1
|
Hamrouni S, Bras-Gonçalves R, Kidar A, Aoun K, Chamakh-Ayari R, Petitdidier E, Messaoudi Y, Pagniez J, Lemesre JL, Meddeb-Garnaoui A. Design of multi-epitope peptides containing HLA class-I and class-II-restricted epitopes derived from immunogenic Leishmania proteins, and evaluation of CD4+ and CD8+ T cell responses induced in cured cutaneous leishmaniasis subjects. PLoS Negl Trop Dis 2020; 14:e0008093. [PMID: 32176691 PMCID: PMC7098648 DOI: 10.1371/journal.pntd.0008093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 03/26/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023] Open
Abstract
Human leishmaniasis is a public health problem worldwide for which the development of a vaccine remains a challenge. T cell-mediated immune responses are crucial for protection. Peptide vaccines based on the identification of immunodominant T cell epitopes able to induce T cell specific immune responses constitute a promising strategy. Here, we report the identification of human leukocyte antigen class-I (HLA-I) and -II (HLA-II)-restricted multi-epitope peptides from Leishmania proteins that we have previously described as vaccine candidates. Promastigote Surface Antigen (PSA), LmlRAB (L. major large RAB GTPase) and Histone (H2B) were screened, in silico, for T cell epitopes. 6 HLA-I and 5 HLA-II-restricted multi-epitope peptides, able to bind to the most frequent HLA molecules, were designed and used as pools to stimulate PBMCs from individuals with healed cutaneous leishmaniasis. IFN-γ, IL-10, TNF-α and granzyme B (GrB) production was evaluated by ELISA/CBA. The frequency of IFN-γ-producing T cells was quantified by ELISpot. T cells secreting cytokines and memory T cells were analyzed by flow cytometry. 16 of 25 peptide pools containing HLA-I, HLA-II or HLA-I and -II peptides were able to induce specific and significant IFN-γ levels. No IL-10 was detected. 6 peptide pools were selected among those inducing the highest IFN-γ levels for further characterization. 3/6 pools were able to induce a significant increase of the percentages of CD4+IFN-γ+, CD8+IFN-γ+ and CD4+GrB+ T cells. The same pools also induced a significant increase of the percentages of bifunctional IFN-γ+/TNF-α+CD4+ and/or central memory T cells. We identified highly promiscuous HLA-I and -II restricted epitope combinations from H2B, PSA and LmlRAB proteins that stimulate both CD4+ and CD8+ T cell responses in recovered individuals. These multi-epitope peptides could be used as potential components of a polytope vaccine for human leishmaniasis. The control of leishmaniasis, a neglected tropical disease of public health importance, caused by protozoan parasites of the genus Leishmania, mainly relies on chemotherapy, which is highly toxic. Currently, there is no vaccine against human leishmaniasis. Peptide-based vaccines consisting of T cell epitopes identified within proteins of interest by epitope predictive algorithms are a promising strategy for vaccine development. Here, we identified multi-epitope peptides composed of HLA-I and -II-restricted epitopes, using immunoinformatic tools, within Leishmania proteins previously described as potential vaccine candidates. We showed that multi-epitope peptides used as pools were able to activate IFN-γ producing CD4+ as well as CD8+ T cells, both required for parasite elimination. In addition, granzyme B-producing CD4+ T cells, bifunctional CD4+ IFN-γ+/TNF-α+ and/or TNF-α+/IL-2+ T cells as well as CD4+ and CD8+ central memory T cells, all involved in Leishmania infection control, were significantly increased in response to multi-epitope peptide stimulation. As far as we know, no study has described the detection of both CD4+ and CD8+ T cell populations in response to stimulation by both HLA-I and II-restricted peptides in humans. The immunogenic HLA-I and -II-restricted multi-epitope peptides identified in this study could constitute potential vaccine candidates against human leishmaniasis.
