1
|
Wang Z, Wang Y, Zhao P, Cui S, Tao C, Huang Y, Zhu H, Jia H. DNAJA3 interacts with ASFV MGF360-14L protein and reduces MGF360-14L antagonistic role on Beta interferon production. Int J Biol Macromol 2025; 310:143159. [PMID: 40233912 DOI: 10.1016/j.ijbiomac.2025.143159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/17/2025]
Abstract
African swine fever (ASF) is a devastating infectious disease caused by African swine fever virus (ASFV). Many multiple structural and non-structural proteins of ASFV have been confirmed to evade the host's immune response. In this study, the interaction of non-structural protein MGF360-14L with DnaJ heat shock protein family (Hsp40) member A3 (DNAJA3) were firstly detected by yeast two-hybrid screening, further confirmed by communoprecipitation and colocalization, meanwhile we also found that MGF360-14L was localized in the cytoplasm. The DNAJA3 (amino acids 296 to 453) and the MGF360-14L (amino acids 1 to 119) were shown to be critical for the interaction of DNAJA3 with MGF360-14L. Over-expression of DNAJA3 dramatically dampened MGF360-14L expression, and induced lysosomal degradation of MGF360-14L. Our study have previously demonstrated that the MGF360-14L induced ubiquitin degradation of IRF3 and thus inhibited the production of IFN-β. Further research showed that MGF360-14L can significantly enhance the ubiquitination-mediated degradation of IRF3 and strengthen the suppression of IFN-β in DNAJA3-knockout cells. These findings suggest that the DNAJA3 played a negative regulatory role for the inhibition of MGF360-14L on the IFN-β, further study indicated that DNAJA3 plays an important antiviral role against ASFV by both degrading MGF360-14L and restoring of IFN-β.
Collapse
Affiliation(s)
- Zhen Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China; College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Yang Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Shuai Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Chunhao Tao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Ying Huang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Hongfei Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Hong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| |
Collapse
|
2
|
Petersen JM, Bryon A, Bézier A, Drezen JM, van Oers MM. Transcriptional dynamics during Heliothis zea nudivirus 1 infection in an ovarian cell line from Helicoverpa zea. J Gen Virol 2025; 106:002066. [PMID: 39804289 PMCID: PMC11728702 DOI: 10.1099/jgv.0.002066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Nudiviruses (family Nudiviridae) are double-stranded DNA viruses that infect various insects and crustaceans. Among them, Heliothis zea nudivirus 1 (HzNV-1) represents the rare case of a lepidopteran nudivirus inducing a sexual pathology. Studies about molecular pathological dynamics of HzNV-1 or other nudiviruses are scarce. Hence, this study aims to provide a transcriptomic profile of HzNV-1 in an ovary-derived cell line of Helicoverpa zea (HZ-AM1), during early (3, 6 and 9 h post-infection) and advanced (12 and 24 h post-infection) stages of infection. Total RNA was extracted from both virus- and mock-infected cells, and RNA-seq analysis was performed to examine both virus and host transcriptional dynamics. Hierarchical clustering was used to categorize viral genes, while differential gene expression analysis was utilized to pinpoint host genes that are significantly affected by the infection. Hierarchical clustering classified the 154 HzNV-1 genes into four temporal phases, with early phases mainly involving transcription and replication genes and later phases including genes for virion assembly. In addition, a novel viral promoter motif was identified in the upstream region of early-expressed genes. Host gene analysis revealed significant upregulation of heat shock protein genes and downregulation of histone genes. The identification of temporal patterns in viral gene expression enhances the molecular understanding of nudivirus pathology, while the identified differentially expressed host genes highlight the key pathways most hijacked by HzNV-1 infection.
