1
|
Lateral Diffusion of NKCC1 Contributes to Chloride Homeostasis in Neurons and Is Rapidly Regulated by the WNK Signaling Pathway. Cells 2023; 12:cells12030464. [PMID: 36766805 PMCID: PMC9914440 DOI: 10.3390/cells12030464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
An upregulation of the Na+-K+-2Cl- cotransporter NKCC1, the main chloride importer in mature neurons, can lead to depolarizing/excitatory responses mediated by GABA type A receptors (GABAARs) and, thus, to hyperactivity. Understanding the regulatory mechanisms of NKCC1 would help prevent intra-neuronal chloride accumulation that occurs in pathologies with defective inhibition. The cell mechanisms regulating NKCC1 are poorly understood. Here, we report in mature hippocampal neurons that GABAergic activity controls the membrane diffusion and clustering of NKCC1 via the chloride-sensitive WNK lysine deficient protein kinase 1 (WNK1) and the downstream Ste20 Pro-line Asparagine Rich Kinase (SPAK) kinase that directly phosphorylates NKCC1 on key threonine residues. At rest, this signaling pathway has little effect on intracellular Cl- concentration, but it participates in the elevation of intraneuronal Cl- concentration in hyperactivity conditions associated with an up-regulation of NKCC1. The fact that the main chloride exporter, the K+-Cl- cotransporter KCC2, is also regulated in mature neurons by the WNK1 pathway indicates that this pathway will be a target of choice in the pathology.
Collapse
|
2
|
Kreis A, Issa F, Yerna X, Jabbour C, Schakman O, de Clippele M, Tajeddine N, Pierrot N, Octave JN, Gualdani R, Gailly P. Conditional deletion of KCC2 impairs synaptic plasticity and both spatial and nonspatial memory. Front Mol Neurosci 2023; 16:1081657. [PMID: 37168681 PMCID: PMC10164999 DOI: 10.3389/fnmol.2023.1081657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/31/2023] [Indexed: 05/13/2023] Open
Abstract
The postsynaptic inhibition through GABAA receptors (GABAAR) relies on two mechanisms, a shunting effect due to an increase in the postsynaptic membrane conductance and, in mature neurons, a hyperpolarization effect due to an entry of chloride into postsynaptic neurons. The second effect requires the action of the K+-Cl- cotransporter KCC2 which extrudes Cl- from the cell and maintains its cytosolic concentration very low. Neuronal chloride equilibrium seems to be dysregulated in several neurological and psychiatric conditions such as epilepsy, anxiety, schizophrenia, Down syndrome, or Alzheimer's disease. In the present study, we used the KCC2 Cre-lox knockdown system to investigate the role of KCC2 in synaptic plasticity and memory formation in adult mice. Tamoxifen-induced conditional deletion of KCC2 in glutamatergic neurons of the forebrain was performed at 3 months of age and resulted in spatial and nonspatial learning impairment. On brain slices, the stimulation of Schaffer collaterals by a theta burst induced long-term potentiation (LTP). The lack of KCC2 did not affect potentiation of field excitatory postsynaptic potentials (fEPSP) measured in the stratum radiatum (dendrites) but increased population spike (PS) amplitudes measured in the CA1 somatic layer, suggesting a reinforcement of the EPSP-PS potentiation, i.e., an increased ability of EPSPs to generate action potentials. At the cellular level, KCC2 deletion induced a positive shift in the reversal potential of GABAAR-driven Cl- currents (EGABA), suggesting an intracellular accumulation of chloride subsequent to the downregulation of KCC2. After treatment with bumetanide, an antagonist of the Na+-K+-Cl- cotransporter NKCC1, spatial memory impairment, chloride accumulation, and EPSP-PS potentiation were rescued in mice lacking KCC2. The presented results emphasize the importance of chloride equilibrium and GABA-inhibiting ability in synaptic plasticity and memory formation.
Collapse
|
3
|
Chapman CA, Nuwer JL, Jacob TC. The Yin and Yang of GABAergic and Glutamatergic Synaptic Plasticity: Opposites in Balance by Crosstalking Mechanisms. Front Synaptic Neurosci 2022; 14:911020. [PMID: 35663370 PMCID: PMC9160301 DOI: 10.3389/fnsyn.2022.911020] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/26/2022] [Indexed: 01/12/2023] Open
Abstract
Synaptic plasticity is a critical process that regulates neuronal activity by allowing neurons to adjust their synaptic strength in response to changes in activity. Despite the high proximity of excitatory glutamatergic and inhibitory GABAergic postsynaptic zones and their functional integration within dendritic regions, concurrent plasticity has historically been underassessed. Growing evidence for pathological disruptions in the excitation and inhibition (E/I) balance in neurological and neurodevelopmental disorders indicates the need for an improved, more "holistic" understanding of synaptic interplay. There continues to be a long-standing focus on the persistent strengthening of excitation (excitatory long-term potentiation; eLTP) and its role in learning and memory, although the importance of inhibitory long-term potentiation (iLTP) and depression (iLTD) has become increasingly apparent. Emerging evidence further points to a dynamic dialogue between excitatory and inhibitory synapses, but much remains to be understood regarding the mechanisms and extent of this exchange. In this mini-review, we explore the role calcium signaling and synaptic crosstalk play in regulating postsynaptic plasticity and neuronal excitability. We examine current knowledge on GABAergic and glutamatergic synapse responses to perturbances in activity, with a focus on postsynaptic plasticity induced by short-term pharmacological treatments which act to either enhance or reduce neuronal excitability via ionotropic receptor regulation in neuronal culture. To delve deeper into potential mechanisms of synaptic crosstalk, we discuss the influence of synaptic activity on key regulatory proteins, including kinases, phosphatases, and synaptic structural/scaffolding proteins. Finally, we briefly suggest avenues for future research to better understand the crosstalk between glutamatergic and GABAergic synapses.