Collapse
Affiliation(s)
- Sarra Hamrouni
- Laboratoire de Parasitologie Médicale, Biotechnologie et Biomolécules, Institut Pasteur de Tunis, Tunis, Tunisie
- Faculté des Sciences de Bizerte, Université de Carthage, Tunis, Tunisie
- UMR INTERTRYP, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | | | | | - Karim Aoun
- Laboratoire de Parasitologie Médicale, Biotechnologie et Biomolécules, Institut Pasteur de Tunis, Tunis, Tunisie
| | - Rym Chamakh-Ayari
- Laboratoire de Parasitologie Médicale, Biotechnologie et Biomolécules, Institut Pasteur de Tunis, Tunis, Tunisie
- Faculté des Sciences de Bizerte, Université de Carthage, Tunis, Tunisie
| | - Elodie Petitdidier
- UMR INTERTRYP, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Yasmine Messaoudi
- Laboratoire de Parasitologie Médicale, Biotechnologie et Biomolécules, Institut Pasteur de Tunis, Tunis, Tunisie
- Faculté des Sciences de Bizerte, Université de Carthage, Tunis, Tunisie
- UMR INTERTRYP, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Julie Pagniez
- UMR INTERTRYP, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Jean-Loup Lemesre
- UMR INTERTRYP, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Amel Meddeb-Garnaoui
- Laboratoire de Parasitologie Médicale, Biotechnologie et Biomolécules, Institut Pasteur de Tunis, Tunis, Tunisie
- * E-mail:
| |
Collapse
|
2
|
Chamakh-Ayari R, Chenik M, Chakroun AS, Bahi-Jaber N, Aoun K, Meddeb-Garnaoui A. Leishmania major large RAB GTPase is highly immunogenic in individuals immune to cutaneous and visceral leishmaniasis. Parasit Vectors 2017; 10:185. [PMID: 28416006 PMCID: PMC5393016 DOI: 10.1186/s13071-017-2127-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 04/04/2017] [Indexed: 12/17/2022] Open
Abstract
Background We previously identified a Leishmania (L.) major large RAB GTPase (LmlRAB), a new atypical RAB GTPase protein. It is highly conserved in Leishmania species while displaying low level of homology with mammalian homologues. Leishmania small RAB GTPases proteins have been involved in regulation of exocytic and endocytic pathways whereas the role of large RAB GTPases proteins has not been characterized yet. We report here the immunogenicity of both recombinant rLmlRAB and rLmlRABC, in individuals with immunity against L. major or L. infantum. Methods PBMC were isolated from individuals cured of L. major (CCLm) or from healthy individuals. The latter were subdivided into high or low IFN-γ responders. Healthy high IFN-γ responders, considered as asymptomatics, were living in an endemic area for L. major (HHRLm) or L. infantum (HHRLi). Healthy low IFN-γ responders (HLR) were considered as naïve controls. Cells from all volunteers were stimulated with rLmlRAB or rLmlRABC. Cytokines were analysed by CBA and ELISA and phenotypes of IFN-γ-producing cells were analysed by flow cytometry. Results Both rLmlRAB and rLmlRABC induced high significant levels of IFN-γ in CCLm, HHRLm and HHRLi groups. Phenotype analysis of rLmlRAB and rLmlRABC-stimulated T cells in CCLm individuals showed a significant increase in the percentage of specific IFN-γ-producing CD4+ and CD8+ T cells. rLmlRAB induced significant granzyme B levels in CCLm and HHRLm. Low but significant granzyme B levels were detected in naïve group. IL-10 was detected in immune and naïve individuals. Conclusion We showed that rLmlRAB protein and its divergent carboxy-terminal part induced a predominant Th1 response in individuals immune to L. major or L. infantum. Our results suggest that rLmlRAB and rLmlRABC proteins are potential cross-species vaccine candidates against cutaneous and visceral leishmaniasis.
Collapse
Affiliation(s)
- Rym Chamakh-Ayari
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, LR11-IPT-06, Institut Pasteur de Tunis, Tunis, Tunisia.,University of Carthage, Tunis, Tunisia
| | - Mehdi Chenik
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, LR11-IPT-06, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Ahmed Sahbi Chakroun
- Molecular Epidemiology and Experimental Pathology Applied to Infectious Diseases Laboratory, Institut Pasteur de Tunis, Tunis, Tunisia
| | | | - Karim Aoun
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, LR11-IPT-06, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Amel Meddeb-Garnaoui
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, LR11-IPT-06, Institut Pasteur de Tunis, Tunis, Tunisia.
