1
|
Skoczyńska A, Ołdakowska M, Dobosz A, Adamiec R, Gritskevich S, Jonkisz A, Lebioda A, Adamiec-Mroczek J, Małodobra-Mazur M, Dobosz T. PPARs in Clinical Experimental Medicine after 35 Years of Worldwide Scientific Investigations and Medical Experiments. Biomolecules 2024; 14:786. [PMID: 39062500 PMCID: PMC11275227 DOI: 10.3390/biom14070786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
This year marks the 35th anniversary of Professor Walter Wahli's discovery of the PPARs (Peroxisome Proliferator-Activated Receptors) family of nuclear hormone receptors. To mark the occasion, the editors of the scientific periodical Biomolecules decided to publish a special issue in his honor. This paper summarizes what is known about PPARs and shows how trends have changed and how research on PPARs has evolved. The article also highlights the importance of PPARs and what role they play in various diseases and ailments. The paper is in a mixed form; essentially it is a review article, but it has been enriched with the results of our experiments. The selection of works was subjective, as there are more than 200,000 publications in the PubMed database alone. First, all papers done on an animal model were discarded at the outset. What remained was still far too large to describe directly. Therefore, only papers that were outstanding, groundbreaking, or simply interesting were described and briefly commented on.
Collapse
Affiliation(s)
- Anna Skoczyńska
- Department of Internal and Occupational Medicine and Hypertension, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Monika Ołdakowska
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Agnieszka Dobosz
- Department of Basic Medical Sciences and Immunology, Division of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland
| | - Rajmund Adamiec
- Department of Diabetology and Internal Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
- Department of Internal Medicine, Faculty of Medical and Technical Sciences, Karkonosze University of Applied Sciences, Lwówiecka 18, 58-506 Jelenia Góra, Poland
| | - Sofya Gritskevich
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Anna Jonkisz
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Arleta Lebioda
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Joanna Adamiec-Mroczek
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Małgorzata Małodobra-Mazur
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Tadeusz Dobosz
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| |
Collapse
|
2
|
Manickasamy MK, Jayaprakash S, Girisa S, Kumar A, Lam HY, Okina E, Eng H, Alqahtani MS, Abbas M, Sethi G, Kumar AP, Kunnumakkara AB. Delineating the role of nuclear receptors in colorectal cancer, a focused review. Discov Oncol 2024; 15:41. [PMID: 38372868 PMCID: PMC10876515 DOI: 10.1007/s12672-023-00808-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/20/2023] [Indexed: 02/20/2024] Open
Abstract
Colorectal cancer (CRC) stands as one of the most prevalent form of cancer globally, causing a significant number of deaths, surpassing 0.9 million in the year 2020. According to GLOBOCAN 2020, CRC ranks third in incidence and second in mortality in both males and females. Despite extensive studies over the years, there is still a need to establish novel therapeutic targets to enhance the patients' survival rate in CRC. Nuclear receptors (NRs) are ligand-activated transcription factors (TFs) that regulate numerous essential biological processes such as differentiation, development, physiology, reproduction, and cellular metabolism. Dysregulation and anomalous expression of different NRs has led to multiple alterations, such as impaired signaling cascades, mutations, and epigenetic changes, leading to various diseases, including cancer. It has been observed that differential expression of various NRs might lead to the initiation and progression of CRC, and are correlated with poor survival outcomes in CRC patients. Despite numerous studies on the mechanism and role of NRs in this cancer, it remains of significant scientific interest primarily due to the diverse functions that various NRs exhibit in regulating key hallmarks of this cancer. Thus, modulating the expression of NRs with their agonists and antagonists, based on their expression levels, holds an immense prospect in the diagnosis, prognosis, and therapeutical modalities of CRC. In this review, we primarily focus on the role and mechanism of NRs in the pathogenesis of CRC and emphasized the significance of targeting these NRs using a variety of agents, which may represent a novel and effective strategy for the prevention and treatment of this cancer.
Collapse
Affiliation(s)
- Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Huiyan Eng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
3
|
The Involvement of PPARs in the Peculiar Energetic Metabolism of Tumor Cells. Int J Mol Sci 2018; 19:ijms19071907. [PMID: 29966227 PMCID: PMC6073339 DOI: 10.3390/ijms19071907] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/10/2018] [Accepted: 06/24/2018] [Indexed: 12/13/2022] Open
Abstract
Energy homeostasis is crucial for cell fate, since all cellular activities are strongly dependent on the balance between catabolic and anabolic pathways. In particular, the modulation of metabolic and energetic pathways in cancer cells has been discussed in some reports, but subsequently has been neglected for a long time. Meanwhile, over the past 20 years, a recovery of the study regarding cancer metabolism has led to an increasing consideration of metabolic alterations in tumors. Cancer cells must adapt their metabolism to meet their energetic and biosynthetic demands, which are associated with the rapid growth of the primary tumor and colonization of distinct metastatic sites. Cancer cells are largely dependent on aerobic glycolysis for their energy production, but are also associated with increased fatty acid synthesis and increased rates of glutamine consumption. In fact, emerging evidence has shown that therapeutic resistance to cancer treatment may arise from the deregulation of glucose metabolism, fatty acid synthesis, and glutamine consumption. Cancer cells exhibit a series of metabolic alterations induced by mutations that lead to a gain-of-function of oncogenes, and a loss-of-function of tumor suppressor genes, including increased glucose consumption, reduced mitochondrial respiration, an increase of reactive oxygen species, and cell death resistance; all of these are responsible for cancer progression. Cholesterol metabolism is also altered in cancer cells and supports uncontrolled cell growth. In this context, we discuss the roles of peroxisome proliferator-activated receptors (PPARs), which are master regulators of cellular energetic metabolism in the deregulation of the energetic homeostasis, which is observed in cancer. We highlight the different roles of PPAR isotypes and the differential control of their transcription in various cancer cells.
