1
|
Gaba S, Sahu M, Chauhan N, Jain U. Transforming growth factor alpha: Key insights into physiological role, cancer therapeutics, and biomarker potential (A review). Int J Biol Macromol 2025; 310:143212. [PMID: 40250676 DOI: 10.1016/j.ijbiomac.2025.143212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Transforming Growth Factor Alpha (TGF-α) is a critical member of the epidermal growth factor (EGF) family and a key regulator of various physiological processes, including cellular proliferation, survival, differentiation, wound repair, and tissue regeneration. Deficiencies or mutations in TGF-α have been associated with impaired tissue development and organ growth, underscoring its critical role in maintaining normal and healthy physiology. Alterations in its levels are frequently implicated in the neoplastic transformation of cells, contributing to cancer development. Several strategies for targeting TGF-α in cancer therapy have been explored, such as the use of antibodies, recombinant proteins, oligonucleotide-mediated interference in ligand synthesis, ligand sequestration via binding proteins, and modulation of the signal transduction pathway. Furthermore, there is growing interest in the potential of TGF-α as a diagnostic or prognostic biomarker for cancer. This review delves into the role of TGF-α in normal physiology and its involvement in carcinogenesis. It highlights therapies targeting TGF-α and explores future directions in targeting TGF-α/EGFR signaling using advancing approaches, including nanoparticle-based drug delivery systems, CRISPR-Cas genome editing tool, PROTAC, and combination therapies. By bringing attention to this molecule, we aim to explore its untapped potential in cancer treatment and inspire further research into its promising applications across related fields. While recent studies highlight the promise of TGF-α as a clinical biomarker, further research is needed to validate its specificity and integration into personalized medicine. By providing a comprehensive overview of TGF-α in both normal and pathological contexts, this review aims to offer new insights into its translational applications in cancer therapeutics and biomarker discovery.
Collapse
Affiliation(s)
- Smriti Gaba
- School of Health Sciences and Technology, UPES, Dehradun 248007, India
| | - Mridul Sahu
- School of Health Sciences and Technology, UPES, Dehradun 248007, India
| | - Nidhi Chauhan
- School of Health Sciences and Technology, UPES, Dehradun 248007, India
| | - Utkarsh Jain
- School of Health Sciences and Technology, UPES, Dehradun 248007, India.
| |
Collapse
|
2
|
Scheller J, Ettich J, Wittich C, Pudewell S, Floss DM, Rafii P. Exploring the landscape of synthetic IL-6-type cytokines. FEBS J 2024; 291:2030-2050. [PMID: 37467060 DOI: 10.1111/febs.16909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Interleukin-6 (IL-6)-type cytokines not only have key immunomodulatory functions that affect the pathogenesis of diseases such as autoimmune diseases, chronic inflammatory conditions, and cancer, but also fulfill important homeostatic tasks. Even though the pro-inflammatory arm has hindered the development of therapeutics based on natural-like IL-6-type cytokines to date, current synthetic trends might pave the way to overcome these limitations and eventually lead to immune-inert designer cytokines to aid type 2 diabetes and brain injuries. Those synthetic biology approaches include mutations, fusion proteins, and inter-cytokine swapping, and resulted in IL-6-type cytokines with altered receptor affinities, extended target cell profiles, and targeting of non-natural cytokine receptor complexes. Here, we survey synthetic cytokine developments within the IL-6-type cytokine family and discuss potential clinical applications.
Collapse
Affiliation(s)
- Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christoph Wittich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Silke Pudewell
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Puyan Rafii
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
3
|
Chen YH, van Zon S, Adams A, Schmidt-Arras D, Laurence ADJ, Uhlig HH. The Human GP130 Cytokine Receptor and Its Expression-an Atlas and Functional Taxonomy of Genetic Variants. J Clin Immunol 2023; 44:30. [PMID: 38133879 PMCID: PMC10746620 DOI: 10.1007/s10875-023-01603-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023]
Abstract
Genetic variants in IL6ST encoding the shared cytokine receptor for the IL-6 cytokine family GP130 have been associated with a diverse number of clinical phenotypes and disorders. We provide a molecular classification for 59 reported rare IL6ST pathogenic or likely pathogenic variants and additional polymorphisms. Based on loss- or gain-of-function, cytokine selectivity, mono- and biallelic associations, and variable cellular mosaicism, we grade six classes of IL6ST variants and explore the potential for additional variants. We classify variants according to the American College of Medical Genetics and Genomics criteria. Loss-of-function variants with (i) biallelic complete loss of GP130 function that presents with extended Stüve-Wiedemann Syndrome; (ii) autosomal recessive hyper-IgE syndrome (HIES) caused by biallelic; and (iii) autosomal dominant HIES caused by monoallelic IL6ST variants both causing selective IL-6 and IL-11 cytokine loss-of-function defects; (iv) a biallelic cytokine-specific variant that exclusively impairs IL-11 signaling, associated with craniosynostosis and tooth abnormalities; (v) somatic monoallelic mosaic constitutively active gain-of-function variants in hepatocytes that present with inflammatory hepatocellular adenoma; and (vi) mosaic constitutively active gain-of-function variants in hematopoietic and non-hematopoietic cells that are associated with an immune dysregulation syndrome. In addition to Mendelian IL6ST coding variants, there are common non-coding cis-acting variants that modify gene expression, which are associated with an increased risk of complex immune-mediated disorders and trans-acting variants that affect GP130 protein function. Our taxonomy highlights IL6ST as a gene with particularly strong functional and phenotypic diversity due to the combinatorial biology of the IL-6 cytokine family and predicts additional genotype-phenotype associations.
Collapse
Affiliation(s)
- Yin-Huai Chen
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Sarah van Zon
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Alex Adams
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Dirk Schmidt-Arras
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | | | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
- Biomedical Research Centre, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Rose-John S, Jenkins BJ, Garbers C, Moll JM, Scheller J. Targeting IL-6 trans-signalling: past, present and future prospects. Nat Rev Immunol 2023; 23:666-681. [PMID: 37069261 PMCID: PMC10108826 DOI: 10.1038/s41577-023-00856-y] [Citation(s) in RCA: 187] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 04/19/2023]
Abstract
Interleukin-6 (IL-6) is a key immunomodulatory cytokine that affects the pathogenesis of diverse diseases, including autoimmune diseases, chronic inflammatory conditions and cancer. Classical IL-6 signalling involves the binding of IL-6 to the membrane-bound IL-6 receptor α-subunit (hereafter termed 'mIL-6R') and glycoprotein 130 (gp130) signal-transducing subunit. By contrast, in IL-6 trans-signalling, complexes of IL-6 and the soluble form of IL-6 receptor (sIL-6R) signal via membrane-bound gp130. A third mode of IL-6 signalling - known as cluster signalling - involves preformed complexes of membrane-bound IL-6-mIL-6R on one cell activating gp130 subunits on target cells. Antibodies and small molecules have been developed that block all three forms of IL-6 signalling, but in the past decade, IL-6 trans-signalling has emerged as the predominant pathway by which IL-6 promotes disease pathogenesis. The first selective inhibitor of IL-6 trans-signalling, sgp130, has shown therapeutic potential in various preclinical models of disease and olamkicept, a sgp130Fc variant, had promising results in phase II clinical studies for inflammatory bowel disease. Technological developments have already led to next-generation sgp130 variants with increased affinity and selectivity towards IL-6 trans-signalling, along with indirect strategies to block IL-6 trans-signalling. Here, we summarize our current understanding of the biological outcomes of IL-6-mediated signalling and the potential for targeting this pathway in the clinic.
Collapse
Affiliation(s)
- Stefan Rose-John
- Biochemical Institute, Medical Faculty, Christian-Albrechts-University, Kiel, Germany
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC:I3), Otto-von-Guericke-University, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
5
|
Valle-Mendiola A, Gutiérrez-Hoya A, Soto-Cruz I. JAK/STAT Signaling and Cervical Cancer: From the Cell Surface to the Nucleus. Genes (Basel) 2023; 14:1141. [PMID: 37372319 DOI: 10.3390/genes14061141] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway constitutes a rapid signaling module from the cell surface to the nucleus, and activates different cellular responses, such as proliferation, survival, migration, invasion, and inflammation. When the JAK/STAT pathway is altered, it contributes to cancer progression and metastasis. STAT proteins play a central role in developing cervical cancer, and inhibiting the JAK/STAT signaling may be necessary to induce tumor cell death. Several cancers show continuous activation of different STATs, including cervical cancer. The constitutive activation of STAT proteins is associated with a poor prognosis and overall survival. The human papillomavirus (HPV) oncoproteins E6 and E7 play an essential role in cervical cancer progression, and they activate the JAK/STAT pathway and other signals that induce proliferation, survival, and migration of cancer cells. Moreover, there is a crosstalk between the JAK/STAT signaling cascade with other signaling pathways, where a plethora of different proteins activate to induce gene transcription and cell responses that contribute to tumor growth. Therefore, inhibition of the JAK/STAT pathway shows promise as a new target in cancer treatment. In this review, we discuss the role of the JAK/STAT pathway components and the role of the HPV oncoproteins associated with cellular malignancy through the JAK/STAT proteins and other signaling pathways to induce tumor growth.