Collapse
Affiliation(s)
- Jirka Manuel Petersen
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, Netherlands
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS - Université de Tours, 37200 Tours, France
| | - Astrid Bryon
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, Netherlands
| | - Annie Bézier
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS - Université de Tours, 37200 Tours, France
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS - Université de Tours, 37200 Tours, France
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, Netherlands
| |
Collapse
|
3
|
Qiu Q, He Z, Liu J, Xu H, Wang J, Liu N, Kang N, Pan S, Yu W, Gao Z, Zhang S, Yang Y, Deng Q, Xie Y, Zhang J, Shen Z. Homeobox protein MSX-1 restricts hepatitis B virus by promoting ubiquitin-independent proteasomal degradation of HBx protein. PLoS Pathog 2025; 21:e1012897. [PMID: 39883729 PMCID: PMC11781671 DOI: 10.1371/journal.ppat.1012897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025] Open
Abstract
Hepatitis B virus (HBV) X protein (HBx) is a key factor for regulating viral transcription and replication. We recently characterized homeobox protein MSX-1 (MSX1) as a host restriction factor that inhibits HBV gene expression and genome replication by directly binding to HBV enhancer II/core promoter (EnII/Cp) and suppressing its promoter and enhancer activities. Notably, HBx expression was observed to be repressed more drastically by MSX1 compared to other viral antigens. In this work, we report that in addition to transcriptional repression, MSX1 also post-transcriptionally downregulates HBx protein stability. Mechanistically, MSX1 induces ubiquitin-independent proteasomal degradation of HBx, which is mediated through HBx C-terminal domain. Furthermore, this effect on HBx degradation correlates with MSX1-induced upregulation of DNAJA4 and CRYAB expression. Similar to MSX1, both DNAJA4 and CRYAB promote HBx degradation and repress HBV gene expression and genome replication. In chronic hepatitis B (CHB) patients, immune active phase (IA) is associated with higher intrahepatic expression of MSX1, DNAJA4 and CRYAB, and lower serum HBV markers compared to immune tolerant (IT) phase. Finally, HBV infection is significantly suppressed by MSX1 overexpression in both NTCP-overexpressing cell and humanized liver mouse models. These results demonstrate additional and novel mechanisms of MSX1-mediated repression of HBV, and establish MSX1 as a multi-functional HBV restriction factor with therapeutic potential.
Collapse
Affiliation(s)
- Qian Qiu
- Department of Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zihan He
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai, China
| | - Jing Liu
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huijun Xu
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai, China
| | - Jinyu Wang
- Department of Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Nannan Liu
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai, China
| | - Ning Kang
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai, China
| | - Shaokun Pan
- Department of Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Weien Yu
- Department of Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zixiang Gao
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai, China
| | - Shimei Zhang
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai, China
| | - Yang Yang
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai, China
| | - Qiang Deng
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai, China
| | - Youhua Xie
- Department of Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai, China
- Children’s Hospital, Fudan University, Shanghai, China
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhongliang Shen
- Department of Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Kar A, Mukherjee S, Mukherjee S, Biswas A. Ubiquitin: A double-edged sword in hepatitis B virus-induced hepatocellular carcinoma. Virology 2024; 599:110199. [PMID: 39116646 DOI: 10.1016/j.virol.2024.110199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Hepatitis B virus is one of the leading causes behind the neoplastic transformation of liver tissue and associated mortality. Despite the availability of many therapies and vaccines, the pathogenic landscape of the virus remains elusive; urging the development of novel strategies based on the fundamental infectious and transformative modalities of the virus-host interactome. Ubiquitination is a widely observed post-translational modification of several proteins, which either regulates the proteins' turnover or impacts their functionalities. In recent years, ample amount of literature has accumulated regarding the ubiquitination dynamics of the HBV proteins as well as the host proteins during HBV infection and carcinogenesis; with direct and detailed characterization of the involvement of HBV in these processes. Interestingly, while many of these ubiquitination events restrict HBV life cycle and carcinogenesis, several others promote the emergence of hepatocarcinoma by putting the virus in an advantageous position. This review sums up the snowballing literature on ubiquitination-mediated regulation of the host-HBV crosstalk, with special emphasis on its influence on the establishment and progression of hepatocellular carcinoma on a molecular level. With the advent of cutting-edge ubiquitination-targeted therapeutic approaches, the findings emanating from this review may potentiate the identification of novel anti-HBV targets for the formulation of novel anticancer strategies to control the HBV-induced hepato-carcinogenic process on a global scale.
Collapse
Affiliation(s)
- Arpita Kar
- Department of Signal Transduction & Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sandipan Mukherjee
- Department of Signal Transduction & Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Soumyadeep Mukherjee
- Department of in Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, Kolkata, India
| | - Avik Biswas
- Department of Signal Transduction & Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India.