Collapse
|
4
|
Ji Y, Li H, Wang F, Gu L. PPARβ/δ Agonist GW501516 Inhibits Tumorigenicity of Undifferentiated Nasopharyngeal Carcinoma in C666-1 Cells by Promoting Apoptosis. Front Pharmacol 2018; 9:648. [PMID: 30002625 PMCID: PMC6031703 DOI: 10.3389/fphar.2018.00648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022] Open
Abstract
Activation of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) had been linked to inhibition on the proliferation and apoptosis in a few cancer cell lines. However, limited data exists regarding the role of PPARβ/δ in nasopharyngeal carcinoma (NPC). This study was undertaken to determine the effect of PPARβ/δ on cell proliferation, anchorage-dependent clonogenicity, and ectopic xenografts in the human NPC cell lines. Gene and protein expression of PPARβ/δ were reduced specifically in the poor- and un-differentiated NPC cell lines as compared with the control NP-69 cells. Ligand activation of PPARβ/δ by GW501516, a specific PPARβ/δ selective agonist, inhibited cell proliferation and colony formation strikingly, and induced a G2/M phase arrest in the EBV positive undifferentiated NPC C666-1 cells relative to the control cells. Moreover, GW501516 induced C666-1 cell apoptosis in a caspase and BAX dependent manner. In accordance with the in vitro result, GW501516 significantly suppressed the ectopic NPC xenograft tumorigenicity that derived from the C666-1 NPC cells in BALB/c nu/nu mice. This effect is greatly associated with its inhibition on the gene and protein expression of integrin-linked kinase (ILK) through activation of the AMPKα-dependent signaling pathways. Collectively, we showed that PPARβ/δ expression is in reverse correlation with the degree of differentiation in the NPC cell lines, and revealed the anti-tumorigenic effects of GW501516 in NPC cells by activation of AMPKα. This study suggested that PPARβ/δ targeting molecules may be useful for the poor-, and particularly un-differentiated NPC chemoprevention.
Collapse
Affiliation(s)
- Yangyang Ji
- Department of ENT, Central Hospital of Minhang District (Minhang Hospital Fudan University), Shanghai, China
| | - Hui Li
- Department of ENT, Central Hospital of Minhang District (Minhang Hospital Fudan University), Shanghai, China
| | - Fang Wang
- Department of ENT, Central Hospital of Minhang District (Minhang Hospital Fudan University), Shanghai, China
| | - Linglan Gu
- Department of ENT, Central Hospital of Minhang District (Minhang Hospital Fudan University), Shanghai, China
| |
Collapse
|
5
|
Yao PL, Morales JL, Zhu B, Kang BH, Gonzalez FJ, Peters JM. Activation of peroxisome proliferator-activated receptor-β/δ (PPAR-β/δ) inhibits human breast cancer cell line tumorigenicity. Mol Cancer Ther 2014; 13:1008-17. [PMID: 24464939 DOI: 10.1158/1535-7163.mct-13-0836] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The effect of activation and overexpression of the nuclear receptor PPAR-β/δ in human MDA-MB-231 (estrogen receptor-negative; ER(-)) and MCF7 (estrogen-receptor-positive; ER(+)) breast cancer cell lines was examined. Target gene induction by ligand activation of PPAR-β/δ was increased by overexpression of PPAR-β/δ compared with controls. Overexpression of PPAR-β/δ caused a decrease in cell proliferation in MCF7 and MDA-MB-231 cells compared with controls, whereas ligand activation of PPAR-β/δ further inhibited proliferation of MCF7 but not MDA-MB-231 cells. Overexpression and/or ligand activation of PPAR-β/δ in MDA-MB-231 or MCF7 cells had no effect on experimental apoptosis. Decreased clonogenicity was observed in both MDA-MB-231 and MCF7 overexpressing PPAR-β/δ in response to ligand activation of PPAR-β/δ as compared with controls. Ectopic xenografts developed from MDA-MB-231 and MCF7 cells overexpressing PPAR-β/δ were significantly smaller, and ligand activation of PPAR-β/δ caused an even greater reduction in tumor volume as compared with controls. Interestingly, the decrease in MDA-MB-231 tumor size after overexpressing PPAR-β/δ and ligand activation of PPAR-β/δ correlated with increased necrosis. These data show that ligand activation and/or overexpression of PPAR-β/δ in two human breast cancer cell lines inhibits relative breast cancer tumorigenicity and provide further support for the development of ligands for PPAR-β/δ to specifically inhibit breast carcinogenesis. These new cell-based models will be invaluable tools for delineating the role of PPAR-β/δ in breast cancer and evaluating the effects of PPAR-β/δ agonists.
Collapse
Affiliation(s)
- Pei-Li Yao
- Authors' Affiliations: Department of Veterinary and Biomedical Sciences and The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania; and Non-clinical Research Institute, Chemon, Jeil-Ri, Yangji-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do, Korea; and Laboratory of Metabolism, National Cancer Institute, Bethesda, Maryland
| | | | | | | | | | | |
Collapse
|
6
|
Peters JM, Foreman JE, Gonzalez FJ. Dissecting the role of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in colon, breast, and lung carcinogenesis. Cancer Metastasis Rev 2012; 30:619-40. [PMID: 22037942 DOI: 10.1007/s10555-011-9320-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) is a promising drug target since its agonists increase serum high-density lipoprotein; decrease low-density lipoprotein, triglycerides, and insulin associated with metabolic syndrome; improve insulin sensitivity; and decrease high fat diet-induced obesity. PPARβ/δ agonists also promote terminal differentiation and elicit anti-inflammatory activities in many cell types. However, it remains to be determined whether PPARβ/δ agonists can be developed as therapeutics because there are reports showing either pro- or anti-carcinogenic effects of PPARβ/δ in cancer models. This review examines studies reporting the role of PPARβ/δ in colon, breast, and lung cancers. The prevailing evidence would suggest that targeting PPARβ/δ is not only safe but could have anti-carcinogenic protective effects.