Collapse
Affiliation(s)
| | | | - Tija C. Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Fauss GNK, Hudson KE, Grau JW. Role of Descending Serotonergic Fibers in the Development of Pathophysiology after Spinal Cord Injury (SCI): Contribution to Chronic Pain, Spasticity, and Autonomic Dysreflexia. BIOLOGY 2022; 11:234. [PMID: 35205100 PMCID: PMC8869318 DOI: 10.3390/biology11020234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/12/2022]
Abstract
As the nervous system develops, nerve fibers from the brain form descending tracts that regulate the execution of motor behavior within the spinal cord, incoming sensory signals, and capacity to change (plasticity). How these fibers affect function depends upon the transmitter released, the receptor system engaged, and the pattern of neural innervation. The current review focuses upon the neurotransmitter serotonin (5-HT) and its capacity to dampen (inhibit) neural excitation. A brief review of key anatomical details, receptor types, and pharmacology is provided. The paper then considers how damage to descending serotonergic fibers contributes to pathophysiology after spinal cord injury (SCI). The loss of serotonergic fibers removes an inhibitory brake that enables plasticity and neural excitation. In this state, noxious stimulation can induce a form of over-excitation that sensitizes pain (nociceptive) circuits, a modification that can contribute to the development of chronic pain. Over time, the loss of serotonergic fibers allows prolonged motor drive (spasticity) to develop and removes a regulatory brake on autonomic function, which enables bouts of unregulated sympathetic activity (autonomic dysreflexia). Recent research has shown that the loss of descending serotonergic activity is accompanied by a shift in how the neurotransmitter GABA affects neural activity, reducing its inhibitory effect. Treatments that target the loss of inhibition could have therapeutic benefit.
Collapse
Affiliation(s)
| | | | - James W. Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77843, USA; (G.N.K.F.); (K.E.H.)
| |
Collapse
|
5
|
Wan L, Chen L, Yu J, Wang G, Wu Z, Qian B, Liu X, Wang Y. Coordinated downregulation of KCC2 and GABA A receptor contributes to inhibitory dysfunction during seizure induction. Biochem Biophys Res Commun 2020; 532:489-495. [PMID: 32892950 DOI: 10.1016/j.bbrc.2020.08.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 01/25/2023]
Abstract
The GABAA receptor (GABAAR) is the main inhibitory receptor in the adult mammalian brain. GABAAR function is dependent on its expression, distribution, and the chloride (Cl-) transmembrane gradient, which is determined by the potassium-chloride cotransporter 2 (KCC2) in the adult brain. KCC2 and GABAAR are downregulated in an activity-dependent manner during seizure induction. Functionally, KCC2 and GABAAR are closely related membrane proteins which modulate GABAergic inhibition. However, it remains unclear how their downregulation during seizure induction is coordinated. This study aimed to assess this interaction. Our results revealed that KCC2 and GABAAR were simultaneously downregulated in both in vivo and in vitro seizure models induced by the convulsant cyclothazide (CTZ), which was at least partly due to structural coupling in hippocampal neuronal membranes. Immunohistochemistry revealed colocalization of gephyrin with KCC2 and co-immunoprecipitation exhibited a direct coupling between GABAAR α1-subunit and KCC2 protein in hippocampal cell membranes. KCC2 specific short hairpin RNA (KCC2-shRNA) was employed to specifically reduce the expression of KCC2 in cultured hippocampal neurons. This resulted in a significant reduction in KCC2-independent GABAergic miniature inhibitory post-synaptic current (mIPSC) amplitude in shKCC2-transfected neurons. Further, pre-treatment with furosemide, a KCC2 inhibitor, during CTZ stimulation followed by washout significantly prevented convulsant stimulation-induced membrane KCC2 downregulation and significantly attenuated GABAAR downregulation concomitant with recovery of suppressed KCC2-independent GABAergic mIPSC amplitude. Our results suggest that the coordinated downregulation of KCC2 and GABAAR during seizure induction exerts a strong functional impact on GABAAR, highlighting an important regulatory mechanism in epilepsy.
Collapse
Affiliation(s)
- Li Wan
- Rehabilitation Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China.
| | - Lulan Chen
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiangning Yu
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guoxiang Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zheng Wu
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Binbin Qian
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xu Liu
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yun Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Akita T, Fukuda A. Intracellular Cl - dysregulation causing and caused by pathogenic neuronal activity. Pflugers Arch 2020; 472:977-987. [PMID: 32300887 DOI: 10.1007/s00424-020-02375-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023]
Abstract
The intracellular Cl- concentration ([Cl-]i) is tightly regulated in brain neurons for stabilizing brain performance. The [Cl-]i in mature neurons is determined by the balance between the rate of Cl- extrusion mainly mediated by the neuron-specific type 2 K+-Cl- cotransporter (KCC2) and the rate of Cl- entry through various Cl- channels including GABAA receptors during neuronal activity. Disturbance of the balance causes instability of brain circuit performance and may lead to epileptic seizures. In the first part of this review, we discuss how genetic alterations in KCC2 in humans cause infantile migrating focal seizures, based on our previous report and others. Depolarization of the membrane potential increases the driving force for Cl- entry into neurons. Thus, the duration of action potential spike generation and the frequency of excitatory synaptic inputs are the crucial factors for determining the total amount of Cl- entry and the equilibrium [Cl-]i in neurons. Moreover, there is also a significant interdependence between the neuronal activity and the KCC2 expression. In the second part, we discuss plausible mechanisms by which excessive neuronal activity due to excitotoxic brain insults or other epilepsy-associated gene mutations may cause the Cl- imbalance in neurons and lead to epileptic discharges over the brain, using the schematic "unifying foci" model based on literature.
Collapse
Affiliation(s)
- Tenpei Akita
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan.
