1
|
Zaman N, Kushwah AS, Badriprasad A, Chakraborty G. Unravelling the molecular basis of PARP inhibitor resistance in prostate cancer with homologous recombination repair deficiency. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:257-301. [PMID: 39396849 PMCID: PMC11855062 DOI: 10.1016/bs.ircmb.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Prostate cancer is a disease with heterogeneous characteristics, making its treatability and curability dependent on the cancer's stage. While prostate cancer is often indolent, some cases can be aggressive and evolve into metastatic castration-resistant prostate cancer (mCRPC), which is lethal. A significant subset of individuals with mCRPC exhibit germline and somatic variants in components of the DNA damage repair (DDR) pathway. Recently, PARP inhibitors (PARPi) have shown promise in treating mCRPC patients who carry deleterious alterations in BRCA2 and 13 other DDR genes that are important for the homologous recombination repair (HRR) pathway. These inhibitors function by trapping PARP, resulting in impaired PARP activity and increased DNA damage, ultimately leading to cell death through synthetic lethality. However, the response to these inhibitors only lasts for 3-4 months, after which the cancer becomes PARPi resistant. Cancer cells can develop resistance to PARPi through numerous mechanisms, such as secondary reversion mutations in DNA repair pathway genes, heightened drug efflux, loss of PARP expression, HRR reactivation, replication fork stability, and upregulation of Wnt/Catenin and ABCB1 pathways. Overcoming PARPi resistance is a critical and complex process, and there are two possible ways to sensitize the resistance. The first approach is to potentiate the PARPi agents through chemo/radiotherapy and combination therapy, while the second approach entails targeting different signaling pathways. This review article highlights the latest evidence on the resistance mechanism of PARPi in lethal prostate cancer and discusses additional therapeutic opportunities available for prostate cancer patients with DDR gene alterations who do not respond to PARPi.
Collapse
Affiliation(s)
- Nabila Zaman
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Atar Singh Kushwah
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Anagha Badriprasad
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Goutam Chakraborty
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
2
|
Chakraborty G, Patail NK, Hirani R, Nandakumar S, Mazzu YZ, Yoshikawa Y, Atiq M, Jehane LE, Stopsack KH, Lee GSM, Abida W, Morris MJ, Mucci LA, Danila D, Kantoff PW. Attenuation of SRC Kinase Activity Augments PARP Inhibitor-mediated Synthetic Lethality in BRCA2-altered Prostate Tumors. Clin Cancer Res 2021; 27:1792-1806. [PMID: 33334906 PMCID: PMC7956224 DOI: 10.1158/1078-0432.ccr-20-2483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/04/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Alterations in DNA damage repair (DDR) pathway genes occur in 20%-25% of men with metastatic castration-resistant prostate cancer (mCRPC). Although PARP inhibitors (PARPis) have been shown to benefit men with mCRPC harboring DDR defects due to mutations in BRCA1/2 and ATM, additional treatments are necessary because the effects are not durable. EXPERIMENTAL DESIGN We performed transcriptomic analysis of publicly available mCRPC cases, comparing BRCA2 null with BRCA2 wild-type. We generated BRCA2-null prostate cancer cells using CRISPR/Cas9 and treated these cells with PARPis and SRC inhibitors. We also assessed the antiproliferative effects of combination treatment in 3D prostate cancer organoids. RESULTS We observed significant enrichment of the SRC signaling pathway in BRCA2-altered mCRPC. BRCA2-null prostate cancer cell lines had increased SRC phosphorylation and higher sensitivity to SRC inhibitors (e.g., dasatinib, bosutinib, and saracatinib) relative to wild-type cells. Combination treatment with PARPis and SRC inhibitors was antiproliferative and had a synergistic effect in BRCA2-null prostate cancer cells, mCRPC organoids, and Trp53/Rb1-null prostate cancer cells. Inhibition of SRC signaling by dasatinib augmented DNA damage in BRCA2-null prostate cancer cells. Moreover, SRC knockdown increased PARPi sensitivity in BRCA2-null prostate cancer cells. CONCLUSIONS This work suggests that SRC activation may be a potential mechanism of PARPi resistance and that treatment with SRC inhibitors may overcome this resistance. Our preclinical study demonstrates that combining PARPis and SRC inhibitors may be a promising therapeutic strategy for patients with BRCA2-null mCRPC.
Collapse
Affiliation(s)
- Goutam Chakraborty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nabeela Khan Patail
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rahim Hirani
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Subhiksha Nandakumar
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ying Z. Mazzu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yuki Yoshikawa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mohammad Atiq
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lina E. Jehane
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Konrad H. Stopsack
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Wassim Abida
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael J. Morris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Daniel Danila
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Philip W. Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
3
|
Domínguez-Ordóñez R, García-Juárez M, Lima-Hernández FJ, Gómora-Arrati P, Domínguez-Salazar E, Luna-Hernández A, Hoffman KL, Blaustein JD, Etgen AM, González-Flores O. Protein kinase inhibitors infused intraventricularly or into the ventromedial hypothalamus block short latency facilitation of lordosis by oestradiol. J Neuroendocrinol 2019; 31:e12809. [PMID: 31715031 DOI: 10.1111/jne.12809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 11/27/2022]
Abstract
An injection of unesterified oestradiol (E2 ) facilitates receptive behaviour in E2 benzoate (EB)-primed, ovariectomised female rats when it is administered i.c.v. or systemically. The present study tested the hypothesis that inhibitors of protein kinase A (PKA), protein kinase G (PKG) or the Src/mitogen-activated protein kinase (MAPK) complex interfere with E2 facilitation of receptive behaviour. In Experiment 1, lordosis induced by i.c.v. infusion of E2 was significantly reduced by i.c.v. administration of Rp-cAMPS, a PKA inhibitor, KT5823, a PKG inhibitor, and PP2 and PD98059, Src and MAPK inhibitors, respectively, between 30 and 240 minutes after infusion. In Experiment 2, we determined whether the ventromedial hypothalamus (VMH) is one of the neural sites at which those intracellular pathways participate in lordosis behaviour induced by E2 . Administration of each of the four protein kinase inhibitors into the VMH blocked facilitation of lordosis induced by infusion of E2 also into the VMH. These data support the hypothesis that activation of several protein kinase pathways is involved in the facilitation of lordosis by E2 in EB-primed rats.
Collapse
Affiliation(s)
- Raymundo Domínguez-Ordóñez
- Licenciatura en Ingeniería Agronómica y Zootecnia, Complejo Regional Centro, Benemérita Universidad Autónoma de Puebla, Tecamachalco, Mexico
- Department of Psychological and Brain Sciences, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA, USA
| | - Marcos García-Juárez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Francisco J Lima-Hernández
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Porfirio Gómora-Arrati
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Emilio Domínguez-Salazar
- Área de Neurociencias, Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Iztapalapa, México
| | - Ailyn Luna-Hernández
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Kurt L Hoffman
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Jeffrey D Blaustein
- Licenciatura en Ingeniería Agronómica y Zootecnia, Complejo Regional Centro, Benemérita Universidad Autónoma de Puebla, Tecamachalco, Mexico
- Department of Psychological and Brain Sciences, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA, USA
| | - Anne M Etgen
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
- Área de Neurociencias, Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Iztapalapa, México
| |
Collapse
|
4
|
Kitabatake K, Yoshida E, Kaji T, Tsukimoto M. Involvement of adenosine A2B receptor in radiation-induced translocation of epidermal growth factor receptor and DNA damage response leading to radioresistance in human lung cancer cells. Biochim Biophys Acta Gen Subj 2019; 1864:129457. [PMID: 31678144 DOI: 10.1016/j.bbagen.2019.129457] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/30/2019] [Accepted: 10/17/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND Adenosine receptors are involved in tumor growth, progression, and response to therapy. Among them, A2B receptor is highly expressed in various tumors. Furthermore, ionizing radiation induces translocation of epidermal growth factor receptor (EGFR), which promotes DNA repair and contributes to radioresistance. We hypothesized that A2B receptor might be involved in the translocation of EGFR. METHODS We investigated whether A2B receptor is involved in EGFR translocation and DNA damage response (γH2AX/53BP1 focus formation) of lung cancer cells by means of immunofluorescence studies. Radiosensitivity was evaluated by colony formation assay after γ-irradiation. RESULTS A2B receptor was expressed at higher levels in cancer cells than in normal cells. A2B receptor antagonist treatment or A2B receptor knockdown suppressed EGFR translocation, γH2AX/53BP1 focus formation, and colony formation of lung cancer cell lines A549, calu-6 and NCI-H446, compared with a normal cell line (beas-2b). γ-Irradiation-induced phosphorylation of src and EGFR was also attenuated by suppression of A2B receptor expression. CONCLUSION Activation of A2B receptor mediates γ-radiation-induced translocation of EGFR and phosphorylation of src and EGFR, thereby promoting recovery of irradiated lung cancer cells from DNA damage. GENERAL SIGNIFICANCE Our results indicate that A2B receptors contribute to radiation resistance in a cancer-cell-specific manner, and may be a promising target for radiosensitizers in cancer radiotherapy.
