphatidylinositol 3-kinase/AKT and ERK signaling response. Moreover, increased CIN85 protein is detectable in podocytes in diseased CD2AP(-/-) mice, leading to decreased base-line activation of ERK and decreased phosphorylation after growth factor stimulation in vivo. Because repression of CIN85 protein leads to a restored RTK signaling response, our results support an important role of CD2AP/CIN85 protein balance in the normal signaling response of podocytes.
Collapse
Affiliation(s)
- Irini Tossidou
- Division of Nephrology, Department of Medicine, and Division of Pediatric Hematology and Oncology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bettinger BT, Amberg DC. The MEK kinases MEKK4/Ssk2p facilitate complexity in the stress signaling responses of diverse systems. J Cell Biochem 2007; 101:34-43. [PMID: 17348032 DOI: 10.1002/jcb.21289] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mammalian JNK/p38 MAP kinase kinase kinase MEKK4 and the Saccharomyces cerevisiae Ssk2p are highly homologous. MEKK4 can replace all of the known functions of Ssk2p in yeast, including functioning in the high osmolarity glycerol (HOG) MAPK pathway and the recently described actin recovery pathway. MEKK4 and Ssk2p share a number of conserved domains and appear to be activated by a similar mechanism. Binding of an activating protein to the N-terminal region alleviates auto-inhibition and causes the kinase to auto-phosphorylate, resulting in activation. In this review we will examine the role of the MAP kinase kinase kinase isoform Ssk2p/MEKK4 in the adaptation of both yeast and mammalian systems to specific external stimuli. Recent work has provided a wealth of information about the activation, regulation, and functions of these MEKK kinases to extra-cellular signals. We will also highlight evidence supporting a role for MEKK4 in mediating actin recovery following osmotic shock in mammalian cells.
Collapse
Affiliation(s)
- Blaine T Bettinger
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, New York 13210, USA
| | | |
Collapse
|
21
|
Kawata A, Iida J, Ikeda M, Sato Y, Mori H, Kansaku A, Sumita K, Fujiwara N, Rokukawa C, Hamano M, Hirabayashi S, Hata Y. CIN85 is localized at synapses and forms a complex with S-SCAM via dendrin. J Biochem 2006; 139:931-9. [PMID: 16751601 DOI: 10.1093/jb/mvj105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Membrane-associated guanylate kinase inverted (MAGI)-1 plays a role as a scaffold at cell junctions in non-neuronal cells, while S-SCAM, its neuronal isoform, is involved in the organization of synapses. A search for MAGI-1-interacting proteins by yeast two-hybrid screening of a kidney cDNA library yielded dendrin. As dendrin was originally reported as a brain-specific postsynaptic protein, we tested the interaction between dendrin and S-SCAM and revealed that dendrin binds to the WW domains of S-SCAM. Dendrin is known to be dendritically translated but its function is largely unknown. To gain insights into the physiological meaning of the interaction, we performed a second yeast two-hybrid screening using dendrin as a bait. We identified CIN85, an endocytic scaffold protein, as a putative dendrin-interactor. Immunocytochemistry and subcellular fractionation analysis supported the synaptic localization of CIN85. The first SH3 domain and the C-terminal region of CIN85 bind to the proline-rich region and the N-terminal region of dendrin, respectively. In vitro experiments suggest that dendrin forms a ternary complex with CIN85 and S-SCAM and that this complex formation facilitates the recruitment of dendrin and S-SCAM to vesicle-like structures where CIN85 is accumulated.
Collapse
Affiliation(s)
- Akira Kawata
- Department of Medical Biochemistry, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|