Collapse
Affiliation(s)
- Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
7
|
Falconer C, Kenny PA, Smart CE, Monteith GR, Roberts-Thomson SJ. Peroxisome proliferator-activated receptor subtypes in mammary gland development and breast cancer. ACTA ACUST UNITED AC 2012. [DOI: 10.7243/2049-7962-1-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
The Role of PPAR Ligands in Controlling Growth-Related Gene Expression and their Interaction with Lipoperoxidation Products. PPAR Res 2011; 2008:524671. [PMID: 18615196 PMCID: PMC2443425 DOI: 10.1155/2008/524671] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 06/05/2008] [Indexed: 11/18/2022] Open
Abstract
Peroxisome proliferators-activated receptors (PPARs) are ligand-activated transcription factors that belong to the nuclear hormone receptor superfamily. The three PPAR isoforms (α, γ and β/δ) have been found to play a pleiotropic role in cell fat metabolism. Furthermore, in recent years, evidence has been found regarding the antiproliferative, proapoptotic, and differentiation-promoting activities displayed by PPAR ligands, particularly by PPARγ ligands. PPAR ligands affect the expression of different growth-related genes through both PPAR-dependent and PPAR-independent mechanisms. Moreover, an interaction between PPAR ligands and other molecules which strengthen the effects of PPAR ligands has been described. Here we review the action of PPAR on the control of gene expression with particular regard to the effect of PPAR ligands on the expression of genes involved in the regulation of cell-cycle, differentiation, and apoptosis. Moreover, the interaction between PPAR ligands and 4-hydroxynonenal (HNE), the major product of the lipid peroxidation, has been reviewed.
Collapse
|
9
|
Epigenetic effects and molecular mechanisms of tumorigenesis induced by cigarette smoke: an overview. JOURNAL OF ONCOLOGY 2011; 2011:654931. [PMID: 21559255 PMCID: PMC3087891 DOI: 10.1155/2011/654931] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 01/24/2011] [Indexed: 12/20/2022]
Abstract
Cigarette smoking is one of the major causes of carcinogenesis. Direct genotoxicity induced by cigarette smoke leads to initiation of carcinogenesis. Nongenotoxic (epigenetic) effects of cigarette smoke also act as modulators altering cellular functions. These two effects underlie the mechanisms of tumor promotion and progression. While there is no lack of general reviews on the genotoxic and carcinogenic potentials of cigarette smoke in lung carcinogenesis, updated review on the epigenetic effects and molecular mechanisms of cigarette smoke and carcinogenesis, not limited to lung, is lacking. We are presenting a comprehensive review of recent investigations on cigarette smoke, with special attentions to nicotine, NNK, and PAHs. The current understanding on their molecular mechanisms include (1) receptors, (2) cell cycle regulators, (3) signaling pathways, (4) apoptosis mediators, (5) angiogenic factors, and (6) invasive and metastasis mediators. This review highlighted the complexity biological responses to cigarette smoke components and their involvements in tumorigenesis.
Collapse
|
10
|
Knockdown of peroxisome proliferator-activated receptor-beta induces less differentiation and enhances cell-fibronectin adhesion of colon cancer cells. Oncogene 2009; 29:516-26. [PMID: 19935699 DOI: 10.1038/onc.2009.370] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The role of peroxisome proliferator-activated receptor-beta/delta (PPAR-beta/delta) in the pathogenesis of colon cancer remains highly controversial. This study specifically silenced the PPAR-beta expression in three colon cancer cell lines with different metastatic potentials. Although PPAR-beta knockdown resulted in more malignant morphological changes, bigger colony sizes and lower carcinoembryonic antigen (CEA) secretion, and enhanced the cell-fibronectin adhesion, cell invasion and migration were unaffected. These effects were stronger in poorly metastatic cell lines compared with highly metastatic ones. Simultaneously, PPAR-beta knockdown decreased the mRNAs encoding adipocyte differentiation-related protein and liver fatty acid binding protein, and increased the mRNA of ILK, whereas the mRNAs encoding integrin-beta1 and angiopoietin-like 4 were unchanged. Using immunohistochemistry, we determined that the intensity of PPAR-beta expression was stronger in rectal cancers with better differentiation than in those with poor differentiation, and was stronger in early-stage tumors than in advanced ones. Together, these findings consistently indicate that PPAR-beta may facilitate differentiation and inhibit the cell-fibronectin adhesion of colon cancer, having a role as an inhibitor in the carcinogenesis and progression of colorectal cancer. Interestingly, PPAR-beta seems to have a more important role in poorly metastatic cells than in highly metastatic ones.
Collapse
|
11
|
Aung CS, Ye W, Plowman G, Peters AA, Monteith GR, Roberts-Thomson SJ. Plasma membrane calcium ATPase 4 and the remodeling of calcium homeostasis in human colon cancer cells. Carcinogenesis 2009; 30:1962-9. [DOI: 10.1093/carcin/bgp223] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
12
|
Foreman JE, Sharma AK, Amin S, Gonzalez FJ, Peters JM. Ligand activation of peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) inhibits cell growth in a mouse mammary gland cancer cell line. Cancer Lett 2009; 288:219-25. [PMID: 19660859 DOI: 10.1016/j.canlet.2009.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 06/30/2009] [Accepted: 07/10/2009] [Indexed: 01/01/2023]
Abstract
The effects of ligand activation of PPARbeta/delta were examined in the mouse mammary tumor cell line (C20). Expression of PPARbeta/delta was markedly lower in C20 cells as compared to the human non-tumorigenic mammary gland derived cell line (MCF10A) and mouse keratinocytes. Ligand activation of PPARbeta/delta in C20 cells caused upregulation of the PPARbeta/delta target gene angiopoietin-like 4 (Angptl4). Inhibition of C20 cell proliferation and clonogenicity was observed following treatment with GW0742 or GW501516, two highly specific PPARbeta/delta ligands. In addition, an increase in apoptosis was observed in C20 cells cultured with 10microM GW501516 that preceded the observed inhibition of cell proliferation. Results from this study show that proliferation of the C20 mouse mammary gland cancer cell line is inhibited by ligand activation of PPARbeta/delta due in part to increased apoptosis.