Collapse
Affiliation(s)
- Kazuki Kitabatake
- Department of Radiation Biosciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-0022, Japan
| | - Eiko Yoshida
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-0022, Japan
| | - Toshiyuki Kaji
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-0022, Japan
| | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-0022, Japan.
| |
Collapse
|
5
|
Dzik KP, Kaczor JJ. Mechanisms of vitamin D on skeletal muscle function: oxidative stress, energy metabolism and anabolic state. Eur J Appl Physiol 2019; 119:825-839. [PMID: 30830277 PMCID: PMC6422984 DOI: 10.1007/s00421-019-04104-x] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/13/2019] [Indexed: 02/08/2023]
Abstract
PURPOSE This review provides a current perspective on the mechanism of vitamin D on skeletal muscle function with the emphasis on oxidative stress, muscle anabolic state and muscle energy metabolism. It focuses on several aspects related to cellular and molecular physiology such as VDR as the trigger point of vitamin D action, oxidative stress as a consequence of vitamin D deficiency. METHOD The interaction between vitamin D deficiency and mitochondrial function as well as skeletal muscle atrophy signalling pathways have been studied and clarified in the last years. To the best of our knowledge, we summarize key knowledge and knowledge gaps regarding the mechanism(s) of action of vitamin D in skeletal muscle. RESULT Vitamin D deficiency is associated with oxidative stress in skeletal muscle that influences the mitochondrial function and affects the development of skeletal muscle atrophy. Namely, vitamin D deficiency decreases oxygen consumption rate and induces disruption of mitochondrial function. These deleterious consequences on muscle may be associated through the vitamin D receptor (VDR) action. Moreover, vitamin D deficiency may contribute to the development of muscle atrophy. The possible signalling pathway triggering the expression of Atrogin-1 involves Src-ERK1/2-Akt- FOXO causing protein degradation. CONCLUSION Based on the current knowledge we propose that vitamin D deficiency results from the loss of VDR function and it could be partly responsible for the development of neurodegenerative diseases in human beings.
Collapse
Affiliation(s)
- Katarzyna Patrycja Dzik
- Department of Neurobiology of Muscle, Gdansk University of Physical Education and Sport, Kazimierza Gorskiego 1, 80-336, Gdansk, Poland
| | - Jan Jacek Kaczor
- Department of Neurobiology of Muscle, Gdansk University of Physical Education and Sport, Kazimierza Gorskiego 1, 80-336, Gdansk, Poland.
| |
Collapse
|
6
|
Tsukimoto M. Purinergic Signaling Is a Novel Mechanism of the Cellular Response to Ionizing Radiation. Biol Pharm Bull 2016; 38:951-9. [PMID: 26133701 DOI: 10.1248/bpb.b15-00062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies suggest the effect of radiation is observed not only in irradiated cells but also in adjacent non-irradiated cells (bystander effect), although the mechanism has not yet been fully revealed. This bystander effect may be caused by intercellular communication via a gap junction or by messengers released from irradiated cells, such as reactive oxygen species, nitric oxide, or cytokines. However, an unknown mechanism is also possible in the bystander effect. On the other hand, it is known that extracellular ATP, ADP, uridine 5'-triphosphate (UTP), and uridine 5'-diphosphate (UDP), which are released from cells, act as intercellular signaling molecules by activating purinergic P2X and P2Y receptors (purinergic signaling). Recently, I have suggested these extracellular nucleotides may be novel mediators of a radiation-induced bystander effect, because our recent studies indicated that purinergic signaling is involved in important cellular responses to radiation. Our data indicate that ionizing irradiation causes activation of the transient receptor potential melastatin type 2 (TRPM2) channel, and then ATP is released from cells through the anion channel or connexin43 hemichannel mediated by the activation of a P2X7 receptor. The released nucleotides activate P2Y6 and P2Y12 receptors, which are involved in the DNA damage response after irradiation. Activation of the P2Y6 receptor is also involved in radiation-induced activation of the epithelial growth factor receptor-extracellular signal regulated protein kinase (EGFR-ERK)1/2 pathway and subsequent nuclear translocation of EGFR, which plays a role in DNA repair. Further, the induction of an antioxidant after irradiation is also mediated by the activation of the P2Y receptor. In conclusion, purinergic signaling could play an important role in the protective cellular response to ionizing irradiation.
Collapse
Affiliation(s)
- Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
7
|
Mahajan K, Mahajan NP. Cross talk of tyrosine kinases with the DNA damage signaling pathways. Nucleic Acids Res 2015; 43:10588-601. [PMID: 26546517 PMCID: PMC4678820 DOI: 10.1093/nar/gkv1166] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/21/2015] [Indexed: 01/19/2023] Open
Abstract
Tyrosine kinases respond to extracellular and intracellular cues by activating specific cellular signaling cascades to regulate cell cycle, growth, proliferation, differentiation and survival. Likewise, DNA damage response proteins (DDR) activated by DNA lesions or chromatin alterations recruit the DNA repair and cell cycle checkpoint machinery to restore genome integrity and cellular homeostasis. Several new examples have been uncovered in recent studies which reveal novel epigenetic and non-epigenetic mechanisms by which tyrosine kinases interact with DDR proteins to dictate cell fate, i.e. survival or apoptosis, following DNA damage. These studies reveal the ability of tyrosine kinases to directly regulate the activity of DNA repair and cell cycle check point proteins by tyrosine phosphorylation. In addition, tyrosine kinases epigenetically regulate DNA damage signaling pathways by modifying the core histones as well as chromatin modifiers at critical tyrosine residues. Thus, deregulated tyrosine kinase driven epigenomic alterations have profound implications in cancer, aging and genetic disorders. Consequently, targeting oncogenic tyrosine kinase induced epigenetic alterations has gained significant traction in overcoming cancer cell resistance to various therapies. This review discusses mechanisms by which tyrosine kinases interact with DDR pathways to regulate processes critical for maintaining genome integrity as well as clinical strategies for targeted cancer therapies.
Collapse
Affiliation(s)
- Kiran Mahajan
- Tumor Biology Department, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA Department of Oncological Sciences, University of South Florida, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Nupam P Mahajan
- Drug Discovery Department, Moffitt Cancer Center, University of South Florida, 12902 Magnolia Drive, Tampa, FL 33612, USA Department of Oncological Sciences, University of South Florida, 12902 Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
8
|
Jensen HA, Bunaciu RP, Varner JD, Yen A. GW5074 and PP2 kinase inhibitors implicate nontraditional c-Raf and Lyn function as drivers of retinoic acid-induced maturation. Cell Signal 2015; 27:1666-75. [PMID: 25817574 PMCID: PMC4529126 DOI: 10.1016/j.cellsig.2015.03.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/05/2015] [Accepted: 03/16/2015] [Indexed: 02/07/2023]
Abstract
The multivariate nature of cancer necessitates multi-targeted therapy, and kinase inhibitors account for a vast majority of approved cancer therapeutics. While acute promyelocytic leukemia (APL) patients are highly responsive to retinoic acid (RA) therapy, kinase inhibitors have been gaining momentum as co-treatments with RA for non-APL acute myeloid leukemia (AML) differentiation therapies, especially as a means to treat relapsed or refractory AML patients. In this study GW5074 (a c-Raf inhibitor) and PP2 (a Src-family kinase inhibitor) enhanced RA-induced maturation of t(15;17)-negative myeloblastic leukemia cells and rescued response in RA-resistant cells. PD98059 (a MEK inhibitor) and Akti-1/2 (an Akt inhibitor) were less effective, but did tend to promote maturation-uncoupled G1/G0 arrest, while wortmannin (a PI3K inhibitor) did not enhance differentiation surface marker expression or growth arrest. PD98059 and Akti-1/2 did not enhance differentiation markers and have potential, antagonistic off-targets effects on the aryl hydrocarbon receptor (AhR), but neither could the AhR agonist 6-formylindolo(3,2-b)carbazole (FICZ) rescue differentiation events in the RA-resistant cells. GW5074 rescued early CD38 expression in RA-resistant cells exhibiting an early block in differentiation before CD38 expression, while for RA-resistant cells with differentiation blocked later, PP2 rescued the later differentiation marker CD11b; but surprisingly, the combination of the two was not synergistic. Kinases c-Raf, Src-family kinases Lyn and Fgr, and PI3K display highly correlated signaling changes during RA treatment, while activation of traditional downstream targets (Akt, MEK/ERK), and even the surface marker CD38, were poorly correlated with c-Raf or Lyn during differentiation. This suggests that an interrelated kinase module involving c-Raf, PI3K, Lyn and perhaps Fgr functions in a nontraditional way during RA-induced maturation or during rescue of RA induction therapy using inhibitor co-treatment in RA-resistant leukemia cells.
