1
|
Heparin: An essential drug for modern medicine. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:1-19. [PMID: 31030744 DOI: 10.1016/bs.pmbts.2019.02.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Heparin is a life-saving drug, which belongs to few clinically used drugs without defined molecular structures in modern medicine. Heparin is the mostly negatively charged biopolymer with a broad distributions in molecular weight, charge density, and biological activities. Heparin is mainly composed of repeating trisulfated disaccharide units, which is made by mast cells that are enriched in the intestines, lungs or livers of animals. Porcine intestines and bovine lungs are two mostly used sources for heparin isolation. Heparin is well known for its anticoagulant and antithrombotic pharmacological effects. The anticoagulant activity of heparin is attributable to a 3-O-sulfate and 6-O-sulfate containing pentasaccharide sequence or a minimum eight-repeating disaccharide units containing the pentasaccharide sequence that catalyzes the suicidal inactivation of factor Xa or thrombin by a serpin or serine protease inhibitor named antithrombin III, respectively. Thus, heparin is responsible for the simultaneous inhibition of both thrombin generation and thrombin activity in the blood circulation. Moreover, heparin has many pharmacological properties such as anti-inflammatory, anti-viral, anti-angiogenesis, anti-neoplastic, and anti-metastatic effects though high affinity interactions with a variety of proteases, protease inhibitors, chemokines, cytokines, growth factors, and their respective receptors. The one drug multiple molecular targeting properties make heparin a very special drug in that various clinical trials are still conducting worldwide even 100 years after its discovery. In this review, we will summarize the structure-function relationship and the molecular mechanisms of heparin. We will also provide an overview of different clinical and potential clinical applications of heparin.
Collapse
|
2
|
VEGF Upregulation in Viral Infections and Its Possible Therapeutic Implications. Int J Mol Sci 2018; 19:ijms19061642. [PMID: 29865171 PMCID: PMC6032371 DOI: 10.3390/ijms19061642] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022] Open
Abstract
Several viruses are recognized as the direct or indirect causative agents of human tumors and other severe human diseases. Vascular endothelial growth factor (VEGF) is identified as a principal proangiogenic factor that enhances the production of new blood vessels from existing vascular network. Therefore, oncogenic viruses such as Kaposi’s sarcoma herpesvirus (KSHV) and Epstein-Barr virus (EBV) and non-oncogenic viruses such as herpes simplex virus (HSV-1) and dengue virus, which lack their own angiogenic factors, rely on the recruitment of cellular genes for angiogenesis in tumor progression or disease pathogenesis. This review summarizes how human viruses exploit the cellular signaling machinery to upregulate the expression of VEGF and benefit from its physiological functions for their own pathogenesis. Understanding the interplay between viruses and VEGF upregulation will pave the way to design targeted and effective therapeutic approaches for viral oncogenesis and severe diseases.
Collapse
|
3
|
Nakamura H, Murakami T, Imamura T, Toriba M, Chijiwa T, Ohno M, Oda-Ueda N. Discovery of a novel vascular endothelial growth factor (VEGF) with no affinity to heparin in Gloydius tsushimaensis venom. Toxicon 2014; 86:107-15. [DOI: 10.1016/j.toxicon.2014.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 05/08/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
|
4
|
Influence of a layer-by-layer-assembled multilayer of anti-CD34 antibody, vascular endothelial growth factor, and heparin on the endothelialization and anticoagulation of titanium surface. J Biomed Mater Res A 2012; 101:1144-57. [DOI: 10.1002/jbm.a.34392] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Revised: 07/08/2012] [Accepted: 07/23/2012] [Indexed: 12/12/2022]
|
5
|
McCleary RJR, Kini RM. Non-enzymatic proteins from snake venoms: a gold mine of pharmacological tools and drug leads. Toxicon 2012; 62:56-74. [PMID: 23058997 DOI: 10.1016/j.toxicon.2012.09.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Non-enzymatic proteins from snake venoms play important roles in the immobilization of prey, and include some large and well-recognized families of toxins. The study of such proteins has expanded not only our understanding of venom toxicity, but also the knowledge of normal and disease states in human physiology. In many cases their characterization has led to the development of powerful research tools, diagnostic techniques, and pharmaceutical drugs. They have further yielded basic understanding of protein structure-function relationships. Therefore a number of studies on these non-enzymatic proteins had major impact on several life science and medical fields. They have led to life-saving therapeutics, the Nobel prize, and development of molecular scalpels for elucidation of ion channel function, vasoconstriction, complement system activity, platelet aggregation, blood coagulation, signal transduction, and blood pressure regulation. Here, we identify research papers that have had significant impact on the life sciences. We discuss how these findings have changed the course of science, and have also included the personal recollections of the original authors of these studies. We expect that this review will provide impetus for even further exciting research on novel toxins yet to be discovered.