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| |
Collapse
|
7
|
Côme E, Marques X, Poncer JC, Lévi S. KCC2 membrane diffusion tunes neuronal chloride homeostasis. Neuropharmacology 2019; 169:107571. [PMID: 30871970 DOI: 10.1016/j.neuropharm.2019.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/26/2019] [Accepted: 03/10/2019] [Indexed: 02/05/2023]
Abstract
Neuronal Cl- homeostasis is regulated by the activity of two cation chloride co-transporters (CCCs), the K+-Cl- cotransporter KCC2 and the Na+-K+-Cl- cotransporter NKCC1, which are primarily extruding and importing chloride in neurons, respectively. Several neurological and psychiatric disorders including epilepsy, neuropathic pain, schizophrenia and autism are associated with altered neuronal chloride (Cl-) homeostasis. A current view is that the accumulation of intracellular Cl- in neurons as a result of KCC2 down-regulation and/or NKCC1 up-regulation may weaken inhibitory GABA signaling and thereby promote the development of pathological activities. CCC activity is determined mainly by their level of expression in the plasma membrane. Furthermore, CCCs undergo "diffusion-trapping" in the membrane, a mechanism that is rapidly adjusted by activity-dependent post-translational modifications i.e. phosphorylation/dephosphorylation of key serine and threonine residues. This represents probably the most rapid cellular mechanism for adapting CCC function to changes in neuronal activity. Therefore, interfering with these mechanisms may help restoring Cl- homeostasis and inhibition under pathological conditions. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.
Collapse
Affiliation(s)
- Etienne Côme
- INSERM UMR-S 1270, 75005, Paris, France; Sorbonne Université, 75005, Paris, France; Institut du Fer à Moulin, 75005, Paris, France
| | - Xavier Marques
- INSERM UMR-S 1270, 75005, Paris, France; Sorbonne Université, 75005, Paris, France; Institut du Fer à Moulin, 75005, Paris, France
| | - Jean Christophe Poncer
- INSERM UMR-S 1270, 75005, Paris, France; Sorbonne Université, 75005, Paris, France; Institut du Fer à Moulin, 75005, Paris, France
| | - Sabine Lévi
- INSERM UMR-S 1270, 75005, Paris, France; Sorbonne Université, 75005, Paris, France; Institut du Fer à Moulin, 75005, Paris, France.
| |
Collapse
|
8
|
Côme E, Heubl M, Schwartz EJ, Poncer JC, Lévi S. Reciprocal Regulation of KCC2 Trafficking and Synaptic Activity. Front Cell Neurosci 2019; 13:48. [PMID: 30842727 PMCID: PMC6391895 DOI: 10.3389/fncel.2019.00048] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/01/2019] [Indexed: 01/05/2023] Open
Abstract
The main inhibitory neurotransmitter receptors in the adult central nervous system (CNS) are type A γ-aminobutyric acid receptors (GABAARs) and glycine receptors (GlyRs). Synaptic responses mediated by GlyR and GABAAR display a hyperpolarizing shift during development. This shift relies mainly on the developmental up-regulation of the K+-Cl- co-transporter KCC2 responsible for the extrusion of Cl-. In mature neurons, altered KCC2 function-mainly through increased endocytosis-leads to the re-emergence of depolarizing GABAergic and glycinergic signaling, which promotes hyperexcitability and pathological activities. Identifying signaling pathways and molecular partners that control KCC2 surface stability thus represents a key step in the development of novel therapeutic strategies. Here, we present our current knowledge on the cellular and molecular mechanisms governing the plasma membrane turnover rate of the transporter under resting conditions and in response to synaptic activity. We also discuss the notion that KCC2 lateral diffusion is one of the first parameters modulating the transporter membrane stability, allowing for rapid adaptation of Cl- transport to changes in neuronal activity.
Collapse
Affiliation(s)
- Etienne Côme
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Martin Heubl
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Eric J Schwartz
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Jean Christophe Poncer
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Sabine Lévi
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
9
|
Grau JW, Huang YJ. Metaplasticity within the spinal cord: Evidence brain-derived neurotrophic factor (BDNF), tumor necrosis factor (TNF), and alterations in GABA function (ionic plasticity) modulate pain and the capacity to learn. Neurobiol Learn Mem 2018; 154:121-135. [PMID: 29635030 DOI: 10.1016/j.nlm.2018.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/01/2018] [Accepted: 04/06/2018] [Indexed: 12/15/2022]
Abstract
Evidence is reviewed that behavioral training and neural injury can engage metaplastic processes that regulate adaptive potential. This issue is explored within a model system that examines how training affects the capacity to learn within the lower (lumbosacral) spinal cord. Response-contingent (controllable) stimulation applied caudal to a spinal transection induces a behavioral modification indicative of learning. This behavioral change is not observed in animals that receive stimulation in an uncontrollable manner. Exposure to uncontrollable stimulation also engages a process that disables spinal learning for 24-48 h. Controllable stimulation has the opposite effect; it engages a process that enables learning and prevents/reverses the learning deficit induced by uncontrollable stimulation. These observations suggest that a learning episode can impact the capacity to learn in future situations, providing an example of behavioral metaplasticity. The protective/restorative effect of controllable stimulation has been linked to an up-regulation of brain-derived neurotrophic factor (BDNF). The disruption of learning has been linked to the sensitization of pain (nociceptive) circuits, which is enabled by a reduction in GABA-dependent inhibition. After spinal cord injury (SCI), the co-transporter (KCC2) that regulates the outward flow of Cl- is down-regulated. This causes the intracellular concentration of Cl- to increase, reducing (and potentially reversing) the inward flow of Cl- through the GABA-A receptor. The shift in GABA function (ionic plasticity) increases neural excitability caudal to injury and sets the stage for nociceptive sensitization. The injury-induced shift in KCC2 is related to the loss of descending serotonergic (5HT) fibers that regulate plasticity within the spinal cord dorsal horn through the 5HT-1A receptor. Evidence is presented that these alterations in spinal plasticity impact pain in a brain-dependent task (place conditioning). The findings suggest that ionic plasticity can affect learning potential, shifting a neural circuit from dampened/hard-wired to excitable/plastic.