Collapse
Affiliation(s)
- Holly A Jensen
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Rodica P Bunaciu
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| | - Jeffrey D Varner
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Andrew Yen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
9
|
Inhibition of TRPM7 Attenuates Rat Aortic Smooth Muscle Cell Proliferation Induced by Angiotensin II. J Cardiovasc Pharmacol 2015; 66:16-24. [DOI: 10.1097/fjc.0000000000000238] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Pilon EA, Dieudé M, Qi S, Hamelin K, Pomerleau L, Beillevaire D, Durocher Y, Zutter M, Coutu D, Perreault C, Hébert MJ. The perlecan fragment LG3 regulates homing of mesenchymal stem cells and neointima formation during vascular rejection. Am J Transplant 2015; 15:1205-18. [PMID: 25808553 DOI: 10.1111/ajt.13119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 11/04/2014] [Accepted: 11/20/2014] [Indexed: 01/25/2023]
Abstract
Transplant vasculopathy is associated with neointimal accumulation of recipient-derived mesenchymal stem cells. Increased circulating levels of LG3, a C-terminal fragment of perlecan, were found in renal transplant patients with vascular rejection. Here, we evaluated whether LG3 regulates the migration and homing of mesenchymal stem cells and the accumulation of recipient-derived neointimal cells. Mice were transplanted with a fully-MHC mismatched aortic graft followed by intravenous injection of recombinant LG3. LG3 injections increased neointimal accumulation of α-smooth muscle actin positive cells. When green fluorescent protein (GFP)-transgenic mice were used as recipients, LG3 injection favored accumulation of GFP+ cells to sites of neointima formation. LG3 increased horizontal migration and transmigration of mouse and human MSC in vitro and led to increased ERK1/2 phosphorylation. Neutralizing β1 integrin antibodies or use of mesenchymal stem cells from α2 integrin-/- mice decreased migration in response to recombinant LG3. Reduced intima-media ratios and decreased numbers of neointimal cells showing ERK1/2 phosphorylation were found in α2-/- recipients injected with recombinant LG3. Collectively, our results suggest that LG3, through interactions with α2β1 integrins on recipient-derived cells leading to activation of ERK1/2 and increased migration, favors myointimal thickening.
Collapse
Affiliation(s)
- E A Pilon
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mo Z, Liu M, Yang F, Luo H, Li Z, Tu G, Yang G. GPR30 as an initiator of tamoxifen resistance in hormone-dependent breast cancer. Breast Cancer Res 2013; 15:R114. [PMID: 24289103 PMCID: PMC3978564 DOI: 10.1186/bcr3581] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 11/14/2013] [Indexed: 01/23/2023] Open
Abstract
Introduction Tamoxifen is widely used to treat hormone-dependent breast cancer, but its therapeutic benefit is limited by the development of drug resistance. Here, we investigated the role of estrogen G-protein coupled receptor 30 (GPR30) on Tamoxifen resistance in breast cancer. Methods Primary tumors (PTs) of breast cancer and corresponding metastases (MTs) were used to evaluate the expression of GPR30 and epidermal growth factor receptor (EGFR) immunohistochemically. Tamoxifen-resistant (TAM-R) subclones derived from parent MCF-7 cells were used to investigate the role of GPR30 in the development of tamoxifen resistance, using MTT assay, western blot, RT-PCR, immunofluorescence, ELISA and flow cytometry. TAM-R xenografts were established to assess anti-tumor effects of combination therapy with GPR30 antagonist G15 plus 4-hydroxytamoxifen (Tam), using tumor volume measurement and Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). Results In 53 human breast cancer specimens, GPR30 expression in MTs increased compared to matched PTs; in MTs, the expression patterns of GPR30 and EGFR were closely related. Compared to parent MCF-7 cells, TAM-R cells had greater growth responses to 17β-estradiol (E2), GPR30 agonist G1 and Tam, and significantly higher activation of Mitogen-activated protein (MAP) kinases; but this increased activity was abolished by G15 or AG1478. In TAM-R cells, GPR30 cell-surface translocation facilitated crosstalk with EGFR, and reduced cAMP generation, attenuating inhibition of EGFR signaling. Combination therapy both promoted apoptosis in TAM-R cells and decreased drug-resistant tumor progression. Conclusions Long-term endocrine treatment facilitates the translocation of GPR30 to cell surfaces, which interferes with the EGFR signaling pathway; GPR30 also attenuates the inhibition of MAP kinases. These factors contribute to tamoxifen resistance development in breast cancer. Combination therapy with GPR30 inhibitors and tamoxifen may provide a new therapeutic option for drug-resistant breast cancer.
Collapse
|
12
|
García-Juárez M, Beyer C, Gómora-Arrati P, Domínguez-Ordoñez R, Lima-Hernández FJ, Eguibar JR, Galicia-Aguas YL, Etgen AM, González-Flores O. Lordosis facilitation by leptin in ovariectomized, estrogen-primed rats requires simultaneous or sequential activation of several protein kinase pathways. Pharmacol Biochem Behav 2013; 110:13-8. [DOI: 10.1016/j.pbb.2013.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 05/12/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
|
13
|
Buitrago C, Pardo VG, Boland R. Role of VDR in 1α,25-dihydroxyvitamin D3-dependent non-genomic activation of MAPKs, Src and Akt in skeletal muscle cells. J Steroid Biochem Mol Biol 2013; 136:125-30. [PMID: 23470620 DOI: 10.1016/j.jsbmb.2013.02.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 02/18/2013] [Accepted: 02/21/2013] [Indexed: 10/27/2022]
Abstract
1α,25-dihydroxyvitamin D3 [1,25D] is recognized as a steroid hormone that rapidly elicits intracellular signals in various tissues. In skeletal myoblasts, we have previously demonstrated that one of the 1,25D-induced non-genomic effects is the upstream stimulation of MAPKs through Src activation. In this work, the data obtained suggest that the classical receptor of vitamin D (VDR) participates in non-transcriptional actions of 1,25D. We significantly reduced VDR expression by infection of C2C12 murine myoblasts with lentiviral particles containing the pLKO.1 plasmid with information to express a shRNA against mouse VDR. In these cells (C2C12-shVDR), Western blot analyses show that 1,25D-induced p38 MAPK activation and Src tyr416 phosphorylation were abolished. In addition, 1,25D-dependent activity of ERK1/2 was diminished in cells lacking VDR but to a lesser extent (∼-60%). Phosphorylation of Akt by 1,25D, recently demonstrated in C2C12 cells, in the present work also appeared to be partially dependent on VDR expression (∼50% in C2C12-shVDR cells). Our results indicate that VDR is involved in 1,25D-induced rapid events related to survival/proliferation responses in skeletal muscle cells, providing relevant information on the mechanism of initiation of the non-genomic hormone signal. The participation of a VDR-independent non-genomic mechanism of action should also be taken into consideration. This article is part of a Special Issue entitled 'Vitamin D Workshop'.
Collapse
Affiliation(s)
- Claudia Buitrago
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina.
| | | | | |
Collapse
|
14
|
Cellular functions regulated by phosphorylation of EGFR on Tyr845. Int J Mol Sci 2013; 14:10761-90. [PMID: 23702846 PMCID: PMC3709701 DOI: 10.3390/ijms140610761] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 11/17/2022] Open
Abstract
The Src gene product (Src) and the epidermal growth factor receptor (EGFR) are prototypes of oncogene products and function primarily as a cytoplasmic non-receptor tyrosine kinase and a transmembrane receptor tyrosine kinase, respectively. The identification of Src and EGFR, and the subsequent extensive investigations of these proteins have long provided cutting edge research in cancer and other molecular and cellular biological studies. In 1995, we reported that the human epidermoid carcinoma cells, A431, contain a small fraction of Src and EGFR in which these two kinase were in physical association with each other, and that Src phosphorylates EGFR on tyrosine 845 (Y845) in the Src-EGFR complex. Y845 of EGFR is located in the activation segment of the kinase domain, where many protein kinases contain kinase-activating autophosphorylation sites (e.g., cAMP-dependent protein kinase, Src family kinases, transmembrane receptor type tyrosine kinases) or trans-phosphorylation sites (e.g., cyclin-dependent protein kinase, mitogen-activated protein kinase, Akt protein kinase). A number of studies have demonstrated that Y845 phosphorylation serves an important role in cancer as well as normal cells. Here we compile the experimental facts involving Src phosphorylation of EGFR on Y845, by which cell proliferation, cell cycle control, mitochondrial regulation of cell metabolism, gamete activation and other cellular functions are regulated. We also discuss the physiological relevance, as well as structural insights of the Y845 phosphorylation.