| |
Collapse
|
3
|
Comparative genomics of canine-isolated Leishmania (Leishmania) amazonensis from an endemic focus of visceral leishmaniasis in Governador Valadares, southeastern Brazil. Sci Rep 2017; 7:40804. [PMID: 28091623 PMCID: PMC5238499 DOI: 10.1038/srep40804] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/12/2016] [Indexed: 01/12/2023] Open
Abstract
Leishmaniasis is a highly diverse group of diseases caused by kinetoplastid of the genus Leishmania. These parasites are taxonomically diverse, with human pathogenic species separated into two subgenera according to their development site inside the alimentary tract of the sand fly insect vector. The disease encompasses a variable spectrum of clinical manifestations with tegumentary or visceral symptoms. Among the causative species in Brazil, Leishmania (Leishmania) amazonensis is an important etiological agent of human cutaneous leishmaniasis that accounts for more than 8% of all cases in endemic regions. L. (L.) amazonensis is generally found in the north and northeast regions of Brazil. Here, we report the first isolation of L. (L.) amazonensis from dogs with clinical manifestations of visceral leishmaniasis in Governador Valadares, an endemic focus in the southeastern Brazilian State of Minas Gerais where L. (L.) infantum is also endemic. These isolates were characterized in terms of SNPs, chromosome and gene copy number variations, confirming that they are closely related to a previously sequenced isolate obtained in 1973 from the typical Northern range of this species. The results presented in this article will increase our knowledge of L. (L.) amazonensis-specific adaptations to infection, parasite survival and the transmission of this Amazonian species in a new endemic area of Brazil.
Collapse
|
4
|
Chauhan IS, Shukla R, Krishna S, Sekhri S, Kaushik U, Baby S, Pal C, Siddiqi MI, Sundar S, Singh N. Recombinant Leishmania Rab6 (rLdRab6) is recognized by sera from visceral leishmaniasis patients. Exp Parasitol 2016; 170:135-147. [PMID: 27666959 DOI: 10.1016/j.exppara.2016.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/24/2016] [Accepted: 09/21/2016] [Indexed: 10/21/2022]
Abstract
Rab proteins form the largest branch of the Ras superfamily. Rab proteins are key regulators of intracellular vesicular transport and membrane trafficking. Although RabGTPases are well-recognized targets in human diseases but are under-explored therapeutically in the Leishmania parasite. Using a quantitative cytofluorimetric assay, we analyzed the composition and organization of Rab6GTPase protein which was found to be primarily localized on the parasite subpellicular membrane and flagellum due to its association with kinesin motor proteins in the cytoskeletal microtubules. Our aim was to also assess the diagnostic role of recombinant Rab6 protein from Leishmania donovani (rLdRab6) using sera/plasma of Indian visceral leishmaniasis (VL) patients. Receiver-operating characteristic (ROC) curve analysis indicated 100% sensitivity and 100% specificity for rLdRab6-based ELISA which was almost similar in comparison to recombinant K39-based ELISA (95.83% sensitivity and 100% specificity). Sera of patients from another intracellular pathogenic infection, Mycobacterium tuberculosis, did not contain any significant levels of anti-rLdRab6 antibody. Thus rLdRab6 accuracy in visceral leishmaniasis diagnosis makes it a promising antigen for clinical use.
Collapse
Affiliation(s)
- Indira Singh Chauhan
- Biochemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rantidev Shukla
- Biochemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Shagun Krishna
- Molecular and Structural Biology Division, CSIR Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Savita Sekhri
- Oscar Medicare Pvt. Ltd, Okhla Industrial Area, Phase-II, New Delhi, 110020, India
| | - Umesh Kaushik
- Oscar Medicare Pvt. Ltd, Okhla Industrial Area, Phase-II, New Delhi, 110020, India
| | - Sabitha Baby
- Department of Microbiology, Karuna Medical College, Vilayodi, Chittur, Palakkad, Kerala, 678103, India
| | - Chiranjib Pal
- Department of Zoology, West Bengal State University, Barasat, Parganas (N), Berunanpukuria, Malikapur, West Bengal, 700126, India
| | - Mohammad Imran Siddiqi
- Molecular and Structural Biology Division, CSIR Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Shyam Sundar
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Neeloo Singh
- Biochemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| |
Collapse
|
5
|
Petitdidier E, Pagniez J, Papierok G, Vincendeau P, Lemesre JL, Bras-Gonçalves R. Recombinant Forms of Leishmania amazonensis Excreted/Secreted Promastigote Surface Antigen (PSA) Induce Protective Immune Responses in Dogs. PLoS Negl Trop Dis 2016; 10:e0004614. [PMID: 27223609 PMCID: PMC4880307 DOI: 10.1371/journal.pntd.0004614] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/16/2016] [Indexed: 01/08/2023] Open