Collapse
Affiliation(s)
- Arturo Valle-Mendiola
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, FES Zaragoza, National University of Mexico, Batalla 5 de Mayo s/n, Colonia Ejército de Oriente, Mexico City 09230, Mexico
| | - Adriana Gutiérrez-Hoya
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, FES Zaragoza, National University of Mexico, Batalla 5 de Mayo s/n, Colonia Ejército de Oriente, Mexico City 09230, Mexico
- Cátedra CONACYT, FES Zaragoza, National University of Mexico, Mexico City 09230, Mexico
| | - Isabel Soto-Cruz
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, FES Zaragoza, National University of Mexico, Batalla 5 de Mayo s/n, Colonia Ejército de Oriente, Mexico City 09230, Mexico
| |
Collapse
|
6
|
Sotolongo Bellón J, Birkholz O, Richter CP, Eull F, Kenneweg H, Wilmes S, Rothbauer U, You C, Walter MR, Kurre R, Piehler J. Four-color single-molecule imaging with engineered tags resolves the molecular architecture of signaling complexes in the plasma membrane. CELL REPORTS METHODS 2022; 2:100165. [PMID: 35474965 PMCID: PMC9017138 DOI: 10.1016/j.crmeth.2022.100165] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/19/2021] [Accepted: 01/13/2022] [Indexed: 12/22/2022]
Abstract
Localization and tracking of individual receptors by single-molecule imaging opens unique possibilities to unravel the assembly and dynamics of signaling complexes in the plasma membrane. We present a comprehensive workflow for imaging and analyzing receptor diffusion and interaction in live cells at single molecule level with up to four colors. Two engineered, monomeric GFP variants, which are orthogonally recognized by anti-GFP nanobodies, are employed for efficient and selective labeling of target proteins in the plasma membrane with photostable fluorescence dyes. This labeling technique enables us to quantitatively resolve the stoichiometry and dynamics of the interferon-γ (IFNγ) receptor signaling complex in the plasma membrane of living cells by multicolor single-molecule imaging. Based on versatile spatial and spatiotemporal correlation analyses, we identify ligand-induced receptor homo- and heterodimerization. Multicolor single-molecule co-tracking and quantitative single-molecule Förster resonance energy transfer moreover reveals transient assembly of IFNγ receptor heterotetramers and confirms its structural architecture.
Collapse
Affiliation(s)
- Junel Sotolongo Bellón
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Oliver Birkholz
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Christian P. Richter
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Florian Eull
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Hella Kenneweg
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Stephan Wilmes
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
- Division of Cell Signalling and Immunology, University of Dundee, School of Life Sciences, Dundee, UK
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard-Karls-University, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Changjiang You
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Mark R. Walter
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rainer Kurre
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Jacob Piehler
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
7
|
Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther 2021; 6:402. [PMID: 34824210 PMCID: PMC8617206 DOI: 10.1038/s41392-021-00791-1] [Citation(s) in RCA: 1205] [Impact Index Per Article: 301.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway was discovered more than a quarter-century ago. As a fulcrum of many vital cellular processes, the JAK/STAT pathway constitutes a rapid membrane-to-nucleus signaling module and induces the expression of various critical mediators of cancer and inflammation. Growing evidence suggests that dysregulation of the JAK/STAT pathway is associated with various cancers and autoimmune diseases. In this review, we discuss the current knowledge about the composition, activation, and regulation of the JAK/STAT pathway. Moreover, we highlight the role of the JAK/STAT pathway and its inhibitors in various diseases.
Collapse
Affiliation(s)
- Xiaoyi Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Jing Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Maorong Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Xia Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
| |
Collapse
|
8
|
Metcalfe RD, Putoczki TL, Griffin MDW. Structural Understanding of Interleukin 6 Family Cytokine Signaling and Targeted Therapies: Focus on Interleukin 11. Front Immunol 2020; 11:1424. [PMID: 32765502 PMCID: PMC7378365 DOI: 10.3389/fimmu.2020.01424] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cytokines are small signaling proteins that have central roles in inflammation and cell survival. In the half-century since the discovery of the first cytokines, the interferons, over fifty cytokines have been identified. Amongst these is interleukin (IL)-6, the first and prototypical member of the IL-6 family of cytokines, nearly all of which utilize the common signaling receptor, gp130. In the last decade, there have been numerous advances in our understanding of the structural mechanisms of IL-6 family signaling, particularly for IL-6 itself. However, our understanding of the detailed structural mechanisms underlying signaling by most IL-6 family members remains limited. With the emergence of new roles for IL-6 family cytokines in disease and, in particular, roles of IL-11 in cardiovascular disease, lung disease, and cancer, there is an emerging need to develop therapeutics that can progress to clinical use. Here we outline our current knowledge of the structural mechanism of signaling by the IL-6 family of cytokines. We discuss how this knowledge allows us to understand the mechanism of action of currently available inhibitors targeting IL-6 family cytokine signaling, and most importantly how it allows for improved opportunities to pharmacologically disrupt cytokine signaling. We focus specifically on the need to develop and understand inhibitors that disrupt IL-11 signaling.
Collapse
Affiliation(s)
- Riley D Metcalfe
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Technology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Tracy L Putoczki
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Technology Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
9
|
Wilmes S, Hafer M, Vuorio J, Tucker JA, Winkelmann H, Löchte S, Stanly TA, Pulgar Prieto KD, Poojari C, Sharma V, Richter CP, Kurre R, Hubbard SR, Garcia KC, Moraga I, Vattulainen I, Hitchcock IS, Piehler J. Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations. Science 2020; 367:643-652. [PMID: 32029621 PMCID: PMC8117407 DOI: 10.1126/science.aaw3242] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 10/08/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
Homodimeric class I cytokine receptors are assumed to exist as preformed dimers that are activated by ligand-induced conformational changes. We quantified the dimerization of three prototypic class I cytokine receptors in the plasma membrane of living cells by single-molecule fluorescence microscopy. Spatial and spatiotemporal correlation of individual receptor subunits showed ligand-induced dimerization and revealed that the associated Janus kinase 2 (JAK2) dimerizes through its pseudokinase domain. Oncogenic receptor and hyperactive JAK2 mutants promoted ligand-independent dimerization, highlighting the formation of receptor dimers as the switch responsible for signal activation. Atomistic modeling and molecular dynamics simulations based on a detailed energetic analysis of the interactions involved in dimerization yielded a mechanistic blueprint for homodimeric class I cytokine receptor activation and its dysregulation by individual mutations.
Collapse
Affiliation(s)
- Stephan Wilmes
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Maximillian Hafer
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Joni Vuorio
- Department of Physics, University of Helsinki, Helsinki, Finland
- Computational Physics Laboratory, Tampere University, Tampere, Finland
| | - Julie A Tucker
- York Biomedical Research Institute and Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Hauke Winkelmann
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Sara Löchte
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Tess A Stanly
- York Biomedical Research Institute and Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Katiuska D Pulgar Prieto
- York Biomedical Research Institute and Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Chetan Poojari
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Christian P Richter
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Rainer Kurre
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Stevan R Hubbard
- Skirball Institute and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - K Christopher Garcia
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ignacio Moraga
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland.
- Computational Physics Laboratory, Tampere University, Tampere, Finland
| | - Ian S Hitchcock
- York Biomedical Research Institute and Department of Biology, University of York, Heslington, York YO10 5DD, UK.
| | - Jacob Piehler
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany.
| |
Collapse
|
10
|
Abstract
PURPOSE OF THE REVIEW Osteoarthritis (OA) is an aging-associated and injury-induced joint disease characterized by cartilage degradation, bone sclerosis, and persistent low-grade inflammation in the joint. Aging and injury are triggers of joint pathological changes mediated by pro-inflammatory factors, some of which are secreted by white adipose tissue. Adipokines including adiponectin, leptin, resistin, chemerin, IL-6, and TNF-α are major players not only during inflammation but also in metabolic regulation of joint cells including chondrocytes, osteoblasts, osteoclasts as well as mesenchymal stem cells. The purpose of this review is to summarize the signal transduction pathways of adipokines in the articular joint to provide new information on potential targets for intervention of OA. RECENT FINDINGS The risk of knee osteoarthritis is associated with adipokine gene polymorphism. While the infrapatellar fat pad is a major source of adipokines in knee synovial fluid, adipocytes also accumulate in the bone marrow during aging and obesity. Adipokines can act as SASPs (senescence associated secretory phenotype factors) that participate in cellular senescence of chondrocytes, but they also regulate energy metabolism impacting bone remodeling. Thus, adipokines are closely related to the metabolic syndrome and degenerative pathological changes in cartilage and bone during OA. Modulating the effects of adipokines on different cell types in the intra-articular joint will be a promising new option for OA intervention.