| |
Collapse
|
5
|
Guo M, Xiao ZD, Dai Z, Zhu L, Lei H, Diao LT, Xiong Y. The landscape of long noncoding RNA-involved and tumor-specific fusions across various cancers. Nucleic Acids Res 2021; 48:12618-12631. [PMID: 33275145 PMCID: PMC7736799 DOI: 10.1093/nar/gkaa1119] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/15/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
The majority of the human genome encodes long noncoding RNA (lncRNA) genes, critical regulators of various cellular processes, which largely outnumber protein-coding genes. However, lncRNA-involved fusions have not been surveyed and characterized yet. Here, we present a systematic study of the lncRNA fusion landscape across cancer types and identify >30 000 high-confidence tumor-specific lncRNA fusions (using 8284 tumor and 6946 normal samples). Fusions positively correlated with DNA damage and cancer stemness and were specifically low in microsatellite instable (MSI)-High or virus-infected tumors. Moreover, fusions distribute differently among cancer molecular subtypes, but with shared enrichment in tumors that are microsatellite stable (MSS), with high somatic copy number alterations (SCNA), and with poor survival. Importantly, we find a potentially new mechanism, mediated by enhancer RNAs (eRNA), which generates secondary fusions that form densely connected fusion networks with many fusion hubs targeted by FDA-approved drugs. Finally, we experimentally validate functions of two tumor-promoting chimeric proteins derived from mRNA-lncRNA fusions, KDM4B-G039927 and EPS15L1-lncOR7C2-1. The EPS15L1 fusion protein may regulate (Gasdermin E) GSDME, critical in pyroptosis and anti-tumor immunity. Our study completes the fusion landscape in cancers, sheds light on fusion mechanisms, and enriches lncRNA functions in tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Mengbiao Guo
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhen-Dong Xiao
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zhiming Dai
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Ling Zhu
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hang Lei
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Li-Ting Diao
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yuanyan Xiong
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
6
|
Wan Q, Song D, Li H, He ML. Stress proteins: the biological functions in virus infection, present and challenges for target-based antiviral drug development. Signal Transduct Target Ther 2020; 5:125. [PMID: 32661235 PMCID: PMC7356129 DOI: 10.1038/s41392-020-00233-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/26/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023] Open
Abstract
Stress proteins (SPs) including heat-shock proteins (HSPs), RNA chaperones, and ER associated stress proteins are molecular chaperones essential for cellular homeostasis. The major functions of HSPs include chaperoning misfolded or unfolded polypeptides, protecting cells from toxic stress, and presenting immune and inflammatory cytokines. Regarded as a double-edged sword, HSPs also cooperate with numerous viruses and cancer cells to promote their survival. RNA chaperones are a group of heterogeneous nuclear ribonucleoproteins (hnRNPs), which are essential factors for manipulating both the functions and metabolisms of pre-mRNAs/hnRNAs transcribed by RNA polymerase II. hnRNPs involve in a large number of cellular processes, including chromatin remodelling, transcription regulation, RNP assembly and stabilization, RNA export, virus replication, histone-like nucleoid structuring, and even intracellular immunity. Dysregulation of stress proteins is associated with many human diseases including human cancer, cardiovascular diseases, neurodegenerative diseases (e.g., Parkinson’s diseases, Alzheimer disease), stroke and infectious diseases. In this review, we summarized the biologic function of stress proteins, and current progress on their mechanisms related to virus reproduction and diseases caused by virus infections. As SPs also attract a great interest as potential antiviral targets (e.g., COVID-19), we also discuss the present progress and challenges in this area of HSP-based drug development, as well as with compounds already under clinical evaluation.
Collapse
Affiliation(s)
- Qianya Wan
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Dan Song
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Huangcan Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China. .,CityU Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
7
|
Han C, Du Q, Zhu L, Chen N, Luo L, Chen Q, Yin J, Wu X, Tong D, Huang Y. Porcine DNAJB6 promotes PCV2 replication via enhancing the formation of autophagy in host cells. Vet Res 2020; 51:61. [PMID: 32381067 PMCID: PMC7203849 DOI: 10.1186/s13567-020-00783-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022] Open
Abstract
Hsp40/DnaJ family proteins play important roles in the infection process of various viruses. Porcine DNAJB6 (pDNAJB6) is a major member of this family, but its role in modulating the replication of porcine circovirus type 2 (PCV2) is still unclear. In the present study, pDNAJB6 was found to be significantly upregulated by PCV2 infection, and confirmed to be interacted with PCV2 capsid (Cap) protein and co-localized at both cytoplasm and nucleus in the PCV2-infected cells. Knockout of pDNAJB6 significantly reduced the formation of autophagosomes in PCV2-infected cells or in the cells expressing Cap protein, whereas overexpression of pDNAJB6 showed an opposite effect. In addition, the domain mapping assay showed that the J domain of pDNAJB6 (amino acids (aa) 1–99) and the C terminus of Cap (162-234 aa) were required for the interaction of pDNAJB6 with Cap. Notably, the interaction of pDNAJB6 with Cap was very important to promoting the formation of autophagosomes induced by PCV2 infection or Cap expression and enhancing the replication of PCV2. Taken together, the results presented here show a novel function of pDNAJB6 in regulation of porcine circovirus replication that pDNAJB6 enhances the formation of autophagy to promote viral replication through interacting with viral capsid protein during PCV2 infection.