Collapse
|
15
|
Jensen HA, Styskal LE, Tasseff R, Bunaciu RP, Congleton J, Varner JD, Yen A. The Src-family kinase inhibitor PP2 rescues inducible differentiation events in emergent retinoic acid-resistant myeloblastic leukemia cells. PLoS One 2013; 8:e58621. [PMID: 23554907 PMCID: PMC3598855 DOI: 10.1371/journal.pone.0058621] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/05/2013] [Indexed: 12/29/2022] Open
Abstract
Retinoic acid is an embryonic morphogen and dietary factor that demonstrates chemotherapeutic efficacy in inducing maturation in leukemia cells. Using HL60 model human myeloid leukemia cells, where all-trans retinoic acid (RA) induces granulocytic differentiation, we developed two emergent RA-resistant HL60 cell lines which are characterized by loss of RA-inducible G1/G0 arrest, CD11b expression, inducible oxidative metabolism and p47phox expression. However, RA-treated RA-resistant HL60 continue to exhibit sustained MEK/ERK activation, and one of the two sequentially emergent resistant lines retains RA-inducible CD38 expression. Other signaling events that define the wild-type (WT) response are compromised, including c-Raf phosphorylation and increased expression of c-Cbl, Vav1, and the Src-family kinases (SFKs) Lyn and Fgr. As shown previously in WT HL60 cells, we found that the SFK inhibitor PP2 significantly increases G1/G0 cell cycle arrest, CD38 and CD11b expression, c-Raf phosphorylation and expression of the aforementioned regulators in RA-resistant HL60. The resistant cells were potentially incapable of developing inducible oxidative metabolism. These results motivate the concept that RA resistance can occur in steps, wherein growth arrest and other differentiation events may be recovered in both emergent lines. Investigating the mechanistic anomalies in resistant cell lines is of therapeutic significance and helps to mechanistically understand the response to retinoic acid’s biological effects in WT HL60 cells.
Collapse
Affiliation(s)
- Holly A. Jensen
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Lauren E. Styskal
- Department of Biological Engineering, Cornell University, Ithaca, New York, United States of America
| | - Ryan Tasseff
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Rodica P. Bunaciu
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
| | - Johanna Congleton
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
| | - Jeffrey D. Varner
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Andrew Yen
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
16
|
Lima-Hernández FJ, Beyer C, Gómora-Arrati P, García-Juárez M, Encarnación-Sánchez JL, Etgen AM, González-Flores O. Src kinase signaling mediates estrous behavior induced by 5β-reduced progestins, GnRH, prostaglandin E2 and vaginocervical stimulation in estrogen-primed rats. Horm Behav 2012; 62:579-84. [PMID: 23010621 DOI: 10.1016/j.yhbeh.2012.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 11/18/2022]
Abstract
The progesterone receptor (PR) is a dual function protein that acts in the nucleus as a transcriptional factor and at the cytoplasm as a scaffold for the Src-MAPK signaling pathway. Several agents lacking affinity for the PR, such as 5β-reduced progestins, GnRH or prostaglandin E(2) (PGE(2)) facilitate estrous behavior in ovariectomized (ovx), estrogen-primed rats yet their action is blocked by the antiprogestin RU486. We hypothesize that these agents act by using the PR-Src-mitogen activated protein kinase alternative pathway. To test this hypothesis we used PP2, a specific inhibitor of the Src kinase family. Intraventricular infusion of 30 μg of PP2, 30 min before behavioral testing, significantly attenuated estrous behaviors induced in estradiol benzoate (E(2)B)-primed rats by 5β-dihydroprogesterone (5β-DHP), 5β-pregnan-3β-ol-20-one (5β,3β-Pgl), GnRH, PGE(2) and by manual flank/vaginocervical stimulation. These results suggest that the Src signaling system, by activating mitogen-activated protein kinases, participates in the facilitation of estrous behavior in E(2)B-primed rats induced by agents lacking affinity for the PR.
Collapse
|
17
|
Raju U, Riesterer O, Wang ZQ, Molkentine DP, Molkentine JM, Johnson FM, Glisson B, Milas L, Ang KK. Dasatinib, a multi-kinase inhibitor increased radiation sensitivity by interfering with nuclear localization of epidermal growth factor receptor and by blocking DNA repair pathways. Radiother Oncol 2012; 105:241-9. [DOI: 10.1016/j.radonc.2012.08.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 07/24/2012] [Accepted: 08/14/2012] [Indexed: 11/28/2022]
|
18
|
Ohshima Y, Tsukimoto M, Harada H, Kojima S. Involvement of connexin43 hemichannel in ATP release after γ-irradiation. JOURNAL OF RADIATION RESEARCH 2012; 53:551-7. [PMID: 22843620 PMCID: PMC3393350 DOI: 10.1093/jrr/rrs014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ionizing radiation induces biological effects not only in irradiated cells but also in non-irradiated cells, which is called the bystander effect. Recently, in vivo and in vitro experiments have suggested that both gap junction hemichannel connexin43 (Cx43) and extracellular adenosine triphosphate (ATP) released from cells play a role in the bystander effect. We have reported that γ-irradiation induces ATP release from B16 melanoma cells, which is dependent on the P2X(7) receptor. However, the mechanism of ATP release caused by irradiation remains unclear. We here show the involvement of Cx43 in P2X(7) receptor-dependent ATP release after 0.5 Gy γ-irradiation. Inhibitors of gap junction hemichannels and an inhibitory peptide for Cx43 (gap26), but not an inhibitory peptide for pannexin1 (Panx1), significantly blocked γ-irradiation-induced ATP release from B16 melanoma cells. We confirmed high expression of Cx43 mRNA in B16 melanoma cells. These results suggest involvement of Cx43 in radiation-induced ATP release. We found that after 0.5 Gy γ-irradiation tyrosine phosphorylation was significantly blocked by P2X(7) receptor antagonist, but not gap26, suggesting that tyrosine phosphorylation is a downstream event from the P2X(7) receptor. Since tyrosine kinase inhibitor significantly suppressed radiation-induced ATP release, tyrosine phosphorylation appears to play an important role in the Cx43-mediated ATP release downstream of the P2X(7) receptor. In conclusion, the Cx43 hemichannel, which lies downstream of the P2X(7) receptor, is involved in ATP release in response to radiation. Our results suggest a novel mechanism for radiation-induced biological effects mediated by both ATP and Cx43.