Abstract
Preventive vaccination is a highly promising strategy for interrupting leishmaniasis transmission that can, additionally, contribute to elimination. A vaccine formulation based on naturally excreted secreted (ES) antigens was prepared from L. infantum promastigote culture supernatant. This vaccine achieved successful results in Phase III trials and was licensed and marketed as CaniLeish. We recently showed that newly identified ES promastigote surface antigen (PSA), from both viable promastigotes and axenically-grown amastigotes, represented the major constituent and the highly immunogenic antigen of L. infantum and L. amazonensis ES products. We report here that three immunizations with either the recombinant ES LaPSA-38S (rPSA) or its carboxy terminal part LaPSA-12S (Cter-rPSA), combined with QA-21 as adjuvant, confer high levels of protection in naive L. infantum-infected Beagle dogs, as checked by bone marrow parasite absence in respectively 78.8% and 80% of vaccinated dogs at 6 months post-challenge. The parasite burden in infected vaccinated dogs was significantly reduced compared to placebo group, as measured by q-PCR. Moreover, our results reveal humoral and cellular immune response clear-cut differences between vaccinated and control dogs. An early increase in specific IgG2 antibodies was observed in rPSA/QA-21- and Cter-rPSA/QA-21-immunized dogs only. They were found functionally active in vitro and were highly correlated with vaccine protection. In vaccinated protected dogs, IFN-γ and NO productions, as well as anti-leishmanial macrophage activity, were increased. These data strongly suggest that ES PSA or its carboxy-terminal part, in recombinant forms, induce protection in a canine model of zoonotic visceral leishmaniasis by inducing a Th1-dominant immune response and an appropriate specific antibody response. These data suggest that they could be considered as important active components in vaccine candidates. Visceral leishmaniasis (VL), a potentially fatal disease caused by L. infantum, represents perfectly the need for a “One Health” approach for disease control, since it affects both humans and dogs, with similar clinical outcome and T-cell mediated immunity commitment. The dog vaccine development is highly required as our present resources for VL treatment and control have a limited effectiveness. It would represent the most convenient and efficient control way to decrease the dog-sandfly-dog transmission cycle, essential for human incidence reduction. The results indicate that recombinant forms of soluble promastigote surface antigen (PSA) are very promising effective vaccine candidates against canine VL. The elicited immune responses effectively reduced parasite load in in vitro pre-infected macrophages and in experimentally infected dogs. Through this approach, we aim to reduce the number of infected animals developing progressive infections thereby positively influencing human public health.
Collapse
MESH Headings
- Adaptive Immunity
- Adjuvants, Immunologic
- Animals
- Antibodies, Protozoan/blood
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Antigens, Surface/genetics
- Antigens, Surface/immunology
- Bone Marrow/parasitology
- Disease Models, Animal
- Dog Diseases/immunology
- Dog Diseases/parasitology
- Dog Diseases/prevention & control
- Dogs
- Female
- Immunity, Cellular
- Immunoglobulin G/blood
- Interferon-gamma/biosynthesis
- Leishmania infantum/immunology
- Leishmania infantum/physiology
- Leishmania mexicana/chemistry
- Leishmania mexicana/genetics
- Leishmania mexicana/immunology
- Leishmaniasis Vaccines/administration & dosage
- Leishmaniasis Vaccines/genetics
- Leishmaniasis Vaccines/immunology
- Leishmaniasis, Visceral/immunology
- Leishmaniasis, Visceral/parasitology
- Leishmaniasis, Visceral/prevention & control
- Leishmaniasis, Visceral/veterinary
- Macrophages/immunology
- Nitric Oxide/biosynthesis
- Parasite Load
- Polymerase Chain Reaction
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/immunology
- Th1 Cells/immunology
Collapse
Affiliation(s)
| | - Julie Pagniez
- IRD, UMR 177 INTERTRYP IRD CIRAD, Montpellier, France
| | | | - Philippe Vincendeau
- University Hospital of Bordeaux, Laboratoire de Parasitologie-Mycologie, Bordeaux, France
- Université de Bordeaux, UMR 177 INTERTRYP IRD CIRAD, Bordeaux, France
| | | | | |
Collapse
|
6
|
Chauhan IS, Kaur J, Krishna S, Ghosh A, Singh P, Siddiqi MI, Singh N. Evolutionary comparison of prenylation pathway in kinetoplastid Leishmania and its sister Leptomonas. BMC Evol Biol 2015; 15:261. [PMID: 26588894 PMCID: PMC4654808 DOI: 10.1186/s12862-015-0538-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/10/2015] [Indexed: 12/05/2022] Open
Abstract