Collapse
Affiliation(s)
- Chenxi Xie
- Bone and Joint Research Center, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qian Chen
- Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, 02903, USA.
| |
Collapse
|
11
|
Lamertz L, Rummel F, Polz R, Baran P, Hansen S, Waetzig GH, Moll JM, Floss DM, Scheller J. Soluble gp130 prevents interleukin-6 and interleukin-11 cluster signaling but not intracellular autocrine responses. Sci Signal 2018; 11:11/550/eaar7388. [DOI: 10.1126/scisignal.aar7388] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Interleukin-6 (IL-6) is a proinflammatory cytokine of the IL-6 family, members of which signal through a complex of a cytokine-specific receptor and the signal-transducing subunit gp130. The interaction of IL-6 with the membrane-bound IL-6 receptor (IL-6R) and gp130 stimulates “classic signaling,” whereas the binding of IL-6 and a soluble version of the IL-6R to gp130 stimulates “trans-signaling.” Alternatively, “cluster signaling” occurs when membrane-bound IL-6:IL-6R complexes on transmitter cells activate gp130 receptors on neighboring receiver cells. The soluble form of gp130 (sgp130) is a selective trans-signaling inhibitor, but it does not affect classic signaling. We demonstrated that the interaction of soluble gp130 with natural and synthetic membrane-bound IL-6:IL-6R complexes inhibited IL-6 cluster signaling. Similarly, IL-11 cluster signaling through the IL-11R to gp130 was also inhibited by soluble gp130. However, autocrine classic and trans-signaling was not inhibited by extracellular inhibitors such as sgp130 or gp130 antibodies. Together, our results suggest that autocrine IL-6 signaling may occur intracellularly.
Collapse
|
12
|
Gorby C, Martinez-Fabregas J, Wilmes S, Moraga I. Mapping Determinants of Cytokine Signaling via Protein Engineering. Front Immunol 2018; 9:2143. [PMID: 30319612 PMCID: PMC6170656 DOI: 10.3389/fimmu.2018.02143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/30/2018] [Indexed: 12/21/2022] Open
Abstract
Cytokines comprise a large family of secreted ligands that are critical for the regulation of immune homeostasis. Cytokines initiate signaling via dimerization or oligomerization of the cognate receptor subunits, triggering the activation of the Janus Kinases (JAKs)/ signal transducer and activator of transcription (STATs) pathway and the induction of specific gene expression programs and bioactivities. Deregulation of cytokines or their downstream signaling pathways are at the root of many human disorders including autoimmunity and cancer. Identifying and understanding the mechanistic principles that govern cytokine signaling will, therefore, be highly important in order to harness the therapeutic potential of cytokines. In this review, we will analyze how biophysical (ligand-receptor binding geometry and affinity) and cellular (receptor trafficking and intracellular abundance of signaling molecules) parameters shape the cytokine signalosome and cytokine functional pleiotropy; from the initial cytokine binding to its receptor to the degradation of the cytokine receptor complex in the proteasome and/or lysosome. We will also discuss how combining advanced protein engineering with detailed signaling and functional studies has opened promising avenues to tackle complex questions in the cytokine signaling field.
Collapse
Affiliation(s)
- Claire Gorby
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Jonathan Martinez-Fabregas
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Stephan Wilmes
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ignacio Moraga
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
13
|
Schillinger O, Panwalkar V, Strodel B, Dingley AJ. Molecular Dynamics Simulations Reveal Key Roles of the Interleukin-6 Alpha Receptor in the Assembly of the Human Interleukin-6 Receptor Complex. J Phys Chem B 2017; 121:8113-8122. [PMID: 28783950 DOI: 10.1021/acs.jpcb.7b05732] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human interleukin-6 (hIL-6) is a pleiotropic cytokine with three distinct receptor epitopes, termed sites I, II, and III, which function to assemble a signaling complex. hIL-6 signals via a glycoprotein 130 (gp130) homodimer after initially forming a heterodimer with the nonsignaling α-receptor (IL-6Rα). The molecular description of the assembly of the hIL-6 signaling complex remains elusive because available structures provide descriptions of hIL-6 in its free and fully bound receptor forms, but not for intermediate steps that are crucial in the stepwise assembly of the signaling complex. In this report, molecular dynamics simulations provide atomic details describing the functional role of the initial hIL-6/IL-6Rα complex in facilitating subsequent interactions with gp130, which have not been previously shown. IL-6Rα binding to hIL-6 rigidifies the flexible N-terminus of the hIL-6 AB-loop through interactions with the D2 domain of IL-6Rα. This rigidification combined with repositioning of residues involved in gp130 receptor recognition promotes gp130 binding at site III. Binding of gp130 receptors at sites II and III is coupled with the release of the hIL-6 N-terminal AB-loop interaction and a pivoting of IL-6Rα around the hIL-6 helix bundle to the state of the hIL-6/IL-6Rα/gp130 complex.
Collapse
Affiliation(s)
- Oliver Schillinger
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich , 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität , 40225 Düsseldorf, Germany
| | - Vineet Panwalkar
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich , 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität , 40225 Düsseldorf, Germany
| | - Birgit Strodel
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich , 52425 Jülich, Germany.,Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität , 40225 Düsseldorf, Germany
| | - Andrew J Dingley
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich , 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität , 40225 Düsseldorf, Germany
| |
Collapse
|
14
|
Synthetic Deletion of the Interleukin 23 Receptor (IL-23R) Stalk Region Led to Autonomous IL-23R Homodimerization and Activation. Mol Cell Biol 2017. [PMID: 28630278 DOI: 10.1128/mcb.00014-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Interleukin 23 (IL-23) regulates the development of TH17 cells, which are important for antimicrobial and antifungal responses and autoimmune and chronic inflammatory diseases. IL-23-induced Jak/STAT signaling is mediated via the heterodimeric IL-23 receptor (IL-23R)-IL-12 receptor β1 (IL-12Rβ1) complex. The typical signal-transducing receptor of the IL-6/IL-12 family contains three extracellular-membrane-proximal fibronectin type III (FNIII) domains, which are not involved in cytokine binding but are mandatory for signal transduction. In place of FNIII-type domains, IL-23R has a structurally undefined stalk. We hypothesized that the IL-23R stalk acts as a spacer to position the cytokine binding domains at a defined distance from the plasma membrane to enable signal transduction. Minor deletions of the murine, but not of the human, IL-23R stalk resulted in unresponsiveness to IL-23. Complete deletion of the human IL-23R stalk and the extended murine IL-23R stalk, including a 20-amino-acid-long duplication of domain 3, however, induced ligand-independent, autonomous receptor activation, as determined by STAT3 phosphorylation and cell proliferation. Ligand-independent, autonomous activity was caused by IL-23R homodimers and was independent of IL-12Rβ1. Our data show that deletion of the stalk results in biologically active IL-23R homodimers, thereby creating an as-yet-undescribed receptor complex of the IL-6/IL-12 cytokine family.
Collapse
|
15
|
Li H, Sharma N, General IJ, Schreiber G, Bahar I. Dynamic Modulation of Binding Affinity as a Mechanism for Regulating Interferon Signaling. J Mol Biol 2017; 429:2571-2589. [PMID: 28648616 PMCID: PMC5545807 DOI: 10.1016/j.jmb.2017.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 12/22/2022]
Abstract
How structural dynamics affects cytokine signaling is under debate. Here, we investigated the dynamics of the type I interferon (IFN) receptor, IFNAR1, and its effect on signaling upon binding IFN and IFNAR2 using a combination of structure-based mechanistic studies, in situ binding, and gene induction assays. Our study reveals that IFNAR1 flexibility modulates ligand-binding affinity, which, in turn, regulates biological signaling. We identified the hinge sites and key interactions implicated in IFNAR1 inter-subdomain (SD1-SD4) movements. We showed that the predicted cooperative movements are essential to accommodate intermolecular interactions. Engineered disulfide bridges, computationally predicted to interfere with IFNAR1 dynamics, were experimentally confirmed. Notably, introducing disulfide bonds between subdomains SD2 and SD3 modulated IFN binding and activity in accordance with the relative attenuation of cooperative movements with varying distance from the hinge center, whereas locking the SD3-SD4 interface flexibility in favor of an extended conformer increased activity.
Collapse
Affiliation(s)
- Hongchun Li
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Nanaocha Sharma
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ignacio J General
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; School of Science and Technology, and CONICET, Universidad Nacional de San Martin, San Martin, Buenos Aires 1650, Argentina
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
16
|
Ligand-induced type II interleukin-4 receptor dimers are sustained by rapid re-association within plasma membrane microcompartments. Nat Commun 2017; 8:15976. [PMID: 28706306 PMCID: PMC5519985 DOI: 10.1038/ncomms15976] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 05/16/2017] [Indexed: 12/14/2022] Open
Abstract
The spatiotemporal organization of cytokine receptors in the plasma membrane is still debated with models ranging from ligand-independent receptor pre-dimerization to ligand-induced receptor dimerization occurring only after receptor uptake into endosomes. Here, we explore the molecular and cellular determinants governing the assembly of the type II interleukin-4 receptor, taking advantage of various agonists binding the receptor subunits with different affinities and rate constants. Quantitative kinetic studies using artificial membranes confirm that receptor dimerization is governed by the two-dimensional ligand–receptor interactions and identify a critical role of the transmembrane domain in receptor dimerization. Single molecule localization microscopy at physiological cell surface expression levels, however, reveals efficient ligand-induced receptor dimerization by all ligands, largely independent of receptor binding affinities, in line with the similar STAT6 activation potencies observed for all IL-4 variants. Detailed spatiotemporal analyses suggest that kinetic trapping of receptor dimers in actin-dependent microcompartments sustains robust receptor dimerization and signalling. The contribution of ligands for cytokine receptor dimerization is still not fully understood. Here, the authors show the efficient ligand-induced dimerization of type II interleukin-4 receptor at the plasma membrane and the kinetic trapping of signalling complexes by actin-dependent membrane microdomains.