Collapse
Affiliation(s)
- Ryan J R McCleary
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | | |
Collapse
|
6
|
Inoshima Y, Ishiguro N. Molecular and biological characterization of vascular endothelial growth factor of parapoxviruses isolated from wild Japanese serows (Capricornis crispus). Vet Microbiol 2010; 140:63-71. [DOI: 10.1016/j.vetmic.2009.07.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 07/18/2009] [Accepted: 07/31/2009] [Indexed: 11/30/2022]
|
7
|
Yamazaki Y, Matsunaga Y, Tokunaga Y, Obayashi S, Saito M, Morita T. Snake venom Vascular Endothelial Growth Factors (VEGF-Fs) exclusively vary their structures and functions among species. J Biol Chem 2009; 284:9885-91. [PMID: 19208624 DOI: 10.1074/jbc.m809071200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Vascular endothelial growth factor (VEGF-A) and its family proteins are crucial regulators of blood vessel formation and vascular permeability. Snake venom has recently been shown to be an exogenous source of unique VEGF (known as VEGF-F), and now, two types of VEGF-F with distinct biochemical properties have been reported. Here, we show that VEGF-Fs (venom-type VEGFs) are highly variable in structure and function among species, in contrast to endogenous tissue-type VEGFs (VEGF-As) of snakes. Although the structures of tissue-type VEGFs are highly conserved among venomous snake species and even among all vertebrates, including humans, those of venom-type VEGFs are extensively variegated, especially in the regions around receptor-binding loops and C-terminal putative coreceptor-binding regions, indicating that highly frequent variations are located around functionally key regions of the proteins. Genetic analyses suggest that venom-type VEGF gene may have developed from a tissue-type gene and that the unique sequence of its C-terminal region was generated by an alteration in the translation frame in the corresponding exons. We further verified that a novel venom-type VEGF from Bitis arietans displays unique properties distinct from already known VEGFs. Our results may provide evidence of a novel mechanism causing the generation of multiple snake toxins and also of a new model of molecular evolution.
Collapse
Affiliation(s)
- Yasuo Yamazaki
- Department of Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Cébe-Suarez S, Grünewald FS, Jaussi R, Li X, Claesson-Welsh L, Spillmann D, Mercer AA, Prota AE, Ballmer-Hofer K. Orf virus VEGF-E NZ2 promotes paracellular NRP-1/VEGFR-2 coreceptor assembly via the peptide RPPR. FASEB J 2008; 22:3078-86. [PMID: 18467594 DOI: 10.1096/fj.08-107219] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Vascular endothelial growth factors (VEGFs) interact with the receptor tyrosine kinases (RTKs) VEGFR-1, -2, and -3; neuropilins (NRPs); and heparan sulfate (HS) proteoglycans. VEGF RTKs signal to downstream targets upon ligand-induced tyrosine phosphorylation, while NRPs and HS act as coreceptors that lack enzymatic activity yet modulate signal output by VEGF RTKs. VEGFs exist in various isoforms with distinct receptor specificity and biological activity. Here, a series of mammalian VEGF-A splice variants and orf virus VEGF-Es, as well as chimeric and mutant VEGF variants, were characterized to determine the motifs required for binding to NRP-1 in the absence (VEGF-E) or presence (VEGF-A(165)) of an HS-binding sequence. We identified the carboxyterminal peptides RPPR and DKPRR as the NRP-1 binding motifs of VEGF-E and VEGF-A, respectively. RPPR had significantly higher affinity for NRP-1 than DKPRR. VEGFs containing an RPPR motif promoted HS-independent coreceptor complex assembly between VEGFR-2 and NRP-1, independent of whether these receptors were expressed on the same or separate cells grown in cocultures. Functional studies showed that stable coreceptor assembly by VEGF correlated with its ability to promote vessel formation in an embryoid body angiogenesis assay.
Collapse
Affiliation(s)
- Stéphanie Cébe-Suarez
- Paul Scherrer Institut, Laboratory of Biomolecular Research, Molecular Cell Biology, 5232 Villigen-PSI Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang ZL, Xu XP, He BL, Weng SP, Xiao J, Wang L, Lin T, Liu X, Wang Q, Yu XQ, He JG. Infectious spleen and kidney necrosis virus ORF48R functions as a new viral vascular endothelial growth factor. J Virol 2008; 82:4371-83. [PMID: 18305039 PMCID: PMC2293046 DOI: 10.1128/jvi.02027-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 02/01/2008] [Indexed: 01/15/2023] Open
Abstract
Infectious spleen and kidney necrosis virus (ISKNV) causes a pandemic and serious disease in fish. Infection by ISKNV causes epidermal lesions, in which petechial hemorrhages and abdominal edema are prominent features. ISKNV ORF48R contains a domain similar to that of the platelet-derived growth factor and vascular endothelial growth factor (VEGF) families of proteins. ISKNV ORF48R showed higher similarity to the VEGFs encoded by Megalocytivirus and Parapoxvirus than to those encoded in fish and mammals. We used zebrafish as a model and constructed a recombinant plasmid containing the DNA sequence of ISKNV ORF48R to study ISKNV infection. The plasmid was microinjected into zebrafish embryos at the one-cell stage. Overexpression of the ISKNV ORF48R gene results in pericardial edema and dilation at the tail region of zebrafish embryos, suggesting that ISKNV ORF48R induces vascular permeability. ISKNV ORF48R is also able to stimulate a striking expression of flk1 in the zebrafish dorsal aorta and the axial vein. Furthermore, ISKNV ORF48R, while cooperating with zebrafish VEGF(121), can stimulate more striking expression of flk1 than can either ISKNV ORF48R or zebrafish VEGF(121) alone. However, decreased expression of FLK-1 by gene knockdown results in the disappearance of pericardial edema and dilation at the tail region of zebrafish embryos induced by overexpression of ISKNV ORF48R in the early stages of embryonic development.