Collapse
Affiliation(s)
- Yasuhiro Ohshima
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-0022, Japan
- Medical Radioisotope Application Group, Medical and Biotechnological Application Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki-shi, Gunma 370-1292, Japan
| | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-0022, Japan
- Corresponding author. Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-0022, Japan; Tel: +81 (0) 4 7124 1501 (ext. 6443); Fax: +81 (0) 4 7121 3613;
| | - Hitoshi Harada
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-cho, Suzuka-shi, Mie 513-8670, Japan
| | - Shuji Kojima
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-0022, Japan
| |
Collapse
|
19
|
Zhang H, Liu H, Borok Z, Davies KJ, Ursini F, Forman HJ. Cigarette smoke extract stimulates epithelial-mesenchymal transition through Src activation. Free Radic Biol Med 2012; 52:1437-42. [PMID: 22342303 PMCID: PMC3312989 DOI: 10.1016/j.freeradbiomed.2012.01.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 01/20/2012] [Accepted: 01/26/2012] [Indexed: 12/18/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is implicated in the pathogenesis of lung fibrosis and cancer metastasis, two conditions associated with cigarette smoke (CS). CS has been reported to promote the EMT process. CS is the major cause of lung cancer and nearly half of lung cancer patients are active smokers. Nonetheless, the mechanism whereby CS induces EMT remains largely unknown. In this study we investigated the induction of EMT by CS and explored the underlying mechanisms in the human non-small-cell lung carcinoma (H358) cell line. We demonstrate that exposure to an extract of CS (CSE) decreases E-cadherin and increases N-cadherin and vimentin, markers of EMT, in H358 cells cultured in RPMI 1640 medium with 1% fetal bovine serum. Pretreatment with N-acetylcysteine (NAC), a potent antioxidant and precursor of glutathione, abrogated changes in these EMT markers. In addition, CSE activated Src kinase (shown as increased phosphorylation of Src at Tyr418), and the Src kinase inhibitor PP2 inhibited CS-stimulated EMT changes, suggesting that Src is critical in CSE-stimulated EMT induction. Furthermore, NAC treatment abrogated CSE-stimulated Src activation. However, co-incubation with catalase had no effect on CSE-mediated Src activation. Finally, acrolein, an unsaturated aldehyde present in CSE, caused Src activation. Taken together, these data suggest that CSE initiates EMT through Src, which is activated by CS through redox modification.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Andrus Gerontology Center, Davis School of Gerontology, University of Southern California
| | - Honglei Liu
- Andrus Gerontology Center, Davis School of Gerontology, University of Southern California
| | - Zea Borok
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Keck School of Medicine, University of Southern California
| | - Kelvin J.A. Davies
- Andrus Gerontology Center, Davis School of Gerontology, University of Southern California
- Division of Molecular & Computational Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California
| | - Fulvio Ursini
- Dipartmento di Chimica Biologica, Università di Padova
| | - Henry Jay Forman
- Andrus Gerontology Center, Davis School of Gerontology, University of Southern California
- School of Natural Science, University of California, Merced
| |
Collapse
|
20
|
Graham K, Moran-Jones K, Sansom OJ, Brunton VG, Frame MC. FAK deletion promotes p53-mediated induction of p21, DNA-damage responses and radio-resistance in advanced squamous cancer cells. PLoS One 2011; 6:e27806. [PMID: 22194793 PMCID: PMC3237418 DOI: 10.1371/journal.pone.0027806] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 10/25/2011] [Indexed: 01/19/2023] Open
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that is elevated in a variety of human cancers. While FAK is implicated in many cellular processes that are perturbed in cancer, including proliferation, actin and adhesion dynamics, polarisation and invasion, there is only some limited information regarding the role of FAK in radiation survival. We have evaluated whether FAK is a general radio-sensitising target, as has been suggested by previous reports. We used a clean genetic system in which FAK was deleted from mouse squamous cell carcinoma (SCC) cells (FAK -/-), and reconstituted with exogenous FAK wild type (wt). Surprisingly, the absence of FAK was associated with increased radio-resistance in advanced SCC cells. FAK re-expression inhibited p53-mediated transcriptional up-regulation of p21, and a sub-set of other p53 target genes involved in DNA repair, after treatment with ionizing radiation. Moreover, p21 depletion promoted radio-sensitisation, implying that FAK-mediated inhibition of p21 induction is responsible for the relative radio-sensitivity of FAK-proficient SCC cells. Our work adds to a growing body of evidence that there is a close functional relationship between integrin/FAK signalling and the p53/p21 pathway, but demonstrates that FAK's role in survival after stress is context-dependent, at least in cancer cells. We suggest that there should be caution when considering inhibiting FAK in combination with radiation, as this may not always be clinically advantageous.
Collapse
Affiliation(s)
- Kathryn Graham
- The Beatson Institute for Cancer Research, Garscube Estate, Bearsden, Glasgow, Scotland
| | - Kim Moran-Jones
- The Beatson Institute for Cancer Research, Garscube Estate, Bearsden, Glasgow, Scotland
| | - Owen J. Sansom
- The Beatson Institute for Cancer Research, Garscube Estate, Bearsden, Glasgow, Scotland
| | - Valerie G. Brunton
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, Scotland
| | - Margaret C. Frame
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
21
|
Shimura T, Kuwahara Y, Fukumoto M, Umata T. Activation of EGFR, AKT and ERK1/2 by Exposure to Tritiated Water in Human Tumor Cells. FUSION SCIENCE AND TECHNOLOGY 2011. [DOI: 10.13182/fst11-a12628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tsutomu Shimura
- Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Sendai 980-8575, Japan
| | - Yoshikazu Kuwahara
- Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Sendai 980-8575, Japan
| | - Manabu Fukumoto
- Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Sendai 980-8575, Japan
| | - Toshiyuki Umata
- Radioisotope Research Center, University of Occupational and Environmental Health Yahatanishi-ku, Kitakyushu, 807-8555 Japan
| |
Collapse
|
22
|
Bensimon A, Aebersold R, Shiloh Y. Beyond ATM: the protein kinase landscape of the DNA damage response. FEBS Lett 2011; 585:1625-39. [PMID: 21570395 DOI: 10.1016/j.febslet.2011.05.013] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 05/04/2011] [Accepted: 05/04/2011] [Indexed: 01/18/2023]
Abstract
The DNA of all organisms is constantly subjected to damaging agents, both exogenous and endogenous. One extremely harmful lesion is the double-strand break (DSB), which activates a massive signaling network - the DNA damage response (DDR). The chief activator of the DSB response is the ATM protein kinase, which phosphorylates numerous key players in its various branches. Recent phosphoproteomic screens have extended the scope of damage-induced phosphorylations beyond the direct ATM substrates. We review the evidence for the involvement of numerous other protein kinases in the DDR, obtained from documentation of specific pathways as well as high-throughput screens. The emerging picture of the protein phosphorylation landscape in the DDR broadens the current view on the role of this protein modification in the maintenance of genomic stability. Extensive cross-talk between many of these protein kinases forms an interlaced signaling network that spans numerous cellular processes. Versatile protein kinases in this network affect pathways that are different from those they have been identified with to date. The DDR appears to be one of the most extensive signaling responses to cellular stimuli.
Collapse
Affiliation(s)
- Ariel Bensimon
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
23
|
Tamaishi N, Tsukimoto M, Kitami A, Kojima S. P2Y6 receptors and ADAM17 mediate low-dose gamma-ray-induced focus formation (activation) of EGF receptor. Radiat Res 2010; 175:193-200. [PMID: 21268712 DOI: 10.1667/rr2191.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The EGF receptor (EGFR) is frequently expressed in tumors of epithelial origin. Although it is well known that ionizing radiation induces activation of EGFR, the mechanism remains unknown. Recently, we reported that activation of P2Y receptors is involved in γ-radiation-induced activation of extracellular signal-regulated kinase1/2 (ERK1/2), which is dependent on activation of EGFR. Here we focused on the mechanism of activation of EGFR in response to low-dose γ radiation, mainly in terms of the activation-associated formation of EGFR foci in A549 cells. Irradiation of cells with 0.1 Gy γ rays induced biphasic phosphorylation of EGFR and ERK1/2 as well as biphasic formation of EGFR foci. The radiation-induced focus formation of EGFR was abolished by ecto-nucleotidase, P2Y receptor antagonists and knockdown of P2Y6 receptor, suggesting the involvement of extracellular nucleotides and activation of P2Y6 receptors in this process. Further, a disintegrin and metalloprotease 17 (ADAM17) is expressed in A549 cells and an ADAM17 inhibitor significantly blocked the radiation-induced focus formation of EGFR. We conclude that activation of both P2Y6 receptors and ADAM17 mediates the low-dose γ-radiation-induced activation of EGFR, as evaluated in terms of focus formation, in A549 cells.
Collapse
Affiliation(s)
- Nana Tamaishi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, Japan
| | | | | | | |
Collapse
|
24
|
Kong L, Deng Z, Shen H, Zhang Y. Src family kinase inhibitor PP2 efficiently inhibits cervical cancer cell proliferation through down-regulating phospho-Src-Y416 and phospho-EGFR-Y1173. Mol Cell Biochem 2010; 348:11-9. [PMID: 21052789 DOI: 10.1007/s11010-010-0632-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 10/18/2010] [Indexed: 11/26/2022]
Abstract
Tyrosine (Y) kinases inhibitors have been approved for targeted treatment of cancer. However, their clinical use is limited to some cancers and the mechanism of their action remains unclear. Previous study has indicated that PP2, a selective inhibitor of the Src family of non-receptor tyrosine kinases (nRTK), efficiently repressed cervical cancer growth in vitro and in vivo. In this regard, our aims are to explore the mechanism of PP2 on cervical cancer cell growth inhibition by investigating the suppressive divergence among PP1, PP2, and a negative control compound PP3. MTT results showed that three compounds had different inhibitory effects on proliferation of two cervical cancer cells, HeLa and SiHa, and PP2 was most efficient in a time- and dose-dependent manner. Moreover, we found 10 μM PP2 down-regulated pSrc-Y416 (P < 0.05), pEGFR-Y845 (P < 0.05), and -Y1173 (P < 0.05) expression levels, while 10 μM PP1 down-regulated pSrc-Y416 (P < 0.05) and pEGFR-Y845 (P < 0.05), but not pEGFR-Y1173; 10 μM PP3 down-regulated only pEGFR-Y1173 (P < 0.05). PP2 could modulate cell cycle arrest by up-regulating p21(Cip1) and p27(Kip1) in both HeLa and SiHa cells and down-regulating expression of cyclin A, and cyclin dependent kinase-2, -4 (Cdk-2, -4) in HeLa and of cyclin B and Cdk-2 in SiHa. Our results indicate that Src pathway and EGFR pathway play different roles in the proliferation of cervical cancer cells and PP2 efficiently reduces cervical cancer cell proliferation by reduction of both Src and EGFR activity.