Collapse
|
17
|
Monhasery N, Moll J, Cuman C, Franke M, Lamertz L, Nitz R, Görg B, Häussinger D, Lokau J, Floss DM, Piekorz R, Dimitriadis E, Garbers C, Scheller J. Transcytosis of IL-11 and Apical Redirection of gp130 Is Mediated by IL-11α Receptor. Cell Rep 2016; 16:1067-1081. [PMID: 27425614 DOI: 10.1016/j.celrep.2016.06.062] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/08/2016] [Accepted: 06/14/2016] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)-11 signaling is involved in various processes, including epithelial intestinal cell regeneration and embryo implantation. IL-11 signaling is initiated upon binding of IL-11 to IL-11R1 or IL-11R2, two IL-11α-receptor splice variants, and gp130. Here, we show that IL-11 signaling via IL-11R1/2:gp130 complexes occurs on both the apical and basolateral sides of polarized cells, whereas IL-6 signaling via IL-6R:gp130 complexes is restricted to the basolateral side. We show that basolaterally supplied IL-11 is transported and released to the apical extracellular space via transcytosis in an IL-11R1-dependent manner. By contrast, IL-6R and IL-11R2 do not promote transcytosis. In addition, we show that transcytosis of IL-11 is dependent on the intracellular domain of IL-11R1 and that synthetic transfer of the intracellular domain of IL-11R1 to IL-6R promotes transcytosis of IL-6. Our data define IL-11R as a cytokine receptor with transcytotic activity by which IL-11 and IL-6:soluble IL-6R complexes are transported across cellular barriers.
Collapse
Affiliation(s)
- Niloufar Monhasery
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Jens Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Carly Cuman
- Centre for Reproductive Health, The Hudson Institute of Medical Research, Clayton, 3168 VIC, Australia; Department of Molecular and Translational Medicine, Monash University, Clayton, 3168 VIC, Australia
| | - Manuel Franke
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Larissa Lamertz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Rebecca Nitz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Boris Görg
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Molecular and Translational Medicine, Monash University, Clayton, 3168 VIC, Australia
| | - Juliane Lokau
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Roland Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Eva Dimitriadis
- Centre for Reproductive Health, The Hudson Institute of Medical Research, Clayton, 3168 VIC, Australia; Department of Molecular and Translational Medicine, Monash University, Clayton, 3168 VIC, Australia
| | - Christoph Garbers
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
18
|
Wolf J, Waetzig GH, Chalaris A, Reinheimer TM, Wege H, Rose-John S, Garbers C. Different Soluble Forms of the Interleukin-6 Family Signal Transducer gp130 Fine-tune the Blockade of Interleukin-6 Trans-signaling. J Biol Chem 2016; 291:16186-96. [PMID: 27226573 DOI: 10.1074/jbc.m116.718551] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Indexed: 01/17/2023] Open
Abstract
Soluble forms of the IL-6 receptor (sIL-6R) bind to the cytokine IL-6 with similar affinity as the membrane-bound IL-6R. IL-6·sIL-6R complexes initiate IL-6 trans-signaling via activation of the ubiquitously expressed membrane-bound β-receptor glycoprotein 130 (gp130). Inhibition of IL-6 trans-signaling has been shown to be favorable in numerous inflammatory diseases. Furthermore, different soluble forms of gp130 (sgp130) exist that, together with the sIL-6R, are thought to form a buffer for IL-6 in the blood. However, a functional role for the different sgp130 forms has not been described to date. Here we demonstrate that the metalloproteases ADAM10 and ADAM17 can produce sgp130 by ectodomain shedding of gp130, even though this mechanism only accounts for a minor proportion of sgp130 in the circulation. We further show that full-length sgp130 and the shorter forms sgp130-rheumatoid arthritis-associated peptide (RAPS) and sgp130-E10 are differentially expressed in a cell type- specific manner. Remarkably, full-length sgp130 is expressed by monocytes, but this expression is completely lost during differentiation into macrophages in vitro Using genetically engineered murine pre-B cells that secrete different forms of sgp130, we found that these secreted sgp130 proteins are able to prevent trans-signaling-driven cell proliferation of the secreting cells, whereas conditioned supernatant from these cells failed to block IL-6 trans-signaling in other cells. Thus, our data suggest that the different sgp130 forms are released from cells into their immediate surroundings and appear to form cell-associated gradients to modulate their own susceptibility for IL-6 trans-signaling.
Collapse
Affiliation(s)
- Janina Wolf
- From the Institute of Biochemistry, Kiel University, 24098 Kiel, Germany
| | | | - Athena Chalaris
- From the Institute of Biochemistry, Kiel University, 24098 Kiel, Germany
| | - Torsten M Reinheimer
- Non-Clinical Development, Ferring Pharmaceuticals A/S, 2300 Copenhagen, Denmark, and
| | - Henning Wege
- the Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stefan Rose-John
- From the Institute of Biochemistry, Kiel University, 24098 Kiel, Germany
| | - Christoph Garbers
- From the Institute of Biochemistry, Kiel University, 24098 Kiel, Germany,
| |
Collapse
|
19
|
Sharma N, Longjam G, Schreiber G. Type I Interferon Signaling Is Decoupled from Specific Receptor Orientation through Lenient Requirements of the Transmembrane Domain. J Biol Chem 2015; 291:3371-84. [PMID: 26679999 DOI: 10.1074/jbc.m115.686071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Indexed: 01/09/2023] Open
Abstract
Type I interferons serve as the first line of defense against pathogen invasion. Binding of IFNs to its receptors, IFNAR1 and IFNAR2, is leading to activation of the IFN response. To determine whether structural perturbations observed during binding are propagated to the cytoplasmic domain, multiple mutations were introduced into the transmembrane helix and its surroundings. Insertion of one to five alanine residues near either the N or C terminus of the transmembrane domain (TMD) likely promotes a rotation of 100° and a translation of 1.5 Å per added residue. Surprisingly, the added alanines had little effect on the binding affinity of IFN to the cell surface receptors, STAT phosphorylation, or gene induction. Similarly, substitution of the juxtamembrane residues of the TMD with alanines, or replacement of the TMD of IFNAR1 with that of IFNAR2, did not affect IFN binding or activity. Finally, only the addition of 10 serine residues (but not 2 or 4) between the extracellular domain of IFNAR1 and the TMD had some effect on signaling. Bioinformatic analysis shows a correlation between high sequence conservation of TMDs of cytokine receptors and the ability to transmit structural signals. Sequence conservation near the TMD of IFNAR1 is low, suggesting limited functional importance for this region. Our results suggest that IFN binding to the extracellular domains of IFNAR1 and IFNAR2 promotes proximity between the intracellular domains and that differential signaling is a function of duration of activation and affinity of binding rather than specific conformational changes transmitted from the outside to the inside of the cell.
Collapse
Affiliation(s)
- Nanaocha Sharma
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Geeta Longjam
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gideon Schreiber
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
20
|
Wilmes S, Beutel O, Li Z, Francois-Newton V, Richter CP, Janning D, Kroll C, Hanhart P, Hötte K, You C, Uzé G, Pellegrini S, Piehler J. Receptor dimerization dynamics as a regulatory valve for plasticity of type I interferon signaling. ACTA ACUST UNITED AC 2015; 209:579-93. [PMID: 26008745 PMCID: PMC4442803 DOI: 10.1083/jcb.201412049] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Type I interferons (IFNs) activate differential cellular responses through a shared cell surface receptor composed of the two subunits, IFNAR1 and IFNAR2. We propose here a mechanistic model for how IFN receptor plasticity is regulated on the level of receptor dimerization. Quantitative single-molecule imaging of receptor assembly in the plasma membrane of living cells clearly identified IFN-induced dimerization of IFNAR1 and IFNAR2. The negative feedback regulator ubiquitin-specific protease 18 (USP18) potently interferes with the recruitment of IFNAR1 into the ternary complex, probably by impeding complex stabilization related to the associated Janus kinases. Thus, the responsiveness to IFNα2 is potently down-regulated after the first wave of gene induction, while IFNβ, due to its ∼100-fold higher binding affinity, is still able to efficiently recruit IFNAR1. Consistent with functional data, this novel regulatory mechanism at the level of receptor assembly explains how signaling by IFNβ is maintained over longer times compared with IFNα2 as a temporally encoded cause of functional receptor plasticity.