Collapse
Affiliation(s)
- Zi-Liang Wang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen (Zhongshan) University, 135 Xingang Road West, Guangzhou 510275, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wise LM, Savory LJ, Dryden NH, Whelan EM, Fleming SB, Mercer AA. Major amino acid sequence variants of viral vascular endothelial growth factor are functionally equivalent during Orf virus infection of sheep skin. Virus Res 2007; 128:115-25. [PMID: 17524510 DOI: 10.1016/j.virusres.2007.04.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 04/12/2007] [Accepted: 04/16/2007] [Indexed: 12/20/2022]
Abstract
Orf virus infection causes a contagious pustular dermatitis characterized by extensive vascular changes that have been linked to a virally encoded vascular endothelial growth factor (VEGF). The VEGF genes of different strains of orf virus can vary extensively in amino acid sequence. Functional analyses of two major variant VEGF proteins derived from orf virus strains, NZ2 and NZ7, have revealed quantitative differences in biological activities and receptor binding specificities suggesting that these viral VEGFs could have different roles in the pathology of orf virus infection. In this study, we show that both orf virus strains express equivalent levels of the viral VEGF variants and during infection of sheep skin induce comparable levels of vascularization, edema, epidermal rete ridge and scab formation. Recombinants of orf virus NZ2 and NZ7 strains in which the variant VEGF genes were disrupted showed markedly reduced vascular changes and evidence of partially attenuated viral growth. These results demonstrate that despite substantial differences in sequence and biological activity in vitro, these virally expressed virulence factors are functionally equivalent in their natural host, contributing equally to orf virus pathology.
Collapse
Affiliation(s)
- Lyn M Wise
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| | | | | | | | | | | |
Collapse
|
11
|
Inder MK, Ueda N, Mercer AA, Fleming SB, Wise LM. Bovine papular stomatitis virus encodes a functionally distinct VEGF that binds both VEGFR-1 and VEGFR-2. J Gen Virol 2007; 88:781-791. [PMID: 17325350 DOI: 10.1099/vir.0.82582-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bovine papular stomatitis virus (BPSV), a member of the genus Parapoxvirus, causes proliferative dermatitis in cattle and humans. Other species of the genus cause similar lesions, the nature of which has been attributed, at least in part, to a viral-encoded vascular endothelial growth factor (VEGF) that induces vascularization and dermal oedema through VEGF receptor-2 (VEGFR-2). The results of this study showed that BPSV strain V660 encodes a novel VEGF and that the predicted BPSV protein showed only 33-52% amino acid identity to VEGFs encoded by the other species of the genus. BPSV VEGF showed higher identity to mammalian VEGF-A (51%) than the other parapoxviral VEGFs (31-46%). Assays of the purified BPSV VEGF (BPSVV660VEGF) demonstrated that it was also functionally more similar to VEGF-A, as it showed significant binding to VEGFR-1 and induced monocyte migration. Like VEGF-A and the other viral VEGFs, BPSVV660VEGF bound VEGFR-2 with high affinity. Sequence analysis and structural modelling of BPSVV660VEGF revealed specific residues, outside the known receptor-binding face, that are predicted either to influence VEGF structure or to mediate binding directly to the VEGFRs. These results indicate that BPSVV660VEGF is a biologically active member of the VEGF family and that, via its interaction with VEGFR-2, it is likely to contribute to the proliferative and highly vascularized nature of BPSV lesions. This is also the first example of a viral VEGF acting via VEGFR-1 and influencing haematopoietic cell function. These data suggest that BPSVV660VEGF is an evolutionary and functional intermediate between VEGF-A and the other parapoxviral VEGFs.
Collapse
Affiliation(s)
- Marie K Inder
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Norihito Ueda
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Andrew A Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Stephen B Fleming
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Lyn M Wise
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand
| |
Collapse
|
12
|
Rich RL, Myszka DG. Survey of the year 2006 commercial optical biosensor literature. J Mol Recognit 2007; 20:300-66. [DOI: 10.1002/jmr.862] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|