Collapse
Affiliation(s)
- Cong Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Lei Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Nannan Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Le Luo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qiao Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jiatong Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xingchen Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| |
Collapse
|
8
|
Cellular DNAJA3, a Novel VP1-Interacting Protein, Inhibits Foot-and-Mouth Disease Virus Replication by Inducing Lysosomal Degradation of VP1 and Attenuating Its Antagonistic Role in the Beta Interferon Signaling Pathway. J Virol 2019; 93:JVI.00588-19. [PMID: 30996089 DOI: 10.1128/jvi.00588-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/26/2023] Open
Abstract
DnaJ heat shock protein family (Hsp40) member A3 (DNAJA3) plays an important role in viral infections. However, the role of DNAJA3 in replication of foot-and-mouth-disease virus (FMDV) remains unknown. In this study, DNAJA3, a novel binding partner of VP1, was identified using yeast two-hybrid screening. The DNAJA3-VP1 interaction was further confirmed by coimmunoprecipitation and colocalization in FMDV-infected cells. The J domain of DNAJA3 (amino acids 1 to 168) and the lysine at position 208 (K208) of VP1 were shown to be critical for the DNAJA3-VP1 interaction. Overexpression of DNAJA3 dramatically dampened FMDV replication, whereas loss of function of DNAJA3 elicited opposing effects against FMDV replication. Mechanistical study demonstrated that K208 of VP1 was critical for reducing virus titer caused by DNAJA3 using K208A mutant virus. DNAJA3 induced lysosomal degradation of VP1 by interacting with LC3 to enhance the activation of lysosomal pathway. Meanwhile, we discovered that VP1 suppressed the beta interferon (IFN-β) signaling pathway by inhibiting the phosphorylation, dimerization, and nuclear translocation of IRF3. This inhibitory effect was considerably boosted in DNAJA3-knockout cells. In contrast, overexpression of DNAJA3 markedly attenuated VP1-mediated suppression on the IFN-β signaling pathway. Poly(I⋅C)-induced phosphorylation of IRF3 was also decreased in DNAJA3-knockout cells compared to that in the DNAJA3-WT cells. In conclusion, our study described a novel role for DNAJA3 in the host's antiviral response by inducing the lysosomal degradation of VP1 and attenuating the VP1-induced suppressive effect on the IFN-β signaling pathway.IMPORTANCE This study pioneeringly determined the antiviral role of DNAJA3 in FMDV. DNAJA3 was found to interact with FMDV VP1 and trigger its degradation via the lysosomal pathway. In addition, this study is also the first to clarify the mechanism by which VP1 suppressed IFN-β signaling pathway by inhibiting the phosphorylation, dimerization, and nuclear translocation of IRF3. Moreover, DNAJA3 significantly abrogated VP1-induced inhibitive effect on the IFN-β signaling pathway. These data suggested that DNAJA3 plays an important antiviral role against FMDV by both degrading VP1 and restoring of IFN-β signaling pathway.
Collapse
|
9
|
Kong F, You H, Kong D, Zheng K, Tang R. The interaction of hepatitis B virus with the ubiquitin proteasome system in viral replication and associated pathogenesis. Virol J 2019; 16:73. [PMID: 31146743 PMCID: PMC6543661 DOI: 10.1186/s12985-019-1183-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/20/2019] [Indexed: 12/21/2022] Open
Abstract
Background The ubiquitin proteasome system (UPS) regulates the expression levels of cellular proteins by ubiquitination of protein substrates followed by their degradation via the proteasome. As a highly conserved cellular degradation mechanism, the UPS affects a variety of biological processes and participates in viral propagation. Main body During hepatitis B virus (HBV) infection, the UPS is shown to act as a double-edged sword in viral pathogenesis. On the one hand, the UPS acts as a host defense mechanism to selectively recognize HBV proteins as well as special cellular proteins that favor the viral life cycle and induces their ubiquitin-dependent proteasomal degradation to limit HBV infection. On the other hand, the HBV has evolved to subvert the UPS function for its own advantage. Moreover, in the infected hepatocytes, certain cellular proteins that are dependent on the UPS are involved in abnormal biological processes which are mediated by HBV. Conclusion The molecular interaction of HBV with the UPS to modulate viral propagation and pathogenesis is summarized in the review. Considering the important role of the UPS in HBV infection, a better understanding of the HBV-UPS interaction could provide novel insight into the mechanisms that are involved in viral replication and pathogenesis and help to develop potential treatment strategies targeting the UPS.