Collapse
Affiliation(s)
- Lu Kong
- Department of Biochemistry and Molecular Biology, Cancer Institute, Capital Medical University, Beijing, China
| | | | | | | |
Collapse
|
25
|
González-Flores O, Beyer C, Gómora-Arrati P, García-Juárez M, Lima-Hernández FJ, Soto-Sánchez A, Etgen AM. A role for Src kinase in progestin facilitation of estrous behavior in estradiol-primed female rats. Horm Behav 2010; 58:223-9. [PMID: 20307541 DOI: 10.1016/j.yhbeh.2010.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 02/09/2010] [Accepted: 03/13/2010] [Indexed: 11/21/2022]
Abstract
This study tested the hypothesis that the Src/Raf/MAPK signaling pathway is involved in the facilitation of the lordosis and proceptive behaviors induced by progesterone (P) and its ring A-reduced metabolites in ovariectomized, estradiol-primed rats. Intraventricular (icv) infusion of PP2 (7.5, 15 and 30 microg), a Src kinase inhibitor, significantly depressed P-dependent estrous behavior (lordosis and proceptivity) in estradiol-primed rats. Icv infusion of 30 microg of PP2 also significantly attenuated estrous behavior induced by the ring A-reduced P metabolites 5 alpha-dihydroprogesterone (5 alpha-DHP) and 5 alpha-pregnan-3alpha-ol-20-one (allopregnanolone). PP2 did not inhibit estrous behavior induced by administration of high doses of estradiol alone to ovariectomized rats. We also assessed if the ventromedial hypothalamus (VMH) is one of the neural sites at which progestins activate Src signaling to facilitate estrous behavior. Bilateral administration of 15 microg of PP2 into the VMH inhibited the stimulation of both lordosis and proceptive behaviors elicited by subcutaneous P administration to estradiol-primed rats. These results suggest that progestins act through Src/Raf/MAPK signaling to initiate estrous behaviors in estrogen-primed rats. This event is one component of the cellular pathways leading to the display of estrous behaviors induced by P and its ring A-reduced metabolites in female rats.
Collapse
Affiliation(s)
- Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV. Apdo. 62, Tlaxcala, México.
| | | | | | | | | | | | | |
Collapse
|
26
|
Maruko A, Ohtake Y, Kawaguchi M, Kobayashi T, Baba T, Kuwahara Y, Nakagawa H, Shimura T, Fukumoto M, Ohkubo Y. X-radiation-induced down-regulation of the EGF receptor in primary cultured rat hepatocytes. Radiat Res 2010; 173:620-8. [PMID: 20426661 DOI: 10.1667/rr1793.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposure to X radiation is associated with a decline in the proliferative activity of the liver, but the molecular mechanism(s) is not well understood. We investigated whether exposure to X radiation is involved in functional changes in the epidermal growth factor (EGF) receptor (EGFR), thereby causing a reduction of EGF-induced DNA synthesis using periportal hepatocytes (PPH) and perivenous hepatocytes (PVH), which differ in their proliferative activity. X radiation dose-dependently decreased DNA synthesis in both subpopulations. The rate of decline in the DNA synthesis was greater in PPH than in PVH, but the zonal difference disappeared after exposure to 10 Gy X radiation. [(125)I]EGF binding studies indicated that high-affinity EGFRs in both subpopulations were down-regulated after X irradiation. Furthermore, EGF-induced EGFR dimerization and phosphorylation at Y1173 in both subpopulations were down-regulated after X irradiation, and the rate of decline was greater in PPH than in PVH. In contrast, phosphorylation at Y845 after EGF treatment was dose-dependently up-regulated after X irradiation in both subpopulations. These results suggest that the X-radiation-related decline in EGF-induced DNA synthesis is caused at least partly by the modification of EGFR function.
Collapse
Affiliation(s)
- Akiko Maruko
- Department of Radiopharmacy, Tohoku Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tsukimoto M, Homma T, Ohshima Y, Kojima S. Involvement of purinergic signaling in cellular response to gamma radiation. Radiat Res 2010; 173:298-309. [PMID: 20199215 DOI: 10.1667/rr1732.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Recent studies have suggested a bystander effect in nonirradiated cells adjacent to irradiated cells; however, the mechanism is poorly understood. In this study, we investigated the involvement of both extracellular nucleotides and activation of P2 receptors in cellular responses to gamma radiation using human HaCaT keratinocytes. The concentration of ATP in culture medium was increased after gamma irradiation (0.1-1.0 Gy), suggesting that radiation induces ATP release from cells. Intracellular Ca(2+) concentration was elevated when conditioned medium from irradiated cells was transferred to nonirradiated cells, and this elevation was suppressed by apyrase (ecto-nucleotidase), indicating the involvement of extracellular nucleotides in this event. Further, we examined the activation of ERK1/2 by gamma radiation and nucleotides (ATP and UTP). Both gamma radiation and nucleotides induced activation of ERK1/2. Next, the effect of inhibitors of P2 receptors on radiation-induced activation of ERK1/2 was examined. The activation of ERK1/2 was blocked by suramin (P2Y inhibitor), MRS2578 (P2Y(6) antagonist) and apyrase. These results suggest that both released nucleotides and activation of P2Y receptors are involved in gamma-radiation-induced activation of ERK1/2. We conclude that ionizing radiation induces release of nucleotides from cells, leading to activation of P2Y receptors, which in turn would result in a variety of biological effects.
Collapse
|
28
|
Buzzi N, Bilbao PS, Boland R, de Boland AR. Extracellular ATP activates MAP kinase cascades through a P2Y purinergic receptor in the human intestinal Caco-2 cell line. Biochim Biophys Acta Gen Subj 2009; 1790:1651-9. [PMID: 19836435 DOI: 10.1016/j.bbagen.2009.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 09/14/2009] [Accepted: 10/08/2009] [Indexed: 11/26/2022]
Abstract
BACKGROUND ATP exerts diverse effects on various cell types via specific purinergic P2Y receptors. Intracellular signaling cascades are the main routes of communication between P2Y receptors and regulatory targets in the cell. METHODS AND RESULTS We examined the role of ATP in the modulation of ERK1/2, JNK1/2, and p38 MAP kinases (MAPKs) in human colon cancer Caco-2 cells. Immunoblot analysis showed that ATP induces the phosphorylation of MAPKs in a time- and dose-dependent manner, peaking at 5 min at 10 microM ATP. Moreover, ATPgammaS, UTP, and UDP but not ADP or ADPbetaS increased phosphorylation of MAPKs, indicating the involvement of, at least, P2Y2/P2Y4 and P2Y6 receptor subtypes. RT-PCR studies and PCR product sequencing supported the expression of P2Y2 and P2Y4 receptors in this cell line. Spectrofluorimetric measurements showed that cell stimulation with ATP induced transient elevations in intracellular calcium concentration. In addition, ATP-induced phosphorylation of MAPKs in Caco-2 cells was dependent on Src family tyrosine kinases, calcium influx, and intracellular Ca2+ release and was partially dependent on the cAMP/PKA and PKC pathways and the EGFR. GENERAL SIGNIFICANCE These findings provide new molecular basis for further understanding the mechanisms involved in ATP functions, as a signal transducer and activator of MAP kinase cascades, in colon adenocarcinoma Caco-2 cells.
Collapse
Affiliation(s)
- Natalia Buzzi
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | | | | | | |
Collapse
|
29
|
Hu X, Wu X, Xu J, Zhou J, Han X, Guo J. Src kinase up-regulates the ERK cascade through inactivation of protein phosphatase 2A following cerebral ischemia. BMC Neurosci 2009; 10:74. [PMID: 19602257 PMCID: PMC2714518 DOI: 10.1186/1471-2202-10-74] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 07/14/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The regulation of protein phosphorylation requires a balance in the activity of protein kinases and protein phosphatases. Our previous data indicates that Src can increase ERK activity through Raf kinase in response to ischemic stimuli. This study examined the molecular mechanisms by which Src activates ERK cascade through protein phosphatases following cerebral ischemia. RESULTS Ischemia-induced Src activation is followed by phosphorylation of PP2A at Tyr307 leading to its inhibition in the rat hippocampus. SU6656, a Src inhibitor, up-regulates PP2A activity, resulting in a significant decreased activity in ERK and its targets, CREB and ERalpha. In addition, the PP2A inhibitor, cantharidin, led to an up-regulation of ERK activity and was able to counteract Src inhibition during ischemia. CONCLUSION Src induces up-regulation of ERK activity and its target transcription factors, CREB and ERalpha, through attenuation of PP2A activity. Therefore, activation of ERK is the result of a crosstalk between two pathways, Raf-dependent positive regulators and PP2A-dependent negative regulators.