Collapse
Affiliation(s)
- Stephan Wilmes
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Oliver Beutel
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Zhi Li
- Institut Pasteur, Cytokine Signaling Unit, Centre National de la Recherche Scientifique URA1961, 75724 Paris, France
| | - Véronique Francois-Newton
- Institut Pasteur, Cytokine Signaling Unit, Centre National de la Recherche Scientifique URA1961, 75724 Paris, France
| | - Christian P Richter
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Dennis Janning
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Cindy Kroll
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Patrizia Hanhart
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Katharina Hötte
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Changjiang You
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Gilles Uzé
- Centre National de la Recherche Scientifique Montpellier, 34095 Montpellier, France
| | - Sandra Pellegrini
- Institut Pasteur, Cytokine Signaling Unit, Centre National de la Recherche Scientifique URA1961, 75724 Paris, France
| | - Jacob Piehler
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| |
Collapse
|
21
|
The molecular basis for functional plasticity in type I interferon signaling. Trends Immunol 2015; 36:139-49. [DOI: 10.1016/j.it.2015.01.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 01/16/2023]
|
22
|
Waters M, Brooks A. JAK2 activation by growth hormone and other cytokines. Biochem J 2015; 466:1-11. [PMID: 25656053 PMCID: PMC4325515 DOI: 10.1042/bj20141293] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/17/2014] [Accepted: 11/24/2014] [Indexed: 12/30/2022]
Abstract
Growth hormone (GH) and structurally related cytokines regulate a great number of physiological and pathological processes. They do this by coupling their single transmembrane domain (TMD) receptors to cytoplasmic tyrosine kinases, either as homodimers or heterodimers. Recent studies have revealed that many of these receptors exist as constitutive dimers rather than being dimerized as a consequence of ligand binding, which has necessitated a new paradigm for describing their activation process. In the present study, we describe a model for activation of the tyrosine kinase Janus kinase 2 (JAK2) by the GH receptor homodimer based on biochemical data and molecular dynamics simulations. Binding of the bivalent ligand reorientates and rotates the receptor subunits, resulting in a transition from a form with parallel TMDs to one where the TMDs separate at the point of entry into the cytoplasm. This movement slides the pseudokinase inhibitory domain of one JAK kinase away from the kinase domain of the other JAK within the receptor dimer-JAK complex, allowing the two kinase domains to interact and trans-activate. This results in phosphorylation and activation of STATs and other signalling pathways linked to this receptor which then regulate postnatal growth, metabolism and stem cell activation. We believe that this model will apply to most if not all members of the class I cytokine receptor family, and will be useful in the design of small antagonists and agonists of therapeutic value.
Collapse
Key Words
- class i cytokine receptors
- cytokine receptor signalling
- growth hormone
- growth hormone receptor
- janus kinase 2 (jak2)
- srk family kinases
- cntf, ciliary neurotropic factor
- crh, cytokine receptor homology
- ct-1, cardiotropin-1
- ecd, extracellular domain
- epo, erythropoietin
- fniii, fibronectin iii-like
- gh, growth hormone
- gm-csf, granulocyte-macrophage colony-stimulating factor
- jak, janus kinase
- jm, juxtamembrane
- mab, monoclonal antibody
- osm, oncostatin-m
- pk, pseudokinase
- tmd, transmembrane domain
- tpo, thrombopoietin
Collapse
Affiliation(s)
- Michael J. Waters
- *Institute for Molecular Bioscience, The University of Queensland Institute, QLD 4072, Australia
| | - Andrew J. Brooks
- *Institute for Molecular Bioscience, The University of Queensland Institute, QLD 4072, Australia
- †The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, QLD 4072, Australia
| |
Collapse
|
23
|
Sommer J, Garbers C, Wolf J, Trad A, Moll JM, Sack M, Fischer R, Grötzinger J, Waetzig GH, Floss DM, Scheller J. Alternative intronic polyadenylation generates the interleukin-6 trans-signaling inhibitor sgp130-E10. J Biol Chem 2014; 289:22140-50. [PMID: 24973212 DOI: 10.1074/jbc.m114.560938] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Interleukin (IL)-6 signals via a receptor complex composed of the signal-transducing β-receptor gp130 and the non-signaling membrane-bound or soluble IL-6 receptor α (IL-6R, sIL-6R), which is referred to as classic and trans-signaling, respectively. IL-6 trans-signaling is functionally associated with the development of chronic inflammatory diseases and cancer. Soluble gp130 (sgp130) variants are natural inhibitors of trans-signaling. Differential splicing yields sgp130 isoforms. Here, we describe that alternative intronic polyadenylation in intron 10 of the gp130 transcript results in a novel mRNA coding for an sgp130 protein isoform (sgp130-E10) of 70-80 kDa. The sgp130-E10 protein was expressed in vivo in human peripheral blood mononuclear cells. To assess the biological activity of sgp130-E10, we expressed this variant as Fc-tagged fusion protein (sgp130-E10Fc). Recombinant sgp130-E10Fc binds to a complex of IL-6 and sIL-6R, but not to IL-6 alone, and specifically inhibits IL-6 trans-signaling. Thus, it might play an important role in the regulation of trans-signaling in vivo.
Collapse
Affiliation(s)
- Jan Sommer
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf
| | - Christoph Garbers
- the Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University, 24118 Kiel
| | - Janina Wolf
- the Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University, 24118 Kiel
| | - Ahmad Trad
- the Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University, 24118 Kiel
| | - Jens M Moll
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf
| | - Markus Sack
- the Institute of Molecular Biotechnology, RWTH Aachen University, 52062 Aachen, and
| | - Rainer Fischer
- the Institute of Molecular Biotechnology, RWTH Aachen University, 52062 Aachen, and
| | - Joachim Grötzinger
- the Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University, 24118 Kiel
| | | | - Doreen M Floss
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf
| | - Jürgen Scheller
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf,
| |
Collapse
|
24
|
Dewitz C, Möller-Hackbarth K, Schweigert O, Reiss K, Chalaris A, Scheller J, Rose-John S. T-cell immunoglobulin and mucin domain 2 (TIM-2) is a target of ADAM10-mediated ectodomain shedding. FEBS J 2013; 281:157-74. [PMID: 24164679 DOI: 10.1111/febs.12583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 12/21/2022]
Abstract
T-cell immunoglobulin and mucin domain (TIM)-2 is expressed on activated B cells. Here, we provide evidence that murine TIM-2 is a target of ADAM10-mediated ectodomain shedding, resulting in the generation of a soluble form of TIM-2. We identified ADAM10 but not ADAM17 as the major sheddase of TIM-2, as shown by pharmacological ADAM10 inhibition and with ADAM10-deficient and ADAM17-deficient murine embryonic fibroblasts. Ionomycin-induced or 2'(3')-O-(4-benzoylbenzoyl) ATP triethylammonium salt-induced shedding of TIM-2 was abrogated by deletion of 10 juxtamembrane amino acids from the stalk region but not by deletion of two further N-terminally located blocks of 10 amino acids, indicating a membrane-proximal cleavage site. TIM-2 lacking the intracellular domain was cleaved after ionomycin or 2' (3')-O-(4-benzoylbenzoyl) ATP triethylammonium salt treatment, indicating that this domain was not involved in the regulation of ectodomain shedding. Moreover, TIM-2 shedding was negatively controlled by calmodulin. Shed and soluble TIM-2 interacted with H-ferritin. In summary, we describe TIM-2 as a novel target for ADAM10-mediated ectodomain shedding, and reveal the involvement of ADAM proteases in cellular iron homeostasis.
Collapse
Affiliation(s)
- Christin Dewitz
- Institute of Biochemistry, Medical Faculty, Christian Albrechts University, Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Oldefest M, Nowinski J, Hung CW, Neelsen D, Trad A, Tholey A, Grötzinger J, Lorenzen I. Upd3--an ancestor of the four-helix bundle cytokines. Biochem Biophys Res Commun 2013; 436:66-72. [PMID: 23707937 DOI: 10.1016/j.bbrc.2013.04.107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 04/29/2013] [Indexed: 11/19/2022]
Abstract
The unpaired-like protein 3 (Upd3) is one of the three cytokines of Drosophila melanogaster supposed to activate the JAK/STAT signaling pathway (Janus tyrosine kinases/signal transducer and activator of transcription). This activation occurs via the type-I cytokine receptor domeless, an orthologue of gp130, the common signal transducer of all four-helix bundle interleukin-6 (IL-6) type cytokines. Both receptors are known to exist as preformed dimers in the plasma membrane and initiate the acute-phase response. These facts indicate an evolutionary relation between vertebrate IL-6 and the Drosophila protein Upd3. Here we presented data which strengthen this notion. Upd3 was recombinantly expressed, a renaturation and purification protocol was established which allows to obtain high amounts of biological active protein. This protein is, like human IL-6, a monomeric-α helical cytokine, implicating that Upd3 is an "ancestor" of the four-helix bundle cytokines.
Collapse
Affiliation(s)
- Mirja Oldefest
- Biochemisches Institut der Christian-Albrechts-Universität Kiel, Olshausenstr. 40, 24118 Kiel, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Activation of the IL-6 (interleukin 6) receptor subunit gp130 (glycoprotein 130) has been linked to the formation of complexes with IL-6 and the IL-6 receptor, as well as to gp130 dimerization. However, it has been shown that gp130 is present as a pre-formed dimer, indicating that its activation is not solely dependent on dimerization. Therefore the detailed mechanism of gp130 activation still remains to be deciphered. Recently, deletion mutations of gp130 have been found in inflammatory hepatocellular adenoma. The mutations clustered around one IL-6-binding epitope of gp130 and resulted in a ligand-independent constitutively active gp130. We therefore hypothesized that conformational changes of this particular IL-6-binding epitope precedes gp130 activation. Using a rational structure-based approach we identified for the first time amino acids critical for gp130 activation. We can show that gp130 D2–D3 interdomain connectivity by hydrophobic residues stabilizes inactive gp130 conformation. Conformational destabilization of the EF loop present in domain D2 and disruption of D2–D3 hydrophobic interactions resulted in ligand-independent gp130 activation. Furthermore we show that the N-terminal amino acid residues of domain D1 participate in the activation of the gp130 deletion mutants. Taken together we present novel insights into the molecular basis of the activation of a cytokine receptor signalling subunit.