Collapse
Affiliation(s)
- Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Delong Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.,National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China. .,National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
10
|
Cho HK, Kim SY, Yoo SK, Choi YH, Cheong J. Fatty acids increase hepatitis B virus X protein stabilization and HBx-induced inflammatory gene expression. FEBS J 2014; 281:2228-39. [PMID: 24612645 DOI: 10.1111/febs.12776] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/14/2014] [Accepted: 02/18/2014] [Indexed: 01/02/2023]
Abstract
The protein level of human hepatitis B virus (HBV) in infection is variable, depending on patient context. We previously reported that HBV X protein (HBx) induces hepatic lipid accumulation and inflammation. Here, we show that abnormal levels of hepatic fatty acids increase HBx protein stability during HBV expression, resulting in the potentiation of HBx-induced inflammation. Reactive oxygen species, Ca(2+) signaling and expression levels of various lipid metabolic genes were investigated in HBx-expressing cells and in HBx transgenic mice. Fatty acids, including palmitate, stearate and oleate, increased HBx protein stability by preventing proteasome-dependent degradation. Hepatic inflammation induced by a high fat diet (HFD) and HBx was measured based on the expression of interleukin-6 and tumor necrosis factor α. In addition, the protein level of HBx increased in HFD-HBx transgenic mice. Reactive oxygen species production and intracellular Ca(2+) signal activation play critical roles in fatty-acid-induced HBx stabilization. Abnormal levels of hepatic fatty acids resulted in synergistic induction of HBx protein and liver inflammatory gene expression through HBx protein stabilization. These results indicate that different fatty acid levels in the liver might affect HBV-induced pathogenesis.
Collapse
Affiliation(s)
- Hyun Kook Cho
- Department of Molecular Biology, Pusan National University, Busan, Korea
| | | | | | | | | |
Collapse
|
11
|
Abstract
OBJECTIVES DNAJ/HSP40 is an evolutionarily conserved family of proteins bearing various functions. Historically, it has been emphasized that HSP40/DNAJ family proteins play a positive role in infection of various viruses. We identified DNAJ/HSP40B6 as a potential negative regulator of HIV-1 replication in our genetic screens. In this study, we investigated the functional interactions between HIV-1 and HSP40 family members. DESIGN We took genetic and comparative virology approaches to expand the primary observation. METHODS Multiple HSP40/DNAJ proteins were tested for their ability to inhibit replication of adenovirus, herpes simplex virus type 1, HIV-1, and vaccinia virus. The mechanism of inhibition was investigated by using HSP40/DNAJ mutants and measuring the efficiencies of each viral replication steps. RESULTS HSP40A1, B1, B6, and C5, but not C3, were found to be able to limit HIV-1 production. This effect was specific to HIV-1 for such effects were not detected in adenovirus, herpes simplex virus type 1, and vaccinia virus. Genetic analyses suggested that the conserved DNAJ domain was responsible for the inhibition of HIV-1 production through which HSP40 regulates HSP70 ATPase activity. Interestingly, HSP40s lowered the levels of steady-state viral messenger RNA. This was not attributed to the inhibition of Tat/long terminal repeat-driven transcription but the downregulation of Rev expression. CONCLUSIONS This is the first report providing evidence that HSP70-HSP40 complex confers an innate resistance specific to HIV-1. For their interferon-inducible nature, HSP40 family members should account for the anti-HIV-1 function of interferon.