Collapse
Affiliation(s)
- James W Grau
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843-4235, USA.
| | - Yung-Jen Huang
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843-4235, USA
| |
Collapse
|
10
|
Di Cristo G, Awad PN, Hamidi S, Avoli M. KCC2, epileptiform synchronization, and epileptic disorders. Prog Neurobiol 2018; 162:1-16. [DOI: 10.1016/j.pneurobio.2017.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/09/2017] [Accepted: 11/28/2017] [Indexed: 12/31/2022]
|
11
|
Heubl M, Zhang J, Pressey JC, Al Awabdh S, Renner M, Gomez-Castro F, Moutkine I, Eugène E, Russeau M, Kahle KT, Poncer JC, Lévi S. GABA A receptor dependent synaptic inhibition rapidly tunes KCC2 activity via the Cl --sensitive WNK1 kinase. Nat Commun 2017; 8:1776. [PMID: 29176664 PMCID: PMC5701213 DOI: 10.1038/s41467-017-01749-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/13/2017] [Indexed: 02/08/2023] Open
Abstract
The K+-Cl- co-transporter KCC2 (SLC12A5) tunes the efficacy of GABAA receptor-mediated transmission by regulating the intraneuronal chloride concentration [Cl-]i. KCC2 undergoes activity-dependent regulation in both physiological and pathological conditions. The regulation of KCC2 by synaptic excitation is well documented; however, whether the transporter is regulated by synaptic inhibition is unknown. Here we report a mechanism of KCC2 regulation by GABAA receptor (GABAAR)-mediated transmission in mature hippocampal neurons. Enhancing GABAAR-mediated inhibition confines KCC2 to the plasma membrane, while antagonizing inhibition reduces KCC2 surface expression by increasing the lateral diffusion and endocytosis of the transporter. This mechanism utilizes Cl- as an intracellular secondary messenger and is dependent on phosphorylation of KCC2 at threonines 906 and 1007 by the Cl--sensing kinase WNK1. We propose this mechanism contributes to the homeostasis of synaptic inhibition by rapidly adjusting neuronal [Cl-]i to GABAAR activity.
Collapse
Affiliation(s)
- Martin Heubl
- Inserm UMR-S 839, 75005, Paris, France
- Université Pierre & Marie Curie, Sorbonne Universités, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Jinwei Zhang
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, EX4 4PS, UK
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology, NIH-Yale Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Jessica C Pressey
- Inserm UMR-S 839, 75005, Paris, France
- Université Pierre & Marie Curie, Sorbonne Universités, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Sana Al Awabdh
- Inserm UMR-S 839, 75005, Paris, France
- Université Pierre & Marie Curie, Sorbonne Universités, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Marianne Renner
- Inserm UMR-S 839, 75005, Paris, France
- Université Pierre & Marie Curie, Sorbonne Universités, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Ferran Gomez-Castro
- Inserm UMR-S 839, 75005, Paris, France
- Université Pierre & Marie Curie, Sorbonne Universités, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Imane Moutkine
- Inserm UMR-S 839, 75005, Paris, France
- Université Pierre & Marie Curie, Sorbonne Universités, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Emmanuel Eugène
- Inserm UMR-S 839, 75005, Paris, France
- Université Pierre & Marie Curie, Sorbonne Universités, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Marion Russeau
- Inserm UMR-S 839, 75005, Paris, France
- Université Pierre & Marie Curie, Sorbonne Universités, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Kristopher T Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology, NIH-Yale Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Jean Christophe Poncer
- Inserm UMR-S 839, 75005, Paris, France
- Université Pierre & Marie Curie, Sorbonne Universités, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Sabine Lévi
- Inserm UMR-S 839, 75005, Paris, France.
- Université Pierre & Marie Curie, Sorbonne Universités, 75005, Paris, France.
- Institut du Fer à Moulin, 75005, Paris, France.
| |
Collapse
|
12
|
Kudryashova IV. The plasticity of inhibitory synapses as a factor of long-term modifications. NEUROCHEM J+ 2015. [DOI: 10.1134/s1819712415030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Deidda G, Bozarth IF, Cancedda L. Modulation of GABAergic transmission in development and neurodevelopmental disorders: investigating physiology and pathology to gain therapeutic perspectives. Front Cell Neurosci 2014; 8:119. [PMID: 24904277 PMCID: PMC4033255 DOI: 10.3389/fncel.2014.00119] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/14/2014] [Indexed: 01/30/2023] Open
Abstract
During mammalian ontogenesis, the neurotransmitter GABA is a fundamental regulator of neuronal networks. In neuronal development, GABAergic signaling regulates neural proliferation, migration, differentiation, and neuronal-network wiring. In the adult, GABA orchestrates the activity of different neuronal cell-types largely interconnected, by powerfully modulating synaptic activity. GABA exerts these functions by binding to chloride-permeable ionotropic GABAA receptors and metabotropic GABAB receptors. According to its functional importance during development, GABA is implicated in a number of neurodevelopmental disorders such as autism, Fragile X, Rett syndrome, Down syndrome, schizophrenia, Tourette's syndrome and neurofibromatosis. The strength and polarity of GABAergic transmission is continuously modulated during physiological, but also pathological conditions. For GABAergic transmission through GABAA receptors, strength regulation is achieved by different mechanisms such as modulation of GABAA receptors themselves, variation of intracellular chloride concentration, and alteration in GABA metabolism. In the never-ending effort to find possible treatments for GABA-related neurological diseases, of great importance would be modulating GABAergic transmission in a safe and possibly physiological way, without the dangers of either silencing network activity or causing epileptic seizures. In this review, we will discuss the different ways to modulate GABAergic transmission normally at work both during physiological and pathological conditions. Our aim is to highlight new research perspectives for therapeutic treatments that reinstate natural and physiological brain functions in neuro-pathological conditions.