Collapse
|
27
|
Daburon S, Devaud C, Costet P, Morello A, Garrigue-Antar L, Maillasson M, Hargous N, Lapaillerie D, Bonneu M, Dechanet-Merville J, Legembre P, Capone M, Moreau JF, Taupin JL. Functional characterization of a chimeric soluble Fas ligand polymer with in vivo anti-tumor activity. PLoS One 2013; 8:e54000. [PMID: 23326557 PMCID: PMC3541234 DOI: 10.1371/journal.pone.0054000] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/07/2012] [Indexed: 12/21/2022] Open
Abstract
Binding of ligand FasL to its receptor Fas triggers apoptosis via the caspase cascade. FasL itself is homotrimeric, and a productive apoptotic signal requires that FasL be oligomerized beyond the homotrimeric state. We generated a series of FasL chimeras by fusing FasL to domains of the Leukemia Inhibitory Factor receptor gp190 which confer homotypic oligomerization, and analyzed the capacity of these soluble chimeras to trigger cell death. We observed that the most efficient FasL chimera, called pFasL, was also the most polymeric, as it reached the size of a dodecamer. Using a cellular model, we investigated the structure-function relationships of the FasL/Fas interactions for our chimeras, and we demonstrated that the Fas-mediated apoptotic signal did not solely rely on ligand-mediated receptor aggregation, but also required a conformational adaptation of the Fas receptor. When injected into mice, pFasL did not trigger liver injury at a dose which displayed anti-tumor activity in a model of human tumor transplanted to immunodeficient animals, suggesting a potential therapeutic use. Therefore, the optimization of the FasL conformation has to be considered for the development of efficient FasL-derived anti-cancer drugs targeting Fas.
Collapse
Affiliation(s)
- Sophie Daburon
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 5164, Université de Bordeaux 2, Bordeaux, France
| | - Christel Devaud
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 5164, Université de Bordeaux 2, Bordeaux, France
| | - Pierre Costet
- Animalerie spécialisée, Université de Bordeaux 2, Bordeaux, France
| | - Aurore Morello
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 5164, Université de Bordeaux 2, Bordeaux, France
| | - Laure Garrigue-Antar
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 7149, Université Paris-Est Créteil, Créteil, France
| | - Mike Maillasson
- Unité Mixte de Recherche Institut National de la Santé et de la Recherche Médicale 892, Université de Nantes, Nantes, France
| | - Nathalie Hargous
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 5164, Université de Bordeaux 2, Bordeaux, France
| | | | - Marc Bonneu
- Centre génomique fonctionnelle, Université de Bordeaux 2, Bordeaux, France
| | - Julie Dechanet-Merville
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 5164, Université de Bordeaux 2, Bordeaux, France
| | - Patrick Legembre
- Equipe Associée 4427, Institut de Recherche en Santé-Environnement-Travail, Université de Rennes 1, Rennes, France
| | - Myriam Capone
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 5164, Université de Bordeaux 2, Bordeaux, France
| | - Jean-François Moreau
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 5164, Université de Bordeaux 2, Bordeaux, France
- Laboratoire d'Immunologie et immunogénétique, Centre Hospitalier et Universitaire de Bordeaux, Bordeaux, France
| | - Jean-Luc Taupin
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 5164, Université de Bordeaux 2, Bordeaux, France
- Laboratoire d'Immunologie et immunogénétique, Centre Hospitalier et Universitaire de Bordeaux, Bordeaux, France
- * E-mail:
| |
Collapse
|
28
|
Rose-John S. IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int J Biol Sci 2012; 8:1237-47. [PMID: 23136552 PMCID: PMC3491447 DOI: 10.7150/ijbs.4989] [Citation(s) in RCA: 745] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 08/15/2012] [Indexed: 02/06/2023] Open
Abstract
Interleukin-6 (IL-6) is a cytokine with many activities. It has functions in the regulation of the immune system and the nervous system. Furthermore, IL-6 is involved in liver regeneration and in the metabolic control of the body. On target cells, IL-6 binds to an 80 kDa IL-6 receptor (IL-6R). The complex of IL-6 and IL-6R associates with a second protein, gp130, which thereupon dimerizes and initiates intracellular signaling. Whereas gp130 is expressed on all cells, IL-6R is only present on few cells in the body including hepatocytes and some leukocytes. Cells, which do not express IL-6R cannot respond to the cytokine, since gp130 alone has no measurable affinity for IL-6. Interestingly, a soluble form of IL-6R (sIL-6R) comprising the extracellular portion of the receptor can bind IL-6 with a similar affinity as the membrane bound IL-6R. The complex of IL-6 and sIL-6R can bind to gp130 on cells, which do not express the IL-6R, and which are unresponsive to IL-6. This process has been called trans-signaling. Here I will review published evidence that IL-6 trans-signaling is pro-inflammatory whereas classic IL-6 signaling via the membrane bound IL-6R is needed for regenerative or anti-inflammatory activities of the cytokine. Furthermore, the detailed knowledge of IL-6 biology has important consequences for therapeutic strategies aimed at the blockade of the cytokine IL-6.
Collapse
Affiliation(s)
- Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, Kiel, Germany.
| |
Collapse
|
29
|
Atanasova M, Whitty A. Understanding cytokine and growth factor receptor activation mechanisms. Crit Rev Biochem Mol Biol 2012; 47:502-30. [PMID: 23046381 DOI: 10.3109/10409238.2012.729561] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Our understanding of the detailed mechanism of action of cytokine and growth factor receptors - and particularly our quantitative understanding of the link between structure, mechanism and function - lags significantly behind our knowledge of comparable functional protein classes such as enzymes, G protein-coupled receptors, and ion channels. In particular, it remains controversial whether such receptors are activated by a mechanism of ligand-induced oligomerization, versus a mechanism in which the ligand binds to a pre-associated receptor dimer or oligomer that becomes activated through subsequent conformational rearrangement. A major limitation to progress has been the relative paucity of methods for performing quantitative mechanistic experiments on unmodified receptors expressed at endogenous levels on live cells. In this article, we review the current state of knowledge on the activation mechanisms of cytokine and growth factor receptors, critically evaluate the evidence for and against the different proposed mechanisms, and highlight other key questions that remain unanswered. New approaches and techniques have led to rapid recent progress in this area, and the field is poised for major advances in the coming years which promise to revolutionize our understanding of this large and biologically and medically important class of receptors.
Collapse
Affiliation(s)
- Mariya Atanasova
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
30
|
Sommer J, Effenberger T, Volpi E, Waetzig GH, Bernhardt M, Suthaus J, Garbers C, Rose-John S, Floss DM, Scheller J. Constitutively active mutant gp130 receptor protein from inflammatory hepatocellular adenoma is inhibited by an anti-gp130 antibody that specifically neutralizes interleukin 11 signaling. J Biol Chem 2012; 287:13743-51. [PMID: 22523320 DOI: 10.1074/jbc.m111.349167] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ligand-independent constitutively active gp130 mutants were described to be responsible for the development of inflammatory hepatocellular adenomas (IHCAs). These variants had gain-of-function somatic mutations within the extracellular domain 2 (D2) of the gp130 receptor chain. Cytokine-dependent Ba/F3 cells were transduced with the constitutively active variant of gp130 featuring a deletion in the domain 2 from Tyr-186 to Tyr-190 (gp130ΔYY). These cells showed constitutive phosphorylation of signal transducer and activator of transcription-3 (STAT3) and cytokine-independent proliferation. Deletion of the Ig-like domain 1 (D1) of gp130, but not anti-gp130 mAbs directed against D1, abolished constitutive activation of gp130ΔYY, highlighting that this domain is involved in ligand-independent activation of gp130ΔYY. Moreover, soluble variants of gp130 were not able to inhibit the constitutive activation of gp130ΔYY. However, the inhibition of constitutive activation of gp130ΔYY was achieved by the anti-gp130 mAb B-P4, which specifically inhibits gp130 signaling by IL-11 but not by other IL-6 type cytokines. IL-11 but not IL-6 levels were found previously to be up-regulated in IHCAs, suggesting that mutations in gp130 are leading to IL-11-like signaling. The mAb B-P4 might be a valuable tool to inhibit the constitutive activation of naturally occurring gp130 mutants in IHCAs and rare cases of gp130-associated hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jan Sommer
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sommer J, Effenberger T, Volpi E, Waetzig GH, Bernhardt M, Suthaus J, Garbers C, Rose-John S, Floss DM, Scheller J. Constitutively Active Mutant gp130 Receptor Protein from Inflammatory Hepatocellular Adenoma Is Inhibited by an Anti-gp130 Antibody That Specifically Neutralizes Interleukin 11 Signaling. J Biol Chem 2012. [DOI: 10.1074/jbc.m112.349167] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
32
|
Mohr A, Chatain N, Domoszlai T, Rinis N, Sommerauer M, Vogt M, Müller-Newen G. Dynamics and non-canonical aspects of JAK/STAT signalling. Eur J Cell Biol 2011; 91:524-32. [PMID: 22018664 DOI: 10.1016/j.ejcb.2011.09.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 09/05/2011] [Accepted: 09/12/2011] [Indexed: 11/25/2022] Open
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway directly links ligand-binding to a membrane-bound receptor with the activation of a transcription factor. This signalling module enables the cell to rapidly initiate a transcriptional response to external stimulation. The main components of this evolutionary conserved module are cytokines that specifically bind to cytokine receptors leading to the activation of receptor-associated Janus tyrosine kinases (JAKs). The receptor-bound JAKs activate STAT transcription factors through phosphorylation of a single tyrosine residue. Activated STAT dimers translocate into the nucleus to induce target gene expression. In this article we will review current opinions on the molecular mechanism and on intracellular dynamics of JAK/STAT signalling with a special focus on the cytokine receptor glycoprotein 130 (gp130) and STAT3. In particular we will concentrate on non-canonical aspects of Jak/STAT signalling including preassembled receptor complexes, preformed STAT dimers, STAT trafficking and non-canonical functions of STATs.