Collapse
Affiliation(s)
- Jennifer E Foreman
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, 16802, United States
| | | | | | | | | |
Collapse
|
13
|
Sun X, Ritzenthaler JD, Zhong X, Zheng Y, Roman J, Han S. Nicotine stimulates PPARbeta/delta expression in human lung carcinoma cells through activation of PI3K/mTOR and suppression of AP-2alpha. Cancer Res 2009; 69:6445-53. [PMID: 19654299 DOI: 10.1158/0008-5472.can-09-1001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We previously showed that nicotine stimulates non-small cell lung carcinoma (NSCLC) cell proliferation through nicotinic acetylcholine receptor (nAChR)-mediated signals. Activation of peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) has also been shown to induce NSCLC cell growth. Here, we explore the potential link between nicotine and PPARbeta/delta and report that nicotine increases the expression of PPARbeta/delta protein; this effect was blocked by an alpha7 nAChR antagonist (alpha-bungarotoxin), by alpha7 nAChR short interfering RNA, and by inhibitors of phosphatidylinositol 3-kinase (PI3K; wortmannin and LY294002) and mammalian target of rapamycin (mTOR; rapamycin). In contrast, this effect was enhanced by PUN282987, an alpha7 nAChR agonist. Silencing of PPARbeta/delta attenuated the stimulatory effect of nicotine on cell growth, which was overcome by transfection of an exogenous PPARbeta/delta expression vector. Of note, nicotine induced complex formation between alpha7 nAChR and PPARbeta/delta protein and increased PPARbeta/delta gene promoter activity through inhibition of AP-2alpha as shown by reduced AP-2alpha binding using electrophoretic gel mobility shift and chromatin immunoprecipitation assays. In addition, silencing of Sp1 attenuated the effect of nicotine on PPARbeta/delta. Collectively, our results show that nicotine increases PPARbeta/delta gene expression through alpha7 nAChR-mediated activation of PI3K/mTOR signals that inhibit AP-2alpha protein expression and DNA binding activity to the PPARbeta/delta gene promoter. Sp1 seems to modulate this process. This study unveils a novel mechanism by which nicotine promotes human lung carcinoma cell growth.
Collapse
Affiliation(s)
- XiaoJuan Sun
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
14
|
Ghosh M, Ai Y, Narko K, Wang Z, Peters JM, Hla T. PPARdelta is pro-tumorigenic in a mouse model of COX-2-induced mammary cancer. Prostaglandins Other Lipid Mediat 2008; 88:97-100. [PMID: 19101649 DOI: 10.1016/j.prostaglandins.2008.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 11/08/2008] [Accepted: 11/08/2008] [Indexed: 02/07/2023]
Abstract
Cyclooxygenase-2 (COX-2), overexpressed in inflammatory conditions and cancer, regulates angiogenesis and tumorigenesis via the production of biologically active prostanoids. Previously, we showed that COX-2 over-expression in the mammary gland of transgenic mice induces an angiogenic switch and transforms the mammary epithelium into invasive mammary carcinoma. Since COX-2-derived prostanoids can activate the nuclear receptor PPARdelta, we crossed Ppardelta(-/-) mice with COX-2 transgenic mice in the FVB/N background. PPARdelta was expressed constitutively in the mammary gland of virgin, pregnant and lactating mice. Mammary hyperplasia and tumorigenesis in the COX-2 transgenic mice was markedly reduced in the Ppardelta(-/-) mice compared to their wild type counterparts. Analysis of the mammary tissues indicated that immunoreactive Ki-67, cyclin D1 and phosphorylated histone 3 (Phospho H3) were reduced in Ppardelta(-/-) mice, suggesting that PPARdelta activation regulates cell proliferation in the mammary gland. We postulate that activation of the nuclear receptor PPARdelta by COX-2-derived prostanoids may be involved in the proliferation of mammary epithelial cells and therefore contribute to mammary cancer development.
Collapse
Affiliation(s)
- Mallika Ghosh
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030-3501, United States
| | | | | | | | | | | |
Collapse
|
15
|
Han S, Ritzenthaler JD, Sun X, Zheng Y, Roman J. Activation of peroxisome proliferator-activated receptor beta/delta induces lung cancer growth via peroxisome proliferator-activated receptor coactivator gamma-1alpha. Am J Respir Cell Mol Biol 2008; 40:325-31. [PMID: 18776129 DOI: 10.1165/rcmb.2008-0197oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We previously demonstrated that a selective agonist of peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta), GW501516, stimulated human non-small cell lung carcinoma (NSCLC) growth, partly through inhibition of phosphatase and tensin homolog deleted on chromosome 10 expression. Here, we show that GW501516 also decreases the phosphorylation of AMP-activated protein kinase alpha (AMPKalpha), a major regulator of energy metabolism. This was mediated through specific activation of PPARbeta/delta, as a PPARbeta/delta small interfering RNA inhibited the effect. However, AMPKalpha did not mediate the growth-promoting effects of GW501516, as silencing of AMPKalpha did not inhibit GW501516-induced cell proliferation. Instead, we found that GW501516 stimulated peroxisome proliferator-activated receptor coactivator gamma (PGC)-1alpha, which activated the phosphatidylinositol 3 kinase (PI3-K)/Akt mitogenic pathway. An inhibitor of PI3-K, LY294002, had no effect on PGC-1alpha, consistent with PGC-1alpha being upstream of PI3-K/Akt. Of note, an activator of AMPKalpha, 5-amino-4-imidazole carboxamide riboside, inhibited the growth-promoting effects of GW501516, suggesting that although AMPKalpha is not responsible for the mitogenic effects of GW501516, its activation can oppose these events. This study unveils a novel mechanism by which GW501516 and activation of PPARbeta/delta stimulate human lung carcinoma cell proliferation, and suggests that activation of AMPKalpha may oppose this effect.