Collapse
Affiliation(s)
- Gabriele Deidda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| | - Ignacio F Bozarth
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| |
Collapse
|
14
|
Activity-dependent regulation of the K/Cl transporter KCC2 membrane diffusion, clustering, and function in hippocampal neurons. J Neurosci 2013; 33:15488-503. [PMID: 24068817 DOI: 10.1523/jneurosci.5889-12.2013] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neuronal K/Cl transporter KCC2 exports chloride ions and thereby influences the efficacy and polarity of GABA signaling in the brain. KCC2 is also critical for dendritic spine morphogenesis and the maintenance of glutamatergic transmission in cortical neurons. Because KCC2 plays a pivotal role in the function of central synapses, it is of particular importance to understand the cellular and molecular mechanisms underlying its regulation. Here, we studied the impact of membrane diffusion and clustering on KCC2 function. KCC2 forms clusters in the vicinity of both excitatory and inhibitory synapses. Using quantum-dot-based single-particle tracking on rat primary hippocampal neurons, we show that KCC2 is slowed down and confined at excitatory and inhibitory synapses compared with extrasynaptic regions. However, KCC2 escapes inhibitory synapses faster than excitatory synapses, reflecting stronger molecular constraints at the latter. Interfering with KCC2-actin interactions or inhibiting F-actin polymerization releases diffusion constraints on KCC2 at excitatory but not inhibitory synapses. Thus, F-actin constrains KCC2 diffusion at excitatory synapses, whereas KCC2 is confined at inhibitory synapses by a distinct mechanism. Finally, increased neuronal activity rapidly increases the diffusion coefficient and decreases the dwell time of KCC2 at excitatory synapses. This effect involves NMDAR activation, Ca(2+) influx, KCC2 S940 dephosphorylation and calpain protease cleavage of KCC2 and is accompanied by reduced KCC2 clustering and ion transport function. Thus, activity-dependent regulation of KCC2 lateral diffusion and clustering allows for a rapid regulation of chloride homeostasis in neurons.
Collapse
|
15
|
Synaptic plasticity by antidromic firing during hippocampal network oscillations. Proc Natl Acad Sci U S A 2013; 110:5175-80. [PMID: 23479613 DOI: 10.1073/pnas.1210735110] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Learning and other cognitive tasks require integrating new experiences into context. In contrast to sensory-evoked synaptic plasticity, comparatively little is known of how synaptic plasticity may be regulated by intrinsic activity in the brain, much of which can involve nonclassical modes of neuronal firing and integration. Coherent high-frequency oscillations of electrical activity in CA1 hippocampal neurons [sharp-wave ripple complexes (SPW-Rs)] functionally couple neurons into transient ensembles. These oscillations occur during slow-wave sleep or at rest. Neurons that participate in SPW-Rs are distinguished from adjacent nonparticipating neurons by firing action potentials that are initiated ectopically in the distal region of axons and propagate antidromically to the cell body. This activity is facilitated by GABA(A)-mediated depolarization of axons and electrotonic coupling. The possible effects of antidromic firing on synaptic strength are unknown. We find that facilitation of spontaneous SPW-Rs in hippocampal slices by increasing gap-junction coupling or by GABA(A)-mediated axon depolarization resulted in a reduction of synaptic strength, and electrical stimulation of axons evoked a widespread, long-lasting synaptic depression. Unlike other forms of synaptic plasticity, this synaptic depression is not dependent upon synaptic input or glutamate receptor activation, but rather requires L-type calcium channel activation and functional gap junctions. Synaptic stimulation delivered after antidromic firing, which was otherwise too weak to induce synaptic potentiation, triggered a long-lasting increase in synaptic strength. Rescaling synaptic weights in subsets of neurons firing antidromically during SPW-Rs might contribute to memory consolidation by sharpening specificity of subsequent synaptic input and promoting incorporation of novel information.
Collapse
|
16
|
Chamma I, Chevy Q, Poncer JC, Lévi S. Role of the neuronal K-Cl co-transporter KCC2 in inhibitory and excitatory neurotransmission. Front Cell Neurosci 2012; 6:5. [PMID: 22363264 PMCID: PMC3282916 DOI: 10.3389/fncel.2012.00005] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 01/30/2012] [Indexed: 01/06/2023] Open
Abstract
The K-Cl co-transporter KCC2 plays multiple roles in the physiology of central neurons and alterations of its function and/or expression are associated with several neurological conditions. By regulating intraneuronal chloride homeostasis, KCC2 strongly influences the efficacy and polarity of the chloride-permeable γ-aminobutyric acid (GABA) type A and glycine receptor (GlyR) mediated synaptic transmission. This appears particularly critical for the development of neuronal circuits as well as for the dynamic control of GABA and glycine signaling in mature networks. The activity of the transporter is also associated with transmembrane water fluxes which compensate solute fluxes associated with synaptic activity. Finally, KCC2 interaction with the actin cytoskeleton appears critical both for dendritic spine morphogenesis and the maintenance of glutamatergic synapses. In light of the pivotal role of KCC2 in the maturation and function of central synapses, it is of particular importance to understand the cellular and molecular mechanisms underlying its regulation. These include development and activity-dependent modifications both at the transcriptional and post-translational levels. We emphasize the importance of post-translational mechanisms such as phosphorylation and dephosphorylation, oligomerization, cell surface stability, clustering and membrane diffusion for the rapid and dynamic regulation of KCC2 function.