Collapse
Affiliation(s)
- Anne Mohr
- Institut für Biochemie und Molekularbiologie, RWTH Aachen University, Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Growth promotion of genetically modified hematopoietic progenitors using an antibody/c-Mpl chimera. Cytokine 2011; 55:402-8. [PMID: 21700475 DOI: 10.1016/j.cyto.2011.05.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 05/27/2011] [Indexed: 11/22/2022]
Abstract
Thrombopoietin is a potent cytokine that exerts proliferation of hematopoietic stem cells (HSCs) through its cognate receptor, c-Mpl. Therefore, mimicry of c-Mpl signaling by a receptor recognizing an artificial ligand would be attractive to attain specific expansion of genetically modified HSCs. Here we propose a system enabling selective expansion of genetically modified cells using an antibody/receptor chimera that can be activated by a specific antigen. We constructed an antibody/c-Mpl chimera, in which single-chain Fv (ScFv) of an anti-fluorescein antibody was tethered to the extracellular D2 domain of the erythropoietin receptor and transmembrane/cytoplasmic domains of c-Mpl. When the chimera was expressed in interleukin (IL)-3-dependent pro-B cell line Ba/F3, genetically modified cells were selectively expanded in the presence of fluorescein-conjugated BSA (BSA-FL) as a specific antigen. Furthermore, highly purified mouse HSCs transduced with the retrovirus carrying antibody/c-Mpl chimera gene proliferated in vitro in response to BSA-FL, and the cells retained in vivo long-term repopulating abilities. These results demonstrate that the antibody/c-Mpl chimera is capable of signal transduction that mimics wild-type c-Mpl signaling.
Collapse
|
34
|
The structure of the unliganded extracellular domain of the interleukin-6 signal transducer gp130 in solution. Eur J Cell Biol 2011; 90:515-20. [DOI: 10.1016/j.ejcb.2010.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 09/27/2010] [Accepted: 09/27/2010] [Indexed: 02/01/2023] Open
|
35
|
Kostjukova MN, Tupitsyn NN. Functional properties of extracellular domains of transducer receptor gp130. BIOCHEMISTRY (MOSCOW) 2011; 76:394-406. [PMID: 21585315 DOI: 10.1134/s000629791104002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cytokine receptor molecules have been shown to have extracellular domains of complex structure and a multi-step activation system. Glycoprotein gp130 is a typical transducer of cytokine signal; it functions by forming multicomponent receptor complexes and transferring signals of tens of cytokines from the IL-6 family. Structural organization and basic functioning principles of gp130 are well known, as well as related signal pathways, which function during normal differentiation and are involved in pathogenesis of many tumors. The role of gp130 in IL-6-dependent tumors is best studied. In this review, based on extensive accumulated data, we examine the functional significance of certain parts of gp130 extracellular domains. Potentials of a recently developed method for estimation of receptor activation at the level of epitope structure are discussed.
Collapse
Affiliation(s)
- M N Kostjukova
- Cancer Research Center, Russian Academy of Medical Sciences, Moscow, Russia
| | | |
Collapse
|
36
|
Abstract
Ligand binding to cell membrane receptors sets off a series of protein interactions that convey the nuances of ligand identity to the cell interior. The information may be encoded in conformational changes, the interaction kinetics and, in the case of multichain immunoreceptors, by chain rearrangements. The signals may be modulated by dynamic compartmentalization of the cell membrane, cellular architecture, motility, and activation-all of which are difficult to reconstitute for studies of receptor signaling in vitro. In this paper, we will discuss how protein interactions in general and receptor signaling in particular can be studied in living cells by different fluorescence imaging techniques. Particularly versatile are methods that exploit Förster resonance energy transfer (FRET), which is exquisitely sensitive to the nanometer-range proximity and orientation between fluorophores. Fluorescence correlation microscopy (FCM) can provide complementary information about the stoichiometry and diffusion kinetics of large complexes, while bimolecular fluorescence complementation (BiFC) and other complementation techniques can capture transient interactions. A continuing challenge is extracting from the imaging data the quantitative information that is necessary to verify different models of signal transduction.
Collapse
Affiliation(s)
- Tomasz Zal
- Department of Immunology, University of Texas, MD Anderson Cancer Center, Houston TX, USA
| |
Collapse
|
37
|
The pro- and anti-inflammatory properties of the cytokine interleukin-6. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:878-88. [PMID: 21296109 DOI: 10.1016/j.bbamcr.2011.01.034] [Citation(s) in RCA: 2260] [Impact Index Per Article: 161.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/23/2011] [Accepted: 01/27/2011] [Indexed: 02/06/2023]
Abstract
Interleukin-6 is a cytokine not only involved in inflammation and infection responses but also in the regulation of metabolic, regenerative, and neural processes. In classic signaling, interleukin-6 stimulates target cells via a membrane bound interleukin-6 receptor, which upon ligand binding associates with the signaling receptor protein gp130. Gp130 dimerizes, leading to the activation of Janus kinases and subsequent phosphorylation of tyrosine residues within the cytoplasmic portion of gp130. This leads to the engagement of phosphatase Src homology domains containing tyrosin phosphatase-2 (SHP-2) and activation of the ras/raf/Mitogen-activated protein (MAP) kinase (MAPK) pathway. In addition, signal transducer and activator of transcription factors are recruited, which are phosphorylated, and consequently dimerize whereupon they translocate into the nucleus and activate target genes. Interestingly, only few cells express membrane bound interleukin-6 receptor whereas all cells display gp130 on the cell surface. While cells, which only express gp130, are not responsive to interleukin-6 alone, they can respond to a complex of interleukin-6 bound to a naturally occurring soluble form of the interleukin-6 receptor. Therefore, the generation of soluble form of the interleukin-6 receptor dramatically enlarges the spectrum of interleukin-6 target cells. This process has been named trans-signaling. Here, we review the involvement of both signaling modes in the biology of interleukin-6. It turns out that regenerative or anti-inflammatory activities of interleukin-6 are mediated by classic signaling whereas pro-inflammatory responses of interleukin-6 are rather mediated by trans-signaling. This is important since therapeutic blockade of interleukin-6 by the neutralizing anti-interleukin-6 receptor monoclonal antibody tocilizumab has recently been approved for the treatment of inflammatory diseases. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
|
38
|
Schreiber G, Walter MR. Cytokine-receptor interactions as drug targets. Curr Opin Chem Biol 2010; 14:511-9. [PMID: 20619718 DOI: 10.1016/j.cbpa.2010.06.165] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 05/30/2010] [Accepted: 06/08/2010] [Indexed: 12/24/2022]
Abstract
Cytokines are essential proteins that exert potent control over entire cell populations to fight infections and other pathologies, but can by themselves cause disease. Therefore, cytokine-related drugs act either by stimulating or blocking their activities. Our knowledge of the structures of cytokine-receptor complexes, the biophysical basis of their binding, and their mode of biological activation has substantially increased in recent years. This knowledge has been translated into new drugs and drug candidates. This review summarizes our current understanding of the receptor-mediated activity of cytokines, their relation to health and disease, and the agents in use to activate and block their actions.
Collapse
Affiliation(s)
- Gideon Schreiber
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
39
|
Suthaus J, Tillmann A, Lorenzen I, Bulanova E, Rose-John S, Scheller J. Forced homo- and heterodimerization of all gp130-type receptor complexes leads to constitutive ligand-independent signaling and cytokine-independent growth. Mol Biol Cell 2010; 21:2797-807. [PMID: 20554759 PMCID: PMC2912364 DOI: 10.1091/mbc.e10-03-0240] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We present a novel strategy to enforce cytokine-independent, constitutive signaling of heterodimeric gp130 receptor complexes. Replacing the extracellular domain of gp130-type receptors by IL-15/IL-15R is sufficient to heterodimerize gp130-like receptors and as a consequence leading to sustained cytokine-independent receptor activation. Naturally ligand independent constitutively active gp130 variants were described to be responsible for inflammatory hepatocellular adenomas. Recently, we genetically engineered a ligand-independent constitutively active gp130 variant based on homodimerization of Jun leucine zippers. Because also heterodimeric complexes within the gp130 family may have tumorigenic potential, we seek to generate ligand-independent constitutively active heterodimers for all known gp130-receptor complexes based on IL-15/IL-15Rα-sushi fusion proteins. Ligand-independent heterodimerization of gp130 with WSX-1, LIFR, and OSMR and of OSMR with GPL led to constitutive, ligand-independent STAT1 and/or STAT3 and ERK1/2 phosphorylation. Moreover, these receptor combinations induced transcription of the STAT3 target genes c-myc and Pim-1 and factor-independent growth of stably transduced Ba/F3-gp130 cells. Here, we establish the IL-15/IL-15Rα-sushi system as a new system to mimic constitutive and ligand-independent activation of homo- and heterodimeric receptor complexes, which might be applicable to other heterodimeric receptor families. A mutated IL-15 protein, which was still able to bind the IL-15Rα-sushi domain, but not to β- and γ-receptor chains, in combination with the 2A peptide technology may be used to translate our in vitro data into the in vivo situation to assess the tumorigenic potential of gp130-heterodimeric receptor complexes.