Collapse
Affiliation(s)
- Shouwei Han
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Whitehead Bioresearch Building, 615 Michael Street, Suite 205-M, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
16
|
Role of peroxisome-proliferator-activated receptor beta/delta (PPARbeta/delta) in gastrointestinal tract function and disease. Clin Sci (Lond) 2008; 115:107-27. [PMID: 18616431 DOI: 10.1042/cs20080022] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PPARbeta/delta (peroxisome-proliferator-activated receptor beta/delta) is one of three PPARs in the nuclear hormone receptor superfamily that are collectively involved in the control of lipid homoeostasis among other functions. PPARbeta/delta not only acts as a ligand-activated transcription factor, but also affects signal transduction by interacting with other transcription factors such as NF-kappaB (nuclear factor kappaB). Constitutive expression of PPARbeta/delta in the gastrointestinal tract is very high compared with other tissues and its potential physiological roles in this tissue include homoeostatic regulation of intestinal cell proliferation/differentiation and modulation of inflammation associated with inflammatory bowel disease and colon cancer. Analysis of mouse epithelial cells in the intestine and colon has clearly demonstrated that ligand activation of PPARbeta/delta induces terminal differentiation. The PPARbeta/delta target genes mediating this effect are currently unknown. Emerging evidence suggests that PPARbeta/delta can suppress inflammatory bowel disease through PPARbeta/delta-dependent and ligand-independent down-regulation of inflammatory signalling. However, the role of PPARbeta/delta in colon carcinogenesis remains controversial, as conflicting evidence suggests that ligand activation of PPARbeta/delta can either potentiate or attenuate this disease. In the present review, we summarize the role of PPARbeta/delta in gastrointestinal physiology and disease with an emphasis on findings in experimental models using both high-affinity ligands and null-mouse models.
Collapse
|
17
|
Shan W, Palkar PS, Murray IA, McDevitt EI, Kennett MJ, Kang BH, Isom HC, Perdew GH, Gonzalez FJ, Peters JM. Ligand activation of peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) attenuates carbon tetrachloride hepatotoxicity by downregulating proinflammatory gene expression. Toxicol Sci 2008; 105:418-28. [PMID: 18622026 DOI: 10.1093/toxsci/kfn142] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) beta/delta-null mice exhibit exacerbated hepatotoxicity in response to administration of carbon tetrachloride (CCl(4)). To determine whether ligand activation of the receptor protects against chemical toxicity in the liver, wild-type and PPARbeta/delta-null mice were administered CCl(4) with or without coadministration of the highly specific PPARbeta/delta ligand GW0742. Biomarkers of liver toxicity, including serum alanine aminotransferase (ALT) and hepatic tumor necrosis factor (TNF) alpha mRNA, were significantly higher in CCl(4)-treated PPARbeta/delta-null mice compared to wild-type mice. Hepatic expression of TNF-like weak inducer of apoptosis receptor (TWEAKr) and S100 calcium-binding protein A6 (S100A6/calcyclin), genes involved in nuclear factor kappa B signaling, was higher in the CCl(4)-treated PPARbeta/delta-null mice compared to wild-type mice. GW0742 treatment resulted in reduced serum ALT concentration and lower expression of CCl(4)-induced TNF-alpha, S100A6, monocyte chemoattractant protein-1 (MCP1), and TWEAKr in wild-type mice, and these effects were not observed in PPARbeta/delta-null mice. Expression of TNF-alpha was higher in PPARbeta/delta-null primary hepatocytes in response to interleukin-1beta treatment compared to wild-type hepatocytes, but GW0742 did not significantly modulate TNF-alpha expression in hepatocytes from either genotype. While PPARbeta/delta-null hepatic stellate exhibited higher rates of proliferation compared to wild-type cells, GW0742 did not affect alpha-smooth muscle actin expression in these cells. Combined, these findings demonstrate that ligand activation of PPARbeta/delta protects against chemically induced hepatotoxicity by downregulating expression of proinflammatory genes. Hepatocytes and hepatic stellate cells do not appear to directly mediate the inhibitory effects of ligand activation of PPARbeta/delta in liver, suggesting the involvement of paracrine and autocrine events mediated by hepatic cells.
Collapse
Affiliation(s)
- Weiwei Shan
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Huck Institute of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Han S, Ritzenthaler JD, Zheng Y, Roman J. PPARbeta/delta agonist stimulates human lung carcinoma cell growth through inhibition of PTEN expression: the involvement of PI3K and NF-kappaB signals. Am J Physiol Lung Cell Mol Physiol 2008; 294:L1238-49. [PMID: 18390835 DOI: 10.1152/ajplung.00017.2008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recent studies suggest that activation of peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) promotes cancer cell survival. We previously demonstrated that a selective PPARbeta/delta agonist, GW501516, stimulated human non-small cell lung carcinoma (NSCLC) cell growth. Here, we explore the mechanisms responsible for this effect. We show that GW501516 decreased phosphate and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor known to decrease cell growth and induce apoptosis. Activation of PPARbeta/delta and phosphatidylinositol 3-kinase (PI3K)/Akt signaling was associated with inhibition of PTEN. GW501516 increased NF-kappaB DNA binding activity and p65 protein expression through activation of PPARbeta/delta and PI3K/Akt signals and enhanced the physical interactions between PPARbeta/delta and p65 protein. Conversely, inhibition of PI3K and silencing of p65 by small RNA interference (siRNA) blocked the effect of GW501516 on PTEN expression and on NSCLC cell proliferation. GW501516 also inhibited IKBalpha protein expression. Silencing of IKBalpha enhanced the effect of GW501516 on PTEN protein expression and on cell proliferation. It also augmented the GW501516-induced complex formation of PPARbeta/delta and p65 proteins. Overexpression of PTEN suppressed NSCLC cell growth and eliminated the effect of GW501516 on phosphorylation of Akt. Together, our observations suggest that GW501516 induces the proliferation of NSCLC cells by inhibiting the expression of PTEN through activation of PPARbeta/delta, which stimulates PI3K/Akt and NF-kappaB signaling. Overexpression of PTEN overcomes this effect and unveils PPARbeta/delta and PTEN as potential therapeutic targets in NSCLC.