Background Leptomonas is monogenetic kinetoplastid parasite of insects and is primitive in comparison to Leishmania. Comparative studies of these two kinetoplastid may share light on the evolutionary transition to dixenous parasitism in Leishmania. In order to adapt and survive within two hosts, Leishmania species must have acquired virulence factors in addition to mechanisms that mediate susceptibility/resistance to infection in the pathology associated with disease. Rab proteins are key mediators of vesicle transport and contribute greatly to the evolution of complexity of membrane transport system. In this study we used our whole genome sequence data of these two divergent kinetoplastids to analyze the orthologues/paralogues of Rab proteins. Results During change of lifestyle from monogenetic (Leptomonas) to digenetic (Leishmania), we found that the prenyl machinery remained unchanged. Geranylgeranyl transferase-I (GGTase-I) was absent in both Leishmania and its sister Leptomonas. Farnesyltransferase (FTase) and geranylgeranyl transferase-II (GGTase-II) were identified for protein prenylation. We predict that activity of the missing alpha-subunit (α-subunit) of GGTase-II in Leptomonas was probably contributed by the α-subunit of FTase, while beta-subunit (β-subunit) of GGTase-II was conserved and indicated functional conservation in the evolution of these two kinetoplastids. Therefore the β-subunit emerges as an excellent target for compounds inhibiting parasite activity in clinical cases of co-infections. We also confirmed that during the evolution to digenetic life style in Leishmania, the parasite acquired capabilities to evade drug action and maintain parasite virulence in the host with the incorporation of short-chain dehydrogenase/reductase (SDR/MDR) superfamily in Rab genes. Conclusion Our study based on whole genome sequences is the first to build comparative evolutionary analysis and identification of prenylation proteins in Leishmania and its sister Leptomonas. The information presented in our present work has importance for drug design targeted to kill L. donovani in humans but not affect the human form of the prenylation enzymes. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0538-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Indira Singh Chauhan
- Biochemistry Division, CSIR Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| | - Jaspreet Kaur
- Department of Biochemistry, Shri Ram Murti Smarak Institute of Medical Sciences, Bareilly, 243202, India.
| | - Shagun Krishna
- Molecular and Structural Biology Division, CSIR Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| | | | - Prashant Singh
- Department of Chemistry, Dayanand Anglo Vedic (P.G.) College, Dehradun, 248001, India.
| | - Mohammad Imran Siddiqi
- Molecular and Structural Biology Division, CSIR Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| | - Neeloo Singh
- Biochemistry Division, CSIR Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| |
Collapse
|
7
|
Biyani N, Madhubala R. Quantitative proteomic profiling of the promastigotes and the intracellular amastigotes of Leishmania donovani isolates identifies novel proteins having a role in Leishmania differentiation and intracellular survival. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:1342-50. [DOI: 10.1016/j.bbapap.2012.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 07/20/2012] [Accepted: 07/22/2012] [Indexed: 12/23/2022]
|
8
|
Endocytosis and Sphingolipid Scavenging in Leishmania mexicana Amastigotes. Biochem Res Int 2011; 2012:691363. [PMID: 21941657 PMCID: PMC3177366 DOI: 10.1155/2012/691363] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 07/18/2011] [Accepted: 07/22/2011] [Indexed: 01/03/2023] Open
Abstract
Leishmania species are the causative agents of the leishmaniases, a spectrum of neglected tropical diseases. Amastigote stage parasites exist within macrophages and scavenge host factors for survival, for example, Leishmania species utilise host sphingolipid for synthesis of complex sphingolipid. In this study L. mexicana endocytosis was shown to be significantly upregulated in amastigotes, indicating that sphingolipid scavenging may be enhanced. However, inhibition of host sphingolipid biosynthesis had no significant effect on amastigote proliferation within a macrophage cell line. In addition, infection itself did not directly influence host biosynthesis. Notably, in contrast to L. major, L. mexicana amastigotes are indicated to possess a complete biosynthetic pathway suggesting that scavenged sphingolipids may be nonessential for proliferation. This suggested that Old and New World species differ in their interactions with the macrophage host. This will need to be considered when targeting the Leishmania sphingolipid biosynthetic pathway with novel therapeutics.