Collapse
|
17
|
Alterations of endocannabinoid signaling, synaptic plasticity, learning, and memory in monoacylglycerol lipase knock-out mice. J Neurosci 2011; 31:13420-30. [PMID: 21940435 DOI: 10.1523/jneurosci.2075-11.2011] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endocannabinoid (eCB) signaling is tightly regulated by eCB biosynthetic and degradative enzymes. The eCB 2-arachidonoylglycerol (2-AG) is hydrolyzed primarily by monoacylglycerol lipase (MAGL). Here, we investigated whether eCB signaling, synaptic function, and learning behavior were altered in MAGL knock-out mice. We report that MAGL⁻/⁻ mice exhibited prolonged depolarization-induced suppression of inhibition (DSI) in hippocampal CA1 pyramidal neurons, providing genetic evidence that the inactivation of 2-AG by MAGL determines the time course of the eCB-mediated retrograde synaptic depression. CB₁ receptor antagonists enhanced basal IPSCs in CA1 pyramidal neurons in MAGL⁻/⁻ mice, while the magnitude of DSI or CB₁ receptor agonist-induced depression of IPSCs was decreased in MAGL⁻/⁻ mice. These results suggest that 2-AG elevations in MAGL⁻/⁻ mice cause tonic activation and partial desensitization of CB₁ receptors. Genetic deletion of MAGL selectively enhanced theta burst stimulation (TBS)-induced long-term potentiation (LTP) in the CA1 region of hippocampal slices but had no significant effect on LTP induced by high-frequency stimulation or long-term depression induced by low-frequency stimulation. The enhancement of TBS-LTP in MAGL⁻/⁻ mice appears to be mediated by 2-AG-induced suppression of GABA(A) receptor-mediated inhibition. MAGL⁻/⁻ mice exhibited enhanced learning as shown by improved performance in novel object recognition and Morris water maze. These results indicate that genetic deletion of MAGL causes profound changes in eCB signaling, long-term synaptic plasticity, and learning behavior.
Collapse
|
18
|
Altered GABA signaling in early life epilepsies. Neural Plast 2011; 2011:527605. [PMID: 21826277 PMCID: PMC3150203 DOI: 10.1155/2011/527605] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/04/2011] [Accepted: 05/27/2011] [Indexed: 01/13/2023] Open
Abstract
The incidence of seizures is particularly high in the early ages of life. The immaturity of inhibitory systems, such as GABA, during normal brain development and its further dysregulation under pathological conditions that predispose to seizures have been speculated to play a major role in facilitating seizures. Seizures can further impair or disrupt GABAA signaling by reshuffling the subunit composition of its receptors or causing aberrant reappearance of depolarizing or hyperpolarizing GABAA receptor currents. Such effects may not result in epileptogenesis as frequently as they do in adults. Given the central role of GABAA signaling in brain function and development, perturbation of its physiological role may interfere with neuronal morphology, differentiation, and connectivity, manifesting as cognitive or neurodevelopmental deficits. The current GABAergic antiepileptic drugs, while often effective for adults, are not always capable of stopping seizures and preventing their sequelae in neonates. Recent studies have explored the therapeutic potential of chloride cotransporter inhibitors, such as bumetanide, as adjunctive therapies of neonatal seizures. However, more needs to be known so as to develop therapies capable of stopping seizures while preserving the age- and sex-appropriate development of the brain.
Collapse
|
19
|
Wright R, Raimondo JV, Akerman CJ. Spatial and temporal dynamics in the ionic driving force for GABA(A) receptors. Neural Plast 2011; 2011:728395. [PMID: 21766044 PMCID: PMC3135070 DOI: 10.1155/2011/728395] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 03/29/2011] [Indexed: 11/17/2022] Open
Abstract
It is becoming increasingly apparent that the strength of GABAergic synaptic transmission is dynamic. One parameter that can establish differences in the actions of GABAergic synapses is the ionic driving force for the chloride-permeable GABA(A) receptor (GABA(A)R). Here we review some of the sophisticated ways in which this ionic driving force can vary within neuronal circuits. This driving force for GABA(A)Rs is subject to tight spatial control, with the distribution of Cl⁻ transporter proteins and channels generating regional variation in the strength of GABA(A)R signalling across a single neuron. GABA(A)R dynamics can result from short-term changes in their driving force, which involve the temporary accumulation or depletion of intracellular Cl⁻. In addition, activity-dependent changes in the expression and function of Cl⁻ regulating proteins can result in long-term shifts in the driving force for GABA(A)Rs. The multifaceted regulation of the ionic driving force for GABA(A)Rs has wide ranging implications for mature brain function, neural circuit development, and disease.
Collapse
Affiliation(s)
- R. Wright
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - J. V. Raimondo
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - C. J. Akerman
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
20
|
Role of voltage-dependent calcium channel subtypes in spinal long-term potentiation of C-fiber-evoked field potentials. Pain 2011; 152:623-631. [PMID: 21211907 DOI: 10.1016/j.pain.2010.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 12/01/2010] [Accepted: 12/02/2010] [Indexed: 11/20/2022]
Abstract
Activity-dependent increases in the responsiveness of spinal neurons to their normal afferent input, termed central sensitization, have been suggested to play a key role in abnormal pain sensation. We investigated the role of distinct voltage-dependent calcium channel (VDCC) subtypes in the long-term potentiation (LTP) of C-fiber-evoked field potentials (FPs) recorded in the spinal dorsal horn of rats, that is, a synaptic model to describe central sensitization. When spinally applied, we observed that omega-conotoxin GVIA (ω-CgTx), an N-type VDCC antagonist, produced a dose-dependent and prolonged inhibition of basal C-fiber-evoked FPs in naïve animals. ω-CgTx did not perturb the induction of LTP by high-frequency stimulation (HFS) of the sciatic nerve; however, potentiation was maintained at a lower level. Following the establishment of spinal LTP in naïve animals, the inhibitory effect of ω-CgTx on C-fiber-evoked FPs was significantly increased. Furthermore, in animals with chronic pain produced via peripheral nerve injury, where spinal LTP was barely induced by HFS, basal C-fiber-evoked FPs were strongly inhibited by ω-CgTx. As a result, ω-CgTx exerted a similar inhibitory profile on C-fiber-evoked FPs following the establishment of spinal LTP and chronic pain. In contrast, spinally administered omega-agatoxin IVA (ω-Aga-IVA), a P/Q-type VDCC antagonist, showed little effect on C-fiber-evoked FPs either before or after the establishment of LTP, but strongly suppressed LTP induction. These results demonstrate the requirement of N- and P/Q-type VDCCs in the maintenance and induction of LTP in the spinal dorsal horn, respectively, and their distinct contribution to nociceptive synaptic transmission and its plasticity. In vivo electrophysiological studies demonstrate the distinct and predominant functions of voltage-dependent calcium channel subtypes for spinal long-term potentiation and chronic pain.