Collapse
Affiliation(s)
- ShouWei Han
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Whitehead Bioresearch Bldg., 615 Michael St., Suite 205-M, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
19
|
An immunohistochemical perspective of PPAR beta and one of its putative targets PDK1 in normal ovaries, benign and malignant ovarian tumours. Br J Cancer 2008; 98:1415-24. [PMID: 18349831 PMCID: PMC2361706 DOI: 10.1038/sj.bjc.6604306] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Peroxisome proliferator-activated receptor beta (PPAR beta) is a member of the nuclear hormone receptor family and is a ligand-activated transcription factor with few known molecular targets including 3-phosphoinositide-dependent protein kinase 1(PDK1). In view of the association of PPAR beta and PDK1 with cancer, we have examined the expression of PPAR beta and PDK1 in normal ovaries and different histological grades of ovarian tumours. Normal ovaries, benign, borderline, grades 1, 2 and 3 ovarian tumours of serous, muciuous, endometrioid, clear cell and mixed subtypes were analysed by immunohistochemistry for PPAR beta and PDK1 expression. All normal ovarian tissues, benign, borderline and grade 1 tumours showed PPAR beta staining localised in the epithelium and stroma. Staining was predominantly nuclear, but some degree of cytoplasmic staining was also evident. Approximately 20% of grades 2 and 3 tumours lacked PPAR beta staining, whereas the rest displayed some degree of nuclear and cytoplasmic staining of the scattered epithelium and stroma. The extent of epithelial and stromal PPAR beta staining was significantly different among the normal and the histological grades of tumours (chi(2)=59.25, d.f.=25, P<0.001; chi(2)=64.48, d.f.=25, P<0.001). Significantly different staining of PPAR beta was observed in the epithelium and stroma of benign and borderline tumours compared with grades 1, 2 and 3 tumours (chi(2)=11.28, d.f.=4, P<0.05; chi(2)=16.15, d.f.=4, P<0.005). In contrast, PDK1 immunostaining was absent in 9 out of 10 normal ovaries. Weak staining for PDK1 was observed in one normal ovary and 40% of benign ovarian tumours. All borderline and malignant ovarian tumours showed positive cytoplasmic and membrane PDK1 staining. Staining of PDK1 was confined to the epithelium and the blood vessels, and no apparent staining of the stroma was evident. Significantly different PDK1 staining was observed between the benign/borderline and malignant ovarian tumours (chi(2)=22.45, d.f.=5, P<0.001). In some borderline and high-grade tumours, staining of the reactive stroma was also evident. Our results suggest that unlike the colon, the endometrial, head and neck carcinomas, overexpression of PPAR beta does not occur in ovarian tumours. However, overexpression of PDK1 was evident in borderline and low- to high-grade ovarian tumours and is consistent with its known role in tumorigenesis.
Collapse
|
20
|
Eastham LL, Mills CN, Niles RM. PPARα/γ Expression and Activity in Mouse and Human Melanocytes and Melanoma Cells. Pharm Res 2008; 25:1327-33. [DOI: 10.1007/s11095-007-9524-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 12/07/2007] [Indexed: 02/08/2023]
|
21
|
Shan W, Nicol CJ, Ito S, Bility MT, Kennett MJ, Ward JM, Gonzalez FJ, Peters JM. Peroxisome proliferator-activated receptor-beta/delta protects against chemically induced liver toxicity in mice. Hepatology 2008; 47:225-35. [PMID: 18038451 DOI: 10.1002/hep.21925] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
UNLABELLED Potential functional roles for the peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) in skeletal muscle fatty acid catabolism and epithelial carcinogenesis have recently been described. Whereas PPARbeta/delta is expressed in liver, its function in this tissue is less clear. To determine the role of PPARbeta/delta in chemically induced liver toxicity, wild-type and PPARbeta/delta-null mice were treated with azoxymethane (AOM) and markers of liver toxicity examined. Bile duct hyperplasia, regenerative hyperplasia, and increased serum alanine aminotransferase (ALT) were found in AOM-treated PPARbeta/delta-null mice, and these effects were not observed in similarly treated wild-type mice. Exacerbated carbon tetrachloride (CCl(4)) hepatoxicity was also observed in PPARbeta/delta-null as compared with wild-type mice. No differences in messenger RNAs (mRNAs) encoding cytochrome2E1 required for the metabolic activation of AOM and CCl(4) were observed between wild-type or PPARbeta/delta-null mice in response to CCl(4). Significant differences in the expression of genes reflecting enhanced nuclear factor kappa B (NF-kappaB) activity were noted in PPARbeta/delta-null mice. CONCLUSION Results from these studies show that PPARbeta/delta is protective against liver toxicity induced by AOM and CCl(4), suggesting that this receptor is hepatoprotective against environmental chemicals that are metabolized in this tissue.
Collapse
Affiliation(s)
- Weiwei Shan
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Venkata NG, Aung CS, Cabot PJ, Monteith GR, Roberts-Thomson SJ. PPARalpha and PPARbeta are differentially affected by ethanol and the ethanol metabolite acetaldehyde in the MCF-7 breast cancer cell line. Toxicol Sci 2007; 102:120-8. [PMID: 18003597 DOI: 10.1093/toxsci/kfm281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The activity and/or the level of the peroxisome proliferator-activated receptors (PPARs) in liver and oligodendrocytes are regulated by ethanol. Despite the association between ethanol consumption and breast cancer risk, and the increasing evidence for an involvement of PPARs in some cancers, there have been no studies on the effect of ethanol or its metabolite acetaldehyde on PPARs in breast cancer. Using the MCF-7 breast cancer cell line, we examined the relationship between ethanol and its metabolite acetaldehyde on PPARalpha and PPARbeta transactivation. Ethanol (20 mM) reduced the potency of the PPARbeta ligand GW0742, evident by a rightward shift in the GW0742 dose-response curve, whereas for PPARalpha activation by GW7647, ethanol mediated its effects primarily through reducing efficacy as evidenced by a reduction in maximal response. Using the enzyme inhibitors 4-methylpyrazole and cyanamide and the metabolite acetaldehyde, we showed that PPARalpha and PPARbeta are differentially modulated by ethanol and acetaldehyde. While acetaldehyde is responsible for the inhibition of PPARalpha ligand inhibition with a concentration that inhibits 50% of activity (IC50) of 111 nM, acetaldehyde has no effect on PPARbeta or its ligand activation. Instead, inhibition of PPARbeta transactivation is mediated directly by ethanol. The differential effect of ethanol and acetaldehyde on PPARalpha and PPARbeta further underscores the differences between these receptors and may indicate the relevance of PPARs in the effects of ethanol in the human breast.