Collapse
Affiliation(s)
- Jan Suthaus
- *Department of Biochemistry, Christian-Albrechts-Universität, D-24098 Kiel, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Xu Y, Kershaw NJ, Luo CS, Soo P, Pocock MJ, Czabotar PE, Hilton DJ, Nicola NA, Garrett TPJ, Zhang JG. Crystal structure of the entire ectodomain of gp130: insights into the molecular assembly of the tall cytokine receptor complexes. J Biol Chem 2010; 285:21214-8. [PMID: 20489211 DOI: 10.1074/jbc.c110.129502] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
gp130 is the shared signal-transducing receptor subunit for the large and important family of interleukin 6-like cytokines. Previous x-ray structures of ligand-receptor complexes of this family lack the three membrane-proximal domains that are essential for signal transduction. Here we report the crystal structure of the entire extracellular portion of human gp130 (domains 1-6, D1-D6) at 3.6 A resolution, in an unliganded form, as well as a higher resolution structure of the membrane-proximal fibronectin type III domains (D4-D6) at 1.9 A. This represents the first atomic resolution structure of the complete ectodomain of any "tall" cytokine receptor. These structures show that other than a reorientation of the D1 domain, there is little structural change in gp130 upon ligand binding. They also reveal that the interface between the D4 and D5 domains forms an acute bend in the gp130 structure. Key residues at this interface are highly conserved across the entire tall receptor family, suggesting that this acute bend may be a common feature of these receptors. Importantly, this geometry positions the C termini of the membrane-proximal fibronectin type III domains of the tall cytokine receptors in close proximity within the transmembrane complex, favorable for receptor-associated Janus kinases to trans-phosphorylate and activate each other.
Collapse
Affiliation(s)
- Yibin Xu
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lee SW, Kim MS, Park MH, Park SJ, Lee WS, Chang JS, Rho MC. Alkamides from Piper longum and Piper nigrum as Inhibitors of IL-6 action. B KOREAN CHEM SOC 2010. [DOI: 10.5012/bkcs.2010.31.04.921] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Liu W, Kawahara M, Ueda H, Nagamune T. Construction of a fluorescein-responsive chimeric receptor with strict ligand dependency. Biotechnol Bioeng 2008; 101:975-84. [DOI: 10.1002/bit.21961] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Liu P, Ahmed S, Wohland T. The F-techniques: advances in receptor protein studies. Trends Endocrinol Metab 2008; 19:181-90. [PMID: 18387308 DOI: 10.1016/j.tem.2008.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 02/13/2008] [Accepted: 02/22/2008] [Indexed: 11/20/2022]
Abstract
Recent developments in advanced microscopy techniques, the so-called F-techniques, including Förster resonance energy transfer, fluorescence correlation spectroscopy and fluorescence lifetime imaging, have led to a wide range of novel applications in biology. The F-techniques provide quantitative information on biomolecules and their interactions and give high spatial and temporal resolution. In particular, their application to receptor protein studies has led to new insights into receptor localization, oligomerization, activation and function in vivo. This review focuses on the application of the F-techniques to the study of receptor molecules and mechanisms in the last three years and provides information on new modalities that will further improve their applicability and widen the range of biological questions that can be addressed.
Collapse
Affiliation(s)
- Ping Liu
- Department of Chemistry, National University of Singapore, Singapore
| | | | | |
Collapse
|
44
|
Abstract
Interleukin 6 (IL-6), a pleiotropic cytokine, functions in cells through its interaction with its receptor complex, which consists of two ligand-binding alpha subunits and two signal-transducing subunits known as gp130. There is a wealth of studies on signals mediated by gp130, but its downregulation is less well understood. Here we found that IL-6 stimulation induced lysosome-dependent degradation of gp130, which correlated with an increase in the K63-linked polyubiquitination of gp130. The stimulation-dependent ubiquitination of gp130 was mediated by c-Cbl, an E3 ligase, which was recruited to gp130 in a tyrosine-phosphorylated SHP2-dependent manner. We also found that IL-6 induced a rapid translocation of gp130 from the cell surface to endosomal compartments. Furthermore, the vesicular sorting molecule Hrs contributed to the lysosomal degradation of gp130 by directly recognizing its ubiquitinated form. Deficiency of either Hrs or c-Cbl suppressed gp130 degradation, which leads to a prolonged and amplified IL-6 signal. Thus, our present report provides the first evidence for involvement of a c-Cbl/SHP2 complex in ubiquitination and lysosomal degradation of gp130 upon IL-6 stimulation. The lysosomal degradation of gp130 is critical for cessation of IL-6-mediated signaling.
Collapse
|
45
|
Zal T. Visualization of protein interactions in living cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 640:183-97. [PMID: 19065792 PMCID: PMC5788009 DOI: 10.1007/978-0-387-09789-3_14] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Ligand binding to cell membrane receptors sets off a series of protein interactions that convey the nuances ofligand identity to the cell interior. The information may be encoded in conformational changes, the interaction kinetics and, in the case of multichain immunoreceptors, by chain rearrangements. The signals may be modulated by dynamic compartmentalization of the cell membrane, cellular architecture, motility, and activation--all of which are difficult to reconstitute for studies of receptor signaling in vitro. In this chapter, we will discuss how protein interactions in general and receptor signaling in particular can be studied in living cells by different fluorescence imaging techniques. Particularly versatile are methods that exploit Förster resonance energy transfer (FRET), which is exquisitely sensitive to the nanometer-range proximity and orientation between fluorophores. Fluorescence correlation microscopy (FCM) can provide complementary information about the stoichiometry and diffusion kinetics of large complexes, while bimolecular fluorescence complementation (BiFC) and other complementation techniques can capture transient interactions. A continuing challenge is extracting from the imaging data the quantitative information that is necessary to verify different models of signal transduction.
Collapse
Affiliation(s)
- Tomasz Zal
- Department of Immunology, University of Texas, MD Anderson Cancer Center, Unit 902, 7455 Fannin, Houston TX, USA.
| |
Collapse
|
46
|
Abstract
Interferons (IFNs) were discovered 50 years ago independently by Isaacs and Lindemann and by Nagata and Kojima. When it was later realized that IFNs are active at very low concentrations, research began to determine how their powerful effects were generated from such a small initial signal. It has since been established that interferons, as well as all other cytokines, employ cell surface receptors to translate their presence in the serum to a potent cellular response to a viral infection. These receptor complexes are composed of multiple distinct glycosylated transmembrane polypeptides, a number of protein tyrosine kinases, and interact transiently with a large variety of other proteins including transcription factors, phosphatases, signaling repressors, and adaptor proteins coupling the receptor to alternative signaling pathways. Three major receptor complexes exist that are exclusive to each of three major classes of interferon. Even though the effects of each major class of interferon vary physiologically, each receptor complex interacts with its ligand in similar ways and activates similar signaling cascades. In this mini-review, we take a historical perspective at the major events in the characterization of interferon receptors, discussing interesting results that still need to be explained.
Collapse
Affiliation(s)
- Christopher D Krause
- Department of Molecular Genetics, Microbiology, and Immunology, Robert Wood Johnson Medical School - The University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA
| | | |
Collapse
|
47
|
Port MD, Gibson RM, Nathanson NM. Differential stimulation-induced receptor localization in lipid rafts for interleukin-6 family cytokines signaling through the gp130/leukemia inhibitory factor receptor complex. J Neurochem 2007; 101:782-93. [PMID: 17448148 DOI: 10.1111/j.1471-4159.2007.04471.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Leukemia inhibitory factor (LIF) and ciliary neurotrophic factor (CNTF) are cytokines which signal through receptor complexes that include the receptor subunits glycoprotein 130 (gp130) and the LIF receptor (LIFR), but CNTF also requires the non-signal transducing CNTF receptor (CNTFR) for binding. We show here that in IMR-32 neuronal cells endogenously expressing the receptor subunits for LIF and CNTF, CNTFR, but not gp130 or LIFR, is found in detergent-resistant lipid rafts. In addition, stimulation of these cells with CNTF resulted in a rapid translocation of a portion of gp130 and LIFR into detergent-resistant lipid rafts while an equivalent stimulation with LIF did not. Disruption of lipid rafts by cholesterol depletion of cell membranes blocked the CNTF-induced translocation of LIFR and gp130. Interestingly, while cholesterol-depletion did not inhibit signal transducer and activator of transcription 3 phosphorylation by either CNTF or LIF stimulation, it strongly inhibited both CNTF- and LIF-mediated phosphorylation of extracellular signal-regulated kinases 1 and 2 and Akt. LIF and CNTF generally appear to have redundant effects in cells responsive to both cytokines. Intriguingly, the data presented here suggest a possible mechanism whereby CNTF or other cytokines that signal through CNTFR could generate signals distinct from those elicited by cytokines such as LIF which utilize a LIFR/gp130 heterodimer, via association with or exclusion from lipid rafts.
Collapse
Affiliation(s)
- Martha D Port
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7750, USA
| | | | | |
Collapse
|