Collapse
|
21
|
GABA transporter-1 activity modulates hippocampal theta oscillation and theta burst stimulation-induced long-term potentiation. J Neurosci 2010; 29:15836-45. [PMID: 20016099 DOI: 10.1523/jneurosci.4643-09.2009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The network oscillation and synaptic plasticity are known to be regulated by GABAergic inhibition, but how they are affected by changes in the GABA transporter activity remains unclear. Here we show that in the CA1 region of mouse hippocampus, pharmacological blockade or genetic deletion of GABA transporter-1 (GAT1) specifically impaired long-term potentiation (LTP) induced by theta burst stimulation, but had no effect on LTP induced by high-frequency stimulation or long-term depression induced by low-frequency stimulation. The extent of LTP impairment depended on the precise burst frequency, with significant impairment at 3-7 Hz that correlated with the time course of elevated GABAergic inhibition caused by GAT1 disruption. Furthermore, in vivo electrophysiological recordings showed that GAT1 gene deletion reduced the frequency of hippocampal theta oscillation. Moreover, behavioral studies showed that GAT1 knock-out mice also exhibited impaired hippocampus-dependent learning and memory. Together, these results have highlighted the important link between GABAergic inhibition and hippocampal theta oscillation, both of which are critical for synaptic plasticity and learning behaviors.
Collapse
|
22
|
Liu Y, Chen J, Song T, Hu C, Tang Y, Zhang X, Zhao J. Contribution of K+-Cl- cotransporter 2 in MK-801-induced impairment of long term potentiation. Behav Brain Res 2009; 201:300-4. [PMID: 19428648 DOI: 10.1016/j.bbr.2009.02.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 02/23/2009] [Accepted: 02/27/2009] [Indexed: 10/21/2022]
Abstract
Previous studies have indicated that GABAergic disinhibition contributes to cognitive deficits mediated by NMDA receptor hypofunction in schizophrenia model of rats. However, the underlying mechanism of GABAergic disinhibition in schizophrenia remains elusive. In this study, we found that the maintenance of long term potentiation (LTP) was impaired in the hippocampus of rats with MK-801-induced cognitive impairments. The impairment of LTP maintenance was significantly reversed by picrotoxinin, a specific GABA(A) receptor-chloride channel blocker and furosemide, a K+-Cl- cotransporter 2 (KCC2) blocker, respectively. Furthermore, immunoblotting results indicated KCC2 expression in hippocampal CA1 of MK-801-treated rats was lower than that of normal rats before LTP induction. Additionally, LTP-accompanied downregulation of KCC2 was prevented in MK-801-treated rats during LTP induction. Our results suggested that KCC2 expression in hippocampal CA1 of MK-801-treated rats was not further decreased by LTP induction because of its low expression caused by MK-801 treatment. Accordingly, GABAergic inhibition was not further decreased during LTP induction due to the depressed basal GABAergic tone in MK-801-treated rats, Therefore, GABAergic disinhibition in MK-801-treated rats restricts the further downregulation of KCC2 during LTP induction and contributes to the stable GABAergic inhibition and the impaired LTP expression. Our results thus reveal the mechanism that GABAergic disinhibition contributes to cognitive deficits.
Collapse
Affiliation(s)
- Yong Liu
- Mental Health Institute, The Second Xiangya Hospital, Central South University, 139# Renmin Middle Road, Changsha 410011, Hunan, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Francesconi W, Berton F, Repunte-Canonigo V, Hagihara K, Thurbon D, Lekic D, Specio SE, Greenwell TN, Chen SA, Rice KC, Richardson HN, O'Dell LE, Zorrilla EP, Morales M, Koob GF, Sanna PP. Protracted withdrawal from alcohol and drugs of abuse impairs long-term potentiation of intrinsic excitability in the juxtacapsular bed nucleus of the stria terminalis. J Neurosci 2009; 29:5389-401. [PMID: 19403807 PMCID: PMC2938175 DOI: 10.1523/jneurosci.5129-08.2009] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 01/26/2009] [Accepted: 01/27/2009] [Indexed: 11/21/2022] Open
Abstract
The juxtacapsular bed nucleus of the stria terminalis (jcBNST) is activated in response to basolateral amygdala (BLA) inputs through the stria terminalis and projects back to the anterior BLA and to the central nucleus of the amygdala. Here we show a form of long-term potentiation of the intrinsic excitability (LTP-IE) of jcBNST neurons in response to high-frequency stimulation of the stria terminalis. This LTP-IE, which was characterized by a decrease in the firing threshold and increased temporal fidelity of firing, was impaired during protracted withdrawal from self-administration of alcohol, cocaine, and heroin. Such impairment was graded and was more pronounced in rats that self-administered amounts of the drugs sufficient to maintain dependence. Dysregulation of the corticotropin-releasing factor (CRF) system has been implicated in manifestation of protracted withdrawal from dependent drug use. Administration of the selective corticotropin-releasing factor receptor 1 (CRF(1)) antagonist R121919 [2,5-dimethyl-3-(6-dimethyl-4-methylpyridin-3-yl)-7-dipropylamino-pyrazolo[1,5-a]pyrimidine)], but not of the CRF(2) antagonist astressin(2)-B, normalized jcBNST LTP-IE in animals with a history of alcohol dependence; repeated, but not acute, administration of CRF itself produced a decreased jcBNST LTP-IE. Thus, changes in the intrinsic properties of jcBNST neurons mediated by chronic activation of the CRF system may contribute to the persistent emotional dysregulation associated with protracted withdrawal.