Collapse
Affiliation(s)
- Xiaohan Hu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 210029, PR China.
| | | | | | | | | | | |
Collapse
|
30
|
Wu H, Wu H, Li H, Wu H, Li H, Guo J. Spry2-mediated inhibition of the Ras/ERK pathway through interaction with Src kinase following cerebral ischemia. Brain Inj 2009; 22:275-81. [DOI: 10.1080/02699050801911295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Tsukimoto M, Homma T, Mutou Y, Kojima S. 0.5 Gy gamma radiation suppresses production of TNF-alpha through up-regulation of MKP-1 in mouse macrophage RAW264.7 cells. Radiat Res 2009; 171:219-24. [PMID: 19267548 DOI: 10.1667/rr1351.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Low- or intermediate-dose gamma radiation appears to have the capacity to ameliorate certain types of diseases, including allergic conditions, when examined under specific exposure conditions and with specific animal models, though the molecular mechanisms involved remain to be fully clarified. We investigated the anti-inflammatory effects of intermediate-dose gamma radiation by examining its effects on the activation state of p38 MAPK and the production of cytokines in mouse macrophage RAW264.7 cells. Dephosphorylation of both ERK1/2 and p38 MAPK was observed at 15 min after irradiation (0.5-1 Gy from a (137)Cs source) concomitant with a significant increase in the expression of MKP-1, which dephosphorylates ERK1/2 and p38 MAPK. Since activated p38 MAPK mediates TNF-alpha production, we examined the effect of radiation on LPS-induced activation of p38 MAPK and TNF-alpha production. The activation of p38 MAPK and production of TNF-alpha induced by LPS treatment were both suppressed in preirradiated cells. LPS-induced production of TNF-alpha was enhanced by knockdown of MKP-1. These results indicate that 0.5 Gy gamma radiation would cause up-regulation of MKP-1, leading to inactivation of p38 MAPK and suppression of TNF-alpha production, in cells of mouse macrophages cell line.
Collapse
Affiliation(s)
- Mitsutoshi Tsukimoto
- Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS), 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan.
| | | | | | | |
Collapse
|
32
|
Morinaga K, Yamauchi T, Kimura S, Maekawa T, Ueda T. Overcoming imatinib resistance using Src inhibitor CGP76030, Abl inhibitor nilotinib and Abl/Lyn inhibitor INNO-406 in newly established K562 variants withBCR-ABLgene amplification. Int J Cancer 2008; 122:2621-7. [DOI: 10.1002/ijc.23435] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Zhuang S, Kinsey GR, Rasbach K, Schnellmann RG. Heparin-binding epidermal growth factor and Src family kinases in proliferation of renal epithelial cells. Am J Physiol Renal Physiol 2008; 294:F459-68. [PMID: 18171996 DOI: 10.1152/ajprenal.00473.2007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Our recent studies have shown that proliferation of renal proximal tubular cells (RPTC) in the absence of growth factors requires activation of the epidermal growth factor (EGF) receptor. We sought to identify the endogenous EGF receptor ligand and investigate the mechanism(s) by which RPTC proliferate in different models. RPTC expressed both pro- and cleaved forms of heparin-binding epidermal growth factor (HB-EGF) and several metalloproteinases (MMP-2, -3, -9, and ADAM10, ADAM17) that have been reported to cleave HB-EGF. Treatment of RPTC with CRM 197, an inhibitor of HB-EGF binding to the EGF receptor, or downregulation of HB-EGF with small interfering RNA inhibited RPTC proliferation following plating. Furthermore, GM6001 (pan-MMP inhibitor), tumor-necrosis factor protease inhibitor-1 (TAPI-1; MMP and ADAM17 inhibitor), and GW280264X (ADAM10 and -17 inhibitor), but not GI254023X (ADAM10 inhibitor), attenuated the proliferation after plating. Although EGF receptor activation is required for RPTC proliferation after oxidant injury, CRM197, GM6001, and TAPI-1 did not block this response. In contrast, inhibition of Src with PP1 blocked EGF receptor activation and RPTC proliferation after oxidant injury. In addition, PP1 treatment attenuated HB-EGF-enhanced RPTC proliferation. We suggest that RPTC proliferation after plating is mediated by HB-EGF produced through an autocrine/paracrine mechanism and RPTC proliferation following oxidant injury is mediated by Src without involvement of HB-EGF.
Collapse
Affiliation(s)
- Shougang Zhuang
- Department of Medicine, Brown University School of Medicine, Rhode Island Hospital-Middle House 301, 593 Eddy St., Providence, RI 02903, USA.
| | | | | | | |
Collapse
|
34
|
Justinich CJ, Mak N, Pacheco I, Mulder D, Wells RW, Blennerhassett MG, MacLeod RJ. The extracellular calcium-sensing receptor (CaSR) on human esophagus and evidence of expression of the CaSR on the esophageal epithelial cell line (HET-1A). Am J Physiol Gastrointest Liver Physiol 2008; 294:G120-9. [PMID: 17962359 DOI: 10.1152/ajpgi.00226.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastrointestinal reflux disease and eosinophilic esophagitis are characterized by basal cell hyperplasia. The extracellular calcium-sensing receptor (CaSR), a G protein-coupled receptor, which may be activated by divalent agonists, is expressed throughout the gastrointestinal system. The CaSR may regulate proliferation or differentiation, depending on cell type and tissue. The current experiments demonstrate the expression of the CaSR on a human esophageal epithelial cell line (HET-1A) and the location and expression of the CaSR in the human esophagus. CaSR immunoreactivity was seen in the basal layer of normal human esophagus. CaSR expression was confirmed in HET-1A cells by RT-PCR, immunocytochemistry, and Western blot analysis. CaSR stimulation by extracellular calcium or agonists, such as spermine or Mg(2+), caused ERK1 and 2 activation, intracellular calcium concentration ([Ca(2+)](i)) mobilization (as assessed by microspecfluorometry using Fluo-4), and secretion of the multifunctional cytokine IL-8 (CX-CL8). HET-1A cells transiently transfected with small interfering (si)RNA duplex against the CaSR manifested attenuated responses to Ca(2+) stimulation of phospho- (p)ERK1 and 2, [Ca(2+)](i) mobilization, and IL-8 secretion, whereas responses to acetylcholine (ACh) remained sustained. An inhibitor of phosphatidylinositol-specific phospholipase C (PI-PLC) (U73122) blocked CaSR-stimulated [Ca(2+)](i) release. We conclude that the CaSR is present on basal cells of the human esophagus and is present in a functional manner on the esophageal epithelial cell line, HET-1A.
Collapse
|
35
|
Colquhoun AJ, Mchugh LA, Tulchinsky E, Kriajevska M, Mellon JK. Combination treatment with ionising radiation and gefitinib ('Iressa', ZD1839), an epidermal growth factor receptor (EGFR) inhibitor, significantly inhibits bladder cancer cell growth in vitro and in vivo. JOURNAL OF RADIATION RESEARCH 2007; 48:351-60. [PMID: 17609586 DOI: 10.1269/jrr.07014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
PURPOSE External beam radiotherapy (EBRT) is the principal bladder-preserving monotherapy for muscle-invasive bladder cancer. Seventy percent of muscle-invasive bladder cancers express epidermal growth factor receptor (EGFR), which is associated with poor prognosis. Ionising radiation (IR) stimulates EGFR causing activation of cytoprotective signalling cascades and thus may be an underlying cause of radioresistance in bladder tumours. MATERIALS AND METHODS We assessed the ability of IR to activate EGFR in bladder cancer cells and the effect of the anti-EGFR therapy, gefitinib on potential radiation-induced activation. Subsequently we assessed the effect of IR on signalling pathways downstream of EGFR. Finally we assessed the activity of gefitinib as a monotherapy, and in combination with IR, using clonogenic assay in vitro, and a murine model in vivo. RESULTS IR activated EGFR and gefitinib partially inhibited this activation. Radiation-induced activation of EGFR activated the MAPK and Akt pathways. Gefitinib partially inhibited activation of the MAPK pathway but not the Akt pathway. Treatment with combined gefitinib and IR significantly inhibited bladder cancer cell colony formation more than treatment with gefitinib alone (p = 0.001-0.03). J82 xenograft tumours treated with combined gefitinib and IR showed significantly greater growth inhibition than tumours treated with IR alone (p = 0.04). CONCLUSIONS Combining gefitinib and IR results in significantly greater inhibition of invasive bladder cancer cell colony formation in vitro and significantly greater tumour growth inhibition in vivo. Given the high frequency of EGFR expression by bladder tumours and the low toxicity of gefitinib there is justification to translate this work into a clinical trial.