Collapse
|
9
|
Alcolea PJ, Alonso A, Gómez MJ, Sánchez-Gorostiaga A, Moreno-Paz M, González-Pastor E, Toraño A, Parro V, Larraga V. Temperature increase prevails over acidification in gene expression modulation of amastigote differentiation in Leishmania infantum. BMC Genomics 2010; 11:31. [PMID: 20074347 PMCID: PMC2845110 DOI: 10.1186/1471-2164-11-31] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 01/14/2010] [Indexed: 01/06/2023] Open
Abstract
Background The extracellular promastigote and the intracellular amastigote stages alternate in the digenetic life cycle of the trypanosomatid parasite Leishmania. Amastigotes develop inside parasitophorous vacuoles of mammalian phagocytes, where they tolerate extreme environmental conditions. Temperature increase and pH decrease are crucial factors in the multifactorial differentiation process of promastigotes to amastigotes. Although expression profiling approaches for axenic, cell culture- and lesion-derived amastigotes have already been reported, the specific influence of temperature increase and acidification of the environment on developmental regulation of genes has not been previously studied. For the first time, we have used custom L. infantum genomic DNA microarrays to compare the isolated and the combined effects of both factors on the transcriptome.
Results Immunofluorescence analysis of promastigote-specific glycoprotein gp46 and expression modulation analysis of the amastigote-specific A2 gene have revealed that concomitant exposure to temperature increase and acidification leads to amastigote-like forms. The temperature-induced gene expression profile in the absence of pH variation resembles the profile obtained under combined exposure to both factors unlike that obtained for exposure to acidification alone. In fact, the subsequent fold change-based global iterative hierarchical clustering analysis supports these findings. Conclusions The specific influence of temperature and pH on the differential regulation of genes described in this study and the evidence provided by clustering analysis is consistent with the predominant role of temperature increase over extracellular pH decrease in the amastigote differentiation process, which provides new insights into Leishmania physiology.
Collapse
Affiliation(s)
- Pedro J Alcolea
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), calle Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Generalized lattice graphs for 2D-visualization of biological information. J Theor Biol 2009; 261:136-47. [PMID: 19646452 PMCID: PMC7094121 DOI: 10.1016/j.jtbi.2009.07.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/18/2009] [Accepted: 07/20/2009] [Indexed: 01/09/2023]
Abstract
Several graph representations have been introduced for different data in theoretical biology. For instance, complex networks based on Graph theory are used to represent the structure and/or dynamics of different large biological systems such as protein–protein interaction networks. In addition, Randic, Liao, Nandy, Basak, and many others developed some special types of graph-based representations. This special type of graph includes geometrical constrains to node positioning in space and adopts final geometrical shapes that resemble lattice-like patterns. Lattice networks have been used to visually depict DNA and protein sequences but they are very flexible. However, despite the proved efficacy of new lattice-like graph/networks to represent diverse systems, most works focus on only one specific type of biological data. This work proposes a generalized type of lattice and illustrates how to use it in order to represent and compare biological data from different sources. We exemplify the following cases: protein sequence; mass spectra (MS) of protein peptide mass fingerprints (PMF); molecular dynamic trajectory (MDTs) from structural studies; mRNA microarray data; single nucleotide polymorphisms (SNPs); 1D or 2D-Electrophoresis study of protein polymorphisms and protein-research patent and/or copyright information. We used data available from public sources for some examples but for other, we used experimental results reported herein for the first time. This work may break new ground for the application of Graph theory in theoretical biology and other areas of biomedical sciences.