Collapse
|
12
|
Tong SW, Yang YX, Hu HD, An X, Ye F, Ren H, Li SL, Zhang DZ. HSPB1 is an intracellular antiviral factor against hepatitis B virus. J Cell Biochem 2012; 114:162-73. [PMID: 22887120 DOI: 10.1002/jcb.24313] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 07/30/2012] [Indexed: 01/23/2023]
|
13
|
A bacteriophage-encoded J-domain protein interacts with the DnaK/Hsp70 chaperone and stabilizes the heat-shock factor σ32 of Escherichia coli. PLoS Genet 2012; 8:e1003037. [PMID: 23133404 PMCID: PMC3486835 DOI: 10.1371/journal.pgen.1003037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/04/2012] [Indexed: 01/21/2023] Open
Abstract
The universally conserved J-domain proteins (JDPs) are obligate cochaperone partners of the Hsp70 (DnaK) chaperone. They stimulate Hsp70's ATPase activity, facilitate substrate delivery, and confer specific cellular localization to Hsp70. In this work, we have identified and characterized the first functional JDP protein encoded by a bacteriophage. Specifically, we show that the ORFan gene 057w of the T4-related enterobacteriophage RB43 encodes a bona fide JDP protein, named Rki, which specifically interacts with the Escherichia coli host multifunctional DnaK chaperone. However, in sharp contrast with the three known host JDP cochaperones of DnaK encoded by E. coli, Rki does not act as a generic cochaperone in vivo or in vitro. Expression of Rki alone is highly toxic for wild-type E. coli, but toxicity is abolished in the absence of endogenous DnaK or when the conserved J-domain of Rki is mutated. Further in vivo analyses revealed that Rki is expressed early after infection by RB43 and that deletion of the rki gene significantly impairs RB43 proliferation. Furthermore, we show that mutations in the host dnaK gene efficiently suppress the growth phenotype of the RB43 rki deletion mutant, thus indicating that Rki specifically interferes with DnaK cellular function. Finally, we show that the interaction of Rki with the host DnaK chaperone rapidly results in the stabilization of the heat-shock factor σ32, which is normally targeted for degradation by DnaK. The mechanism by which the Rki-dependent stabilization of σ32 facilitates RB43 bacteriophage proliferation is discussed. Bacteriophages are the most abundant biological entities on earth. As a consequence, they represent the largest reservoir of unexplored genetic information. They control bacterial growth, mediate horizontal gene transfer, and thus exert profound influence on microbial ecology and growth. One of the striking features of bacteriophages is that they code for many open reading frames of thus far unknown biological function (called ORFans), which have been referred to as the dark matter of our biosphere. Here we have extensively characterized such a novel ORFan-encoded protein, Rki, encoded by the large, virulent enterobacteriaceae bacteriophage RB43. We show that Rki functions to control the host stress-response during the early stages of bacteriophage infection, specifically by interacting with the host DnaK/Hsp70 chaperone to stabilize the major host heat-shock factor, σ32.
Collapse
|
14
|
Hwang J, Winkler L, Kalejta RF. Ubiquitin-independent proteasomal degradation during oncogenic viral infections. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1816:147-57. [PMID: 21664948 PMCID: PMC3193896 DOI: 10.1016/j.bbcan.2011.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 05/26/2011] [Accepted: 05/27/2011] [Indexed: 02/07/2023]
Abstract
Most eukaryotic proteins destined for imminent destruction are first tagged with a chain of ubiquitin molecules and are subsequently dismantled by the proteasome. Ubiquitin-independent degradation of substrates by the proteasome, however, also occurs. The number of documented proteasome-dependent, ubiquitin-independent degradation events remains relatively small but continues to grow. Proteins involved in oncogenesis and tumor suppression make up the majority of the known cases for this type of protein destruction. Provocatively, viruses with confirmed or suspected oncogenic properties are also prominent participants in the pantheon of ubiquitin-independent proteasomal degradation events. In this review, we identify and describe examples of proteasome-dependent, ubiquitin-independent protein degradation that occur during tumor virus infections, speculate why this type of protein destruction may be preferred during oncogenesis, and argue that this uncommon type of protein turnover represents a prime target for antiviral and anticancer therapeutics.