Collapse
|
23
|
Girroir EE, Hollingshead HE, Billin AN, Willson TM, Robertson GP, Sharma AK, Amin S, Gonzalez FJ, Peters JM. Peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) ligands inhibit growth of UACC903 and MCF7 human cancer cell lines. Toxicology 2007; 243:236-43. [PMID: 18054822 DOI: 10.1016/j.tox.2007.10.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 10/10/2007] [Accepted: 10/30/2007] [Indexed: 12/19/2022]
Abstract
The development of peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) ligands for the treatment of diseases including metabolic syndrome, diabetes and obesity has been hampered due to contradictory findings on their potential safety. For example, while some reports show that ligand activation of PPARbeta/delta promotes the induction of terminal differentiation and inhibition of cell growth, other reports suggest that PPARbeta/delta ligands potentiate tumorigenesis by increasing cell proliferation. Some of the contradictory findings could be due in part to differences in the ligand examined, the presence or absence of serum in cell cultures, differences in cell lines or differences in the method used to quantify cell growth. For these reasons, this study examined the effect of ligand activation of PPARbeta/delta on cell growth of two human cancer cell lines, MCF7 (breast cancer) and UACC903 (melanoma) in the presence or absence of serum using two highly specific PPARbeta/delta ligands, GW0742 or GW501516. Culturing cells in the presence of either GW0742 or GW501516 caused upregulation of the known PPARbeta/delta target gene angiopoietin-like protein 4 (ANGPTL4). Inhibition of cell growth was observed in both cell lines cultured in the presence of either GW0742 or GW501516, and the presence or absence of serum had little influence on this inhibition. Results from the present studies demonstrate that ligand activation of PPARbeta/delta inhibits the growth of both MCF7 and UACC903 cell lines and provide further evidence that PPARbeta/delta ligands are not mitogenic in human cancer cell lines.
Collapse
Affiliation(s)
- Elizabeth E Girroir
- Department of Veterinary and Biomedical Sciences and The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hollingshead HE, Borland MG, Billin AN, Willson TM, Gonzalez FJ, Peters JM. Ligand activation of peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) and inhibition of cyclooxygenase 2 (COX2) attenuate colon carcinogenesis through independent signaling mechanisms. Carcinogenesis 2007; 29:169-76. [PMID: 17893232 DOI: 10.1093/carcin/bgm209] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cyclooxygenase (COX) 2-derived prostaglandin E(2) (PGE(2)) promotes colorectal carcinoma growth and invasion, and inhibition of COX2 by non-steroidal anti-inflammatory drugs is known to inhibit these processes. There is controversy regarding the effect of ligand activation of peroxisome proliferator-activated receptor (PPAR)-beta/delta on colon carcinogenesis, although collective evidence from independent laboratories suggest that ligand activation of PPARbeta/delta leads to the induction of terminal differentiation coupled with inhibition of cell growth in a variety of models. The present study examined the hypothesis that ligand activation of PPARbeta/delta and inhibition of COX2 attenuate colon cancer through independent mechanisms and that combining these two mechanisms will enhance this inhibition. Colon cancer was induced by administering azoxymethane to wild-type and PPARbeta/delta-null mice. Cohorts of mice were treated with GW0742 (a PPARbeta/delta ligand), nimesulide (a COX2 inhibitor) or a combination of GW0742 and nimesulide. Inhibition of COX2 by nimesulide attenuated colon cancer and ligand activation of PPARbeta/delta by GW0742 had inhibitory effects. However, the combined treatment of GW0742 and nimesulide did not cause an enhancement in the attenuation of colon cancer. Mechanistically, the effects of these compounds occurred through independent mechanisms as increased levels of differentiation markers as a result of ligand activation of PPARbeta/delta were not found with COX2 inhibition, and a reduction in PGE(2) levels resulting from COX2 inhibition was not observed in response to ligand activation of PPARbeta/delta. Results from these studies effectively dissociate COX2 inhibition and PPARbeta/delta activity during colon carcinogenesis.
Collapse
Affiliation(s)
- Holly E Hollingshead
- Department of Veterinary and Biomedical Sciences and The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
25
|
Hollingshead HE, Killins RL, Borland MG, Girroir EE, Billin AN, Willson TM, Sharma AK, Amin S, Gonzalez FJ, Peters JM. Peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) ligands do not potentiate growth of human cancer cell lines. Carcinogenesis 2007; 28:2641-9. [PMID: 17693664 DOI: 10.1093/carcin/bgm183] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ligands for peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) increase skeletal muscle fatty acid catabolism, improve insulin sensitivity, increase serum high-density lipoprotein cholesterol, elicit anti-inflammatory activity and induce terminal differentiation. Contradictory findings are also reported suggesting that PPARbeta/delta ligands potentiate tumorigenesis by increasing cell proliferation, by inhibiting apoptosis through phosphorylation of Akt and by increasing cyclooxygenase-2 (COX2) and vascular endothelial growth factor (VEGF) expression. The contradictory findings could be due to differences in the model system (cancer cell line versus in vivo), differences in cell culture conditions (with and without serum) or differences in ligands. The present study examined the effect of two different PPARbeta/delta ligands (GW0742 and GW501516) in human cancer cell lines (HT29, HCT116, LS-174T, HepG2 and HuH7) cultured in the presence or absence of serum and compared in vitro analysis with in vivo analysis. Neither PPARbeta/delta ligand increased cell growth or phosphorylation of Akt and no increase in the expression of VEGF or COX2 were detected in any cancer cell line in the presence or absence of serum. Similarly, liver, colon and colon polyps from mice administered these PPARbeta/delta ligands in vivo did not exhibit changes in these markers. Results from these studies demonstrate that serum withdrawal and/or differences in ligands do not underlie the disparity in responses reported in the literature. The quantitative nature of the present findings are inconsistent with the hypothesis that cancer cell lines respond differentially as compared with normal cells, and provide further evidence that PPARbeta/delta ligands do not potentiate tumorigenesis.