Collapse
|
11
|
Pérez-Montoto LG, Dea-Ayuela MA, Prado-Prado FJ, Bolas-Fernández F, Ubeira FM, González-Díaz H. Study of peptide fingerprints of parasite proteins and drug-DNA interactions with Markov-Mean-Energy invariants of biopolymer molecular-dynamic lattice networks. POLYMER 2009; 50:3857-3870. [PMID: 32287404 PMCID: PMC7111648 DOI: 10.1016/j.polymer.2009.05.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 05/06/2009] [Accepted: 05/14/2009] [Indexed: 11/26/2022]
Abstract
Since the advent of Molecular Dynamics (MD) in biopolymers science with the study by Karplus et al. on protein dynamics, MD has become the by foremost well established, computational technique to investigate structure and function of biomolecules and their respective complexes and interactions. The analysis of the MD trajectories (MDTs) remains, however, the greatest challenge and requires a great deal of insight, experience, and effort. Here, we introduce a new class of invariants for MDTs based on the spatial distribution of Mean-Energy values ξk (L) on a 2D Euclidean space representation of the MDTs. The procedure forces one MD trajectory to fold into a 2D Cartesian coordinates system using a step-by-step procedure driven by simple rules. The ξk (L) values are invariants of a Markov matrix (1 Π), which describes the probabilities of transition between two states in the new 2D space; which is associated to a graph representation of MDTs similar to the lattice networks (LNs) of DNA and protein sequences. We also introduce a new algorithm to perform phylogenetic analysis of peptides based on MDTs instead of the sequence of the polypeptide. In a first experiment, we illustrate this algorithm for 35 peptides present on the Peptide Mass Fingerprint (PMF) of a new protein of Leishmania infantum studied in this work. We report, by the first time, 2D Electrophoresis isolation, MALDI TOF Mass Spectroscopy characterization, and MASCOT search results for this PMF. In a second experiment, we construct the LNs for 422 MDTs obtained in DNA-Drug Docking simulations of the interaction of 57 anticancer furocoumarins with a DNA oligonucleotide. We calculated the respective ξk (L) values for all these LNs and used them as inputs to train a new classifier with Accuracy = 85.44% and 84.91% in training and validation respectively. The new model can be used as scoring function to guide DNA-Drug Docking studies in drug design of new coumarins for PUVA therapy. The new phylogenetics analysis algorithms encode information different from sequence similarity and may be used to analyze MDTs obtained in Docking or modeling experiments for any classes of biopolymers. The work opens new perspective on the analysis and applications of MD in polymer sciences.
Collapse
Affiliation(s)
- Lázaro Guillermo Pérez-Montoto
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María Auxiliadora Dea-Ayuela
- Departamento de Atención Sanitaria, Salud Pública y Sanidad Animal, Facultad CC Experimentales y de La Salud, Universidad CEU Cardenal Herrera, 46113 Moncada (Valencia), Spain
| | - Francisco J Prado-Prado
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | - Florencio M Ubeira
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Humberto González-Díaz
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
12
|
Lakhal-Naouar I, Achour-Chenik YB, Boublik Y, Meddeb M, Aamouri A, Fattoum A, Louzir H, Chenik M. Identification and characterization of a new Leishmania major specific 3′nucleotidase/nuclease protein. Biochem Biophys Res Commun 2008; 375:54-8. [DOI: 10.1016/j.bbrc.2008.07.099] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 07/21/2008] [Indexed: 10/21/2022]
|
13
|
Ouakad M, Chenik M, Ben Achour-Chenik Y, Louzir H, Dellagi K. Gene expression analysis of wild Leishmania major isolates: identification of genes preferentially expressed in amastigotes. Parasitol Res 2006; 100:255-64. [PMID: 17016728 DOI: 10.1007/s00436-006-0277-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 07/03/2006] [Indexed: 10/24/2022]
Abstract
Trying to identify virulence genes of wild Leishmania (L.) major parasites, the species responsible for zoonotic cutaneous leishmaniasis, we compared, using differential display technique, gene expression in two L. major isolates obtained from human lesions and characterized by their contrasting pathogenicity in the BALB/c mouse model. The analysis was performed on amastigotes derived from BALB/c mice lesions. A total of 13 different clones were identified, but the use of reverse transcription and real-time polymerase chain reaction technique did not allow us to confirm any of these clones as differentially expressed. However, the fact that we used the amastigote stage of the parasite led us the identification of amastigote-specific genes, essentially (8 among 13). They are overexpressed, two to seven times, in amastigotes relative to promastigotes. Sequence analysis revealed that two of them namely LPG3 and the ATP dependent RNA helicase correspond to previously described amastigote-specific genes. The others correspond to genes involved in important biological process. Their better characterization could help the development of new drugs targeting the processes in which these molecules are involved.
Collapse
Affiliation(s)
- Meriem Ouakad
- Laboratoire d'Immunopathologie, Vaccinologie et Génétique Moléculaire, Institut Pasteur de Tunis, 13, Place Pasteur 1002, Tunis-Belvédère, Tunisia
| | | | | | | | | |
Collapse
|