Collapse
Affiliation(s)
| | | | - Robert F. Kalejta
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706 USA
| |
Collapse
|
15
|
Knox C, Luke GA, Blatch GL, Pesce ER. Heat shock protein 40 (Hsp40) plays a key role in the virus life cycle. Virus Res 2011; 160:15-24. [DOI: 10.1016/j.virusres.2011.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 06/17/2011] [Accepted: 06/21/2011] [Indexed: 01/04/2023]
|
16
|
Sharma K, Tripathi S, Ranjan P, Kumar P, Garten R, Deyde V, Katz JM, Cox NJ, Lal RB, Sambhara S, Lal SK. Influenza A virus nucleoprotein exploits Hsp40 to inhibit PKR activation. PLoS One 2011; 6:e20215. [PMID: 21698289 PMCID: PMC3115951 DOI: 10.1371/journal.pone.0020215] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 04/15/2011] [Indexed: 02/08/2023] Open
Abstract
Background Double-stranded RNA dependent protein kinase (PKR) is a key regulator of the anti-viral innate immune response in mammalian cells. PKR activity is regulated by a 58 kilo Dalton cellular inhibitor (P58IPK), which is present in inactive state as a complex with Hsp40 under normal conditions. In case of influenza A virus (IAV) infection, P58IPK is known to dissociate from Hsp40 and inhibit PKR activation. However the influenza virus component responsible for PKR inhibition through P58IPK activation was hitherto unknown. Principal Findings Human heat shock 40 protein (Hsp40) was identified as an interacting partner of Influenza A virus nucleoprotein (IAV NP) using a yeast two-hybrid screen. This interaction was confirmed by co-immunoprecipitation studies from mammalian cells transfected with IAV NP expressing plasmid. Further, the IAV NP-Hsp40 interaction was validated in mammalian cells infected with various seasonal and pandemic strains of influenza viruses. Cellular localization studies showed that NP and Hsp40 co-localize primarily in the nucleus. During IAV infection in mammalian cells, expression of NP coincided with the dissociation of P58IPK from Hsp40 and decrease PKR phosphorylation. We observed that, plasmid based expression of NP in mammalian cells leads to decrease in PKR phosphorylation. Furthermore, inhibition of NP expression during influenza virus replication led to PKR activation and concomitant increase in eIF2α phosphorylation. Inhibition of NP expression also led to reduced IRF3 phosphorylation, enhanced IFN β production and concomitant reduction of virus replication. Taken together our data suggest that NP is the viral factor responsible for P58IPK activation and subsequent inhibition of PKR-mediated host response during IAV infection. Significance Our findings demonstrate a novel role of IAV NP in inhibiting PKR-mediated anti-viral host response and help us understand P58IPK mediated inhibition of PKR activity during IAV infection.
Collapse
Affiliation(s)
- Kulbhushan Sharma
- Virology Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| | - Shashank Tripathi
- Virology Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| | - Priya Ranjan
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Purnima Kumar
- Virology Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| | - Rebecca Garten
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Varough Deyde
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jacqueline M. Katz
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Nancy J. Cox
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Renu B. Lal
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Sunil K. Lal
- Virology Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
- * E-mail:
| |
Collapse
|
17
|
Guan Z, Liu D, Mi S, Zhang J, Ye Q, Wang M, Gao GF, Yan J. Interaction of Hsp40 with influenza virus M2 protein: implications for PKR signaling pathway. Protein Cell 2010; 1:944-55. [PMID: 21204021 PMCID: PMC4875119 DOI: 10.1007/s13238-010-0115-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Accepted: 10/09/2010] [Indexed: 12/14/2022] Open
Abstract
Influenza virus contains three integral membrane proteins: haemagglutinin, neuraminidase, and matrix protein (M1 and M2). Among them, M2 protein functions as an ion channel, important for virus uncoating in endosomes of virus-infected cells and essential for virus replication. In an effort to explore potential new functions of M2 in the virus life cycle, we used yeast two-hybrid system to search for M2-associated cellular proteins. One of the positive clones was identified as human Hsp40/Hdj1, a DnaJ/Hsp40 family protein. Here, we report that both BM2 (M2 of influenza B virus) and A/M2 (M2 of influenza A virus) interacted with Hsp40 in vitro and in vivo. The region of M2-Hsp40 interaction has been mapped to the CTD1 domain of Hsp40. Hsp40 has been reported to be a regulator of PKR signaling pathway by interacting with p58(IPK) that is a cellular inhibitor of PKR. PKR is a crucial component of the host defense response against virus infection. We therefore attempted to understand the relationship among M2, Hsp40 and p58(IPK) by further experimentation. The results demonstrated that both A/M2 and BM2 are able to bind to p58(IPK) in vitro and in vivo and enhance PKR autophosphorylation probably via forming a stable complex with Hsp40 and P58(IPK), and consequently induce cell death. These results suggest that influenza virus M2 protein is involved in p58(IPK) mediated PKR regulation during influenza virus infection, therefore affecting infected-cell life cycle and virus replication.