Collapse
Affiliation(s)
- Walter Francesconi
- Molecular and Integrative Neurosciences Department and
- Department of Biology, University of Pisa, 56126 Pisa, Italy
| | - Fulvia Berton
- Molecular and Integrative Neurosciences Department and
| | | | | | - David Thurbon
- Molecular and Integrative Neurosciences Department and
| | - Dusan Lekic
- Molecular and Integrative Neurosciences Department and
| | - Sheila E. Specio
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037
| | - Thomas N. Greenwell
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037
| | - Scott A. Chen
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037
| | - Kenner C. Rice
- National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892
| | - Heather N. Richardson
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037
| | - Laura E. O'Dell
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037
| | - Eric P. Zorrilla
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037
| | - Marisela Morales
- Laboratory of Cellular Neurophysiology, National Institutes on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, and
| | - George F. Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037
| | | |
Collapse
|
24
|
Bortone D, Polleux F. KCC2 expression promotes the termination of cortical interneuron migration in a voltage-sensitive calcium-dependent manner. Neuron 2009; 62:53-71. [PMID: 19376067 PMCID: PMC3314167 DOI: 10.1016/j.neuron.2009.01.034] [Citation(s) in RCA: 287] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 12/17/2008] [Accepted: 01/30/2009] [Indexed: 12/23/2022]
Abstract
The molecular mechanisms controlling the termination of cortical interneuron migration are unknown. Here, we demonstrate that, prior to synaptogenesis, migrating interneurons change their responsiveness to ambient GABA from a motogenic to a stop signal. We found that, during migration into the cortex, ambient GABA and glutamate initially stimulate the motility of interneurons through both GABA(A) and AMPA/NMDA receptor activation. Once in the cortex, upregulation of the potassium-chloride cotransporter KCC2 is both necessary and sufficient to reduce interneuron motility through its ability to reduce membrane potential upon GABA(A) receptor activation, which decreases the frequency of spontaneous intracellular calcium transients initiated by L-type voltage-sensitive calcium channel (VSCC) activation. Our results suggest a mechanism whereby migrating interneurons determine the relative density of surrounding interneurons and principal cells through their ability to sense the combined extracellular levels of ambient glutamate and GABA once GABA(A) receptor activation becomes hyperpolarizing.
Collapse
Affiliation(s)
- Dante Bortone
- Neurobiology Curriculum - University of North Carolina - Chapel Hill
| | - Franck Polleux
- University of North Carolina - Chapel Hill Neuroscience Center Department of Pharmacology 115 Mason Farm Road Chapel Hill, NC 27599-7250 USA
| |
Collapse
|
25
|
Rönicke R, Schröder UH, Böhm K, Reymann KG. The Na+/H+ exchanger modulates long-term potentiation in rat hippocampal slices. Naunyn Schmiedebergs Arch Pharmacol 2008; 379:233-9. [PMID: 18972102 DOI: 10.1007/s00210-008-0364-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 10/07/2008] [Indexed: 11/30/2022]
Abstract
Although present in great variety in the brain, the role of Na(+)/H(+) exchangers (NHEs) in hippocampal plasticity is still unknown and the effect of NHE inhibition on long-term potentiation (LTP) has not been studied yet. As it is conceivable that NHE inhibitors may severely affect mechanisms that are considered to underlie learning and memory we investigated whether the broad-spectrum NHE inhibitor 5'-(N-ethyl-N-isopropyl)-amiloride (EIPA, 10 microM) influences LTP induced by different stimuli based on a theta burst in interface hippocampus slices from 7-8-week-old Wistar and 30-month-old Fischer 344/Brown-Norway F1 hybrid (F344/BN) rats. EIPA did not affect basal synaptic transmission, paired pulse inhibition, or LTP induced by a weak stimulus, but improved the maintenance of the LTP of the population spike induced by a strong tetanus. Our data suggest that NHE activity serves as a negative feedback mechanism to control neuronal excitability and plasticity in both young and senescent animals.
Collapse
Affiliation(s)
- Raik Rönicke
- Project Group Neuropharmacology, Leibniz Institute for Neurobiology, Brenneckestrasse 6., 39118, Magdeburg, Germany.
| | | | | | | |
Collapse
|
26
|
Wang W, Wang H, Gong N, Xu TL. Changes of K+ -Cl- cotransporter 2 (KCC2) and circuit activity in propofol-induced impairment of long-term potentiation in rat hippocampal slices. Brain Res Bull 2006; 70:444-9. [PMID: 17027780 DOI: 10.1016/j.brainresbull.2006.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 05/02/2006] [Accepted: 07/03/2006] [Indexed: 11/16/2022]
Abstract
Enhancing inhibition via gamma-aminobutyric acid type A (GABA(A)) receptors contributes to anesthetic-induced impairment of long-term potentiation (LTP) of excitatory synaptic transmission, which may account for general anesthesia-associated memory impairment (amnesia). The neuron-specific K+ -Cl- cotransporter 2 (KCC2) is necessary for fast synaptic inhibition via maintaining the low intracellular chloride concentration required for the hyperpolarizing actions of GABA via GABA(A) receptors. To explore a possible role of KCC2-dependent inhibition in anesthetic-induced impairment of LTP, we used field excitatory postsynaptic potentials (fEPSP) recording and immunoblotting to study the effect of propofol on LTP maintenance and KCC2 expression in CA1 region of rat hippocampal slices. We found that propofol (30 microM) not only impaired LTP expression but also prevented LTP-accompanied downregulation of KCC2 without affecting the basal transmission of glutamatergic synapses. Moreover, the recurrent inhibition in hippocampal slices was enhanced by propofol. These propofol-induced effects were completely abolished by picrotoxin, a specific GABA(A) receptor-chloride channel blocker. Thus, enhancement of GABAergic inhibition and suppression of neuronal excitability may account for the sustained expression of KCC2 and the impairment of LTP by propofol. Together, this study supports a novel role for KCC2 in LTP expression and gives hints to a molecular mechanism, by which anesthetics might cause impairment of LTP.
Collapse
Affiliation(s)
- Wei Wang
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | | | | | | |
Collapse
|