Collapse
Affiliation(s)
- A J Colquhoun
- Department of Cancer Studies and Molecular Medicine, Clinical Sciences Unit, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW.
| | | | | | | | | |
Collapse
|
36
|
Dajani OF, Meisdalen K, Guren TK, Aasrum M, Tveteraas IH, Lilleby P, Thoresen GH, Sandnes D, Christoffersen T. Prostaglandin E2 upregulates EGF-stimulated signaling in mitogenic pathways involving Akt and ERK in hepatocytes. J Cell Physiol 2007; 214:371-80. [PMID: 17654493 DOI: 10.1002/jcp.21205] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prostaglandins (PGs) such as PGE2 enhance proliferation in many cells, apparently through several distinct mechanisms, including transactivation of the epidermal growth factor (EGF) receptor (EGFR) as well as EGFR-independent pathways. In this study we found that in primary cultures of rat hepatocytes PGE2 did not induce phosphorylation of the EGFR, and the EGFR tyrosine kinase blockers gefitinib and AG1478 did not affect PGE2-stimulated phosphorylation of ERK1/2. In contrast, PGE2 elicited EGFR phosphorylation and EGFR tyrosine kinase inhibitor-sensitive ERK phosphorylation in MH1C1 hepatoma cells. These findings suggest that PGE2 elicits EGFR transactivation in MH1C1 cells but not in hepatocytes. Treatment of the hepatocytes with PGE2 at 3 h after plating amplified the stimulatory effect on DNA synthesis of EGF administered at 24 h and advanced and augmented the cyclin D1 expression in response to EGF in hepatocytes. The pretreatment of the hepatocytes with PGE2 resulted in an increase in the magnitude of EGF-stimulated Akt phosphorylation and ERK1/2 phosphorylation and kinase activity, including an extended duration of the responses, particularly of ERK, to EGF in PGE2-treated cells. Pertussis toxin abolished the ability of PGE2 to enhance the Akt and ERK responses to EGF. The results suggest that in hepatocytes, unlike MH1C1 hepatoma cells, PGE2 does not transactivate the EGFR, but instead acts in synergism with EGF by modulating mitogenic mechanisms downstream of the EGFR. These effects seem to be at least in part G(i) protein-mediated and include upregulation of signaling in the PI3K/Akt and the Ras/ERK pathways.
Collapse
Affiliation(s)
- Olav F Dajani
- Department of Pharmacology, Rikshospitalet, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
de Carvalho AD, de Souza W, Morgado-Díaz JA. Morphological and molecular alterations at the junctional complex in irradiated human colon adenocarcinoma cells, Caco-2. Int J Radiat Biol 2006; 82:658-68. [PMID: 17050478 DOI: 10.1080/09553000600930095] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Ionizing radiation is one of the main modalities used in the treatment of colorectal cancer. Despite a number of epigenetic or non-targeted effects of radiation exposure that have been described, the effect of radiation on cell-cell adhesion in the epithelium has been less studied. We report morphological and molecular alterations induced by ionizing radiation at the junctional complex level of human colon cancer Caco-2 cells. MATERIALS AND METHODS Cells were irradiated with doses of 2, 5 or 10 Gy and the effects on the junctional complex were monitored for different times after irradiation. Alterations of tight and adherens junction components were observed by measuring the transepithelial electrical resistance, by immunofluorescence and immunoblotting and electron microscopy analyses. RESULTS Ionizing radiation caused alterations in the junctional complex, as evidenced by: (a) a decrease in the transepithelial electrical resistance, (b) alterations in the pattern of the distribution of junctional proteins as observed for E-cadherin, occludin, and zonula occludens 1 (ZO-1), but with minor changes in claudin-1 localization, and (c) wide spaces between opposed cells. These effects were dose and time-dependent since minor doses of irradiation caused a reversible effect on E-cadherin distribution and transepithelial electrical resistance. CONCLUSIONS The results obtained show that ionizing radiation caused redistribution of the main junctional proteins E-cadherin, occludin and ZO-1 with minor changes for claudin-1, leading to disassembly of the junctional complex and loss of its functionality in Caco-2 cells. The molecular mechanisms responsible for these events need further elucidation.
Collapse
Affiliation(s)
- A Deiró de Carvalho
- Grupo de Biologia Estrutural, Divisão de Biologia Celular, Centro de Pesquisas, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
38
|
Lin CY, Lin CJ, Chen KH, Wu JC, Huang SH, Wang SM. Macrophage activation increases the invasive properties of hepatoma cells by destabilization of the adherens junction. FEBS Lett 2006; 580:3042-50. [PMID: 16678166 DOI: 10.1016/j.febslet.2006.04.049] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 04/13/2006] [Accepted: 04/19/2006] [Indexed: 12/12/2022]
Abstract
Tumor-associated macrophages play an important role in tumor progression, but whether they exert a tumor-progressive effect remains controversial. Here, we demonstrated that activated macrophage-conditioned medium (AMCM) obtained from RAW macrophages (RAW/AMCM) induced epithelial-mesenchymal transition (EMT) and stimulated the migratory and invasive activities of HepG2 cells, whereas control conditioned media had no effect. Epithelial-cadherin (E-cadherin) and beta-catenin staining patterns were altered at the adherens junctions by RAW/AMCM treatment, with an approximately 50% decrease in E-cadherin and beta-catenin in the cell membrane. Importantly, levels of beta-catenin-associated E-cadherin were also decreased. Following RAW/AMCM treatment, enhanced activation of c-Src was seen prior to increased tyrosine phosphorylation of beta-catenin, and this led to the destabilization of adherens junctions. Pretreatment of HepG2 cells with the Src kinase inhibitor, PP2, completely abolished the effects of RAW/AMCM on the EMT, migration, invasion, and expression and association of E-cadherin and beta-catenin. AMCMs obtained from human THP-1 monocytes and mouse peritoneal macrophages also caused disassembly of the adherens junctions and migration of HepG2 cells. Furthermore, inhibition of the epidermal growth factor receptor (EGFR) with gefitinib partially prevented the downregulation of E-cadherin and beta-catenin at the adherens junctions and migration behavior induced by RAW/AMCM. Our results suggest that activated macrophages have a tumor-progressive effect on HepG2 cells which involves the c-Src- and EGFR-dependent signaling cascades.
Collapse
Affiliation(s)
- Chieh-Yu Lin
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1-1 Jen-Ai Road, Taipei 10051, Taiwan
| | | | | | | | | | | |
Collapse
|
39
|
Szumiel I. Epidermal growth factor receptor and DNA double strand break repair: the cell's self-defence. Cell Signal 2006; 18:1537-48. [PMID: 16713182 DOI: 10.1016/j.cellsig.2006.03.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 03/21/2006] [Indexed: 01/27/2023]
Abstract
The purpose of this review is to discuss the relation between the repair of DNA double strand breaks (DSB)--the main lethal lesion inflicted by ionising radiation-and the function of receptors of epidermal growth factor (EGFR) and similar ligands (other members of the ERBB family). The reviewed experimental data support the assumption that in mammalian cells, one consequence of EGFR/ERBB activation by X-rays is its internalisation and nuclear translocation together with DNA-dependent protein kinase (DNA-PK) subunits present in lipid rafts or cytoplasm. The effect of EGFR/ERBB stimulation on DSB rejoining would be due to an increase in the nuclear content of DNA-PK subunits and hence, in activity increase of the DNA-PK dependent non-homologous end-joining (D-NHEJ) system. Such mechanism explains the radiosensitising action of "membrane-active drugs", hypertonic media, and other agents that affect nuclear translocation of proteins. Also, one radiosensitising effect of the recently introduced into clinical practice EGFR/ERBB inhibitors would consist on counteracting the nuclear translocation of DNA-PK subunits. In result, D-NHEJ may be less active in inhibitor-treated cells and this will contribute to an enhanced lethal effect of irradiation. The reviewed observations point to a heretofore not understood mechanism of the cell's self-defence against X-rays which can be exploited in combined radio- and chemotherapy.
Collapse
Affiliation(s)
- Irena Szumiel
- Department of Radiobiology and Health Protection, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warszawa, Poland.
| |
Collapse
|