Collapse
Affiliation(s)
- Zhenhong Guan
- College of Veterinary Medicine, China Agricultural University, Beijing, 100094 China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Di Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Shuofu Mi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jie Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Qinong Ye
- Beijing Institute of Biotechnology, Beijing, 100850 China
| | - Ming Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100094 China
| | - George F. Gao
- College of Veterinary Medicine, China Agricultural University, Beijing, 100094 China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
18
|
Pockley AG, Calderwood SK, Santoro MG. Role of Heat Shock Proteins in Viral Infection. PROKARYOTIC AND EUKARYOTIC HEAT SHOCK PROTEINS IN INFECTIOUS DISEASE 2009; 4. [PMCID: PMC7121897 DOI: 10.1007/978-90-481-2976-8_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
One of the most intriguing and less known aspects of the interaction between viruses and their host is the impact of the viral infection on the heat shock response (HSR). While both a positive and a negative role of different heat shock proteins (HSP) in the control of virus replication has been hypothesized, HSP function during the virus replication cycle is still not well understood. This chapter describes different aspects of the interactions between viruses and heat shock proteins during infection of mammalian cells: the first part focuses on the modulation of the heat shock response by human viral pathogens; the second describes the interactions of HSP and other chaperones with viral components, and their function during different steps of the virus replication cycle; the last part summarizes our knowledge on the effect of hyperthermia and HSR modulators on virus replication.
Collapse
Affiliation(s)
- A. Graham Pockley
- School of Medicine & Biomedical Science, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX United Kingdom
| | - Stuart K. Calderwood
- Beth Israel Deaconess Medical Center, Harvard Medical School, Burlington Avenue 21-27, Boston, 02215 U.S.A
| | - M. Gabriella Santoro
- Dipto. Biologia, Università di Roma, Tor Vergata, Via della Ricerca Scientifica 1, Roma, 00133 Italy
| |
Collapse
|
19
|
Interaction of the replication proteins and the capsid protein of porcine circovirus type 1 and 2 with host proteins. Virology 2009; 386:122-31. [DOI: 10.1016/j.virol.2008.12.039] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 12/02/2008] [Accepted: 12/26/2008] [Indexed: 01/08/2023]
|
20
|
Ubiquitin-dependent and -independent proteasomal degradation of hepatitis B virus X protein. Biochem Biophys Res Commun 2007; 366:1036-42. [PMID: 18155658 DOI: 10.1016/j.bbrc.2007.12.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 12/13/2007] [Indexed: 01/11/2023]
Abstract
The hepatitis B virus X protein (HBX) plays key regulatory roles in viral replication and the development of hepatocellular carcinoma. HBX is an unstable protein; its instability is attributed to rapid degradation through the ubiquitin-proteasome pathway. Here, we show that the middle and carboxyl-terminal domains of HBX, independently fused to GFP, render the recombinant proteins susceptible to proteasomal degradation, while the amino-terminal domain has little effect on the ubiquitination or stability of HBX. Mutation of any single or combination of up to five of six lysine residues, all located in the middle and carboxyl-terminal domain, did not prevent HBX from being ubiquitinated, ruling out any specific lysine as the sole site of ubiquitination. Surprisingly, HBX in which all six lysines were mutated and showed no evidence of ubiquitination, was still susceptible to proteasomal degradation. These results suggest that both ubiquitin-dependent and -independent proteasomal degradation processes are operative in HBX turnover.
Collapse
|
21
|
Hsp40 facilitates nuclear import of the human immunodeficiency virus type 2 Vpx-mediated preintegration complex. J Virol 2007; 82:1229-37. [PMID: 18032501 DOI: 10.1128/jvi.00540-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) Vpx is required for nuclear translocation of the viral preintegration complex (PIC) in quiescent cells. In order to decipher the mechanism of action of Vpx, a cDNA library was screened with the yeast two-hybrid assay, resulting in the identification of heat shock protein 40, Hsp40/DnaJB6, as a Vpx-interactive protein. Interaction with Vpx was confirmed by glutathione S-transferase (GST) pull-down and coimmunoprecipitation assays. Overexpression of Hsp40/DnaJB6 enhanced Vpx nuclear import, whereas overexpression of a nuclear localization mutant of Hsp40/DnaJB6 (H31Q) or down-regulation of Hsp40/DnaJB6 by small interfering RNA (siRNA) reduced the nuclear import of Vpx. Hsp40/DnaJB6 competed with the Pr55(Gag) precursor protein for the binding of Vpx and incorporation into virus-like particles. Overexpression of Hsp40/DnaJB6 promoted viral PIC nuclear import, whereas siRNA down-regulation of Hsp40/DnaJB6 inhibited PIC nuclear import. These results demonstrate a role for Hsp40/DnaJB6 in the regulation of HIV-2 PIC nuclear transport.
Collapse
|