Collapse
Affiliation(s)
- Holly E Hollingshead
- Department of Veterinary and Biomedical Sciences and the Center of Molecular Toxicology and Carcinogenesis, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Aung CS, Kruger WA, Poronnik P, Roberts-Thomson SJ, Monteith GR. Plasma membrane Ca2+-ATPase expression during colon cancer cell line differentiation. Biochem Biophys Res Commun 2007; 355:932-6. [PMID: 17321497 DOI: 10.1016/j.bbrc.2007.02.050] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 02/12/2007] [Indexed: 10/23/2022]
Abstract
The differentiation of colon cancer cell lines is associated with changes in calcium homeostasis. Concomitantly there are changes in the expression of some calcium transporters and G-protein-coupled receptors, which are capable of altering cytosolic-free calcium levels. Recent studies associate alterations in calcium transporter expression with tumourigenesis, such as changes in specific isoforms of the plasma membrane calcium ATPase (PMCA) in breast cancer cell lines. In this study, we examined the expression of PMCA isoforms in the HT-29 colon cancer cell line using two methods of differentiation (sodium butyrate-mediated and spontaneous post-confluency induced differentiation). Our studies show that differentiation of HT-29 colon cancer cells is associated with the up-regulation of the PMCA isoform PMCA4 but no significant alteration in PMCA1. These results suggest that PMCA4 may be important and have a specific role in colon cells as well as being significant in colon cancer tumourigenesis.
Collapse
Affiliation(s)
- Cho S Aung
- The School of Pharmacy, The University of Queensland, Steele Building, Brisbane, Qld 4072, Australia
| | | | | | | | | |
Collapse
|
27
|
Burdick AD, Bility MT, Girroir EE, Billin AN, Willson TM, Gonzalez FJ, Peters JM. Ligand activation of peroxisome proliferator-activated receptor-beta/delta(PPARbeta/delta) inhibits cell growth of human N/TERT-1 keratinocytes. Cell Signal 2007; 19:1163-71. [PMID: 17254750 PMCID: PMC1913217 DOI: 10.1016/j.cellsig.2006.12.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 12/20/2006] [Accepted: 12/20/2006] [Indexed: 01/10/2023]
Abstract
The functional role of peroxisome proliferator-activated receptor-beta(PPARbeta; also referred to as PPARdelta) in epidermal cell growth remains controversial. Recent evidence suggests that ligand activation of PPARbeta/delta increases cell growth and inhibits apoptosis in epidermal cells. In contrast, other reports suggest that ligand activation of PPARbeta/delta leads to the induction of terminal differentiation and inhibition of cell growth. In the present study, the effect of the highly specific PPARbeta/delta ligand GW0742 on cell growth was examined using a human keratinocyte cell line (N/TERT-1) and mouse primary keratinocytes. Ligand activation of PPARbeta/delta with GW0742 prevented cell cycle progression from G1 to S phase and attenuated cell proliferation in N/TERT-1 cells. Despite specifically activating PPARbeta/delta as revealed by target gene induction, no changes in PTEN, PDK and ILK expression or downstream phosphorylation of Akt were found in either N/TERT-1 cells or primary keratinocytes. Further, altered cell growth resulting from serum withdrawal and the induction of caspase-3 activity by ultraviolet radiation were unchanged in the absence of PPARbeta/delta expression and/or the presence of GW0742. While no changes in the expression of mRNAs encoding cell cycle control proteins were found in response to GW0742, a significant decrease in the level of ERK phosphorylation was observed. Results from these studies demonstrate that ligand activation of PPARbeta/delta does not lead to an anti-apoptotic effect in either human or mouse keratinocytes, but rather, leads to inhibition of cell growth likely through the induction of terminal differentiation.
Collapse
Affiliation(s)
- Andrew D Burdick
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Huck Institute of Life Sciences, The Pennsylvania State University, University Park 16802, United States
| | | | | | | | | | | | | |
Collapse
|
28
|
Marin HE, Peraza MA, Billin AN, Willson TM, Ward JM, Kennett MJ, Gonzalez FJ, Peters JM. Ligand activation of peroxisome proliferator-activated receptor beta inhibits colon carcinogenesis. Cancer Res 2006; 66:4394-401. [PMID: 16618765 DOI: 10.1158/0008-5472.can-05-4277] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is considerable debate whether peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) ligands potentiate or suppress colon carcinogenesis. Whereas administration of a PPARbeta ligand causes increased small intestinal tumorigenesis in Apc(min/+) mice, PPARbeta-null (Pparb-/-) mice exhibit increased colon polyp multiplicity in colon cancer bioassays, suggesting that ligand activation of this receptor will inhibit colon carcinogenesis. This hypothesis was examined by treating wild-type (Pparb+/+) and Pparb-/- with azoxymethane, coupled with a highly specific PPARbeta ligand, GW0742. Ligand activation of PPARbeta in Pparb+/+ mice caused an increase in the expression of mRNA encoding adipocyte differentiation-related protein, fatty acid-binding protein, and cathepsin E. These findings are indicative of colonocyte differentiation, which was confirmed by immunohistochemical analysis. No PPARbeta-dependent differences in replicative DNA synthesis or expression of phosphatase and tensin homologue, phosphoinositide-dependent kinase, integrin-linked kinase, or phospho-Akt were detected in ligand-treated mouse colonic epithelial cells although increased apoptosis was found in GW0742-treated Pparb+/+ mice. Consistent with increased colonocyte differentiation and apoptosis, inhibition of colon polyp multiplicity was also found in ligand-treated Pparb+/+ mice, and all of these effects were not found in Pparb-/- mice. In contrast to previous reports suggesting that activation of PPARbeta potentiates intestinal tumorigenesis, here we show that ligand activation of PPARbeta attenuates chemically induced colon carcinogenesis and that PPARbeta-dependent induction of cathepsin E could explain the reported disparity in the literature about the effect of ligand activation of PPARbeta in the intestine.
Collapse
Affiliation(s)
- Holly E Marin
- Department of Veterinary and Biomedical Sciences and The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|