1
|
Kaur S, Rajoria P, Chopra M. HDAC6: A unique HDAC family member as a cancer target. Cell Oncol (Dordr) 2022; 45:779-829. [PMID: 36036883 DOI: 10.1007/s13402-022-00704-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND HDAC6, a structurally and functionally distinct member of the HDAC family, is an integral part of multiple cellular functions such as cell proliferation, apoptosis, senescence, DNA damage and genomic stability, all of which when deregulated contribute to carcinogenesis. Among several HDAC family members known so far, HDAC6 holds a unique position. It differs from the other HDAC family members not only in terms of its subcellular localization, but also in terms of its substrate repertoire and hence cellular functions. Recent findings have considerably expanded the research related to the substrate pool, biological functions and regulation of HDAC6. Studies in HDAC6 knockout mice highlighted the importance of HDAC6 as a cell survival player in stressful situations, making it an important anticancer target. There is ample evidence stressing the importance of HDAC6 as an anti-cancer synergistic partner of many chemotherapeutic drugs. HDAC6 inhibitors have been found to enhance the effectiveness of conventional chemotherapeutic drugs such as DNA damaging agents, proteasome inhibitors and microtubule inhibitors, thereby highlighting the importance of combination therapies involving HDAC6 inhibitors and other anti-cancer agents. CONCLUSIONS Here, we present a review on HDAC6 with emphasis on its role as a critical regulator of specific physiological cellular pathways which when deregulated contribute to tumorigenesis, thereby highlighting the importance of HDAC6 inhibitors as important anticancer agents alone and in combination with other chemotherapeutic drugs. We also discuss the synergistic anticancer effect of combination therapies of HDAC6 inhibitors with conventional chemotherapeutic drugs.
Collapse
Affiliation(s)
- Sumeet Kaur
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Prerna Rajoria
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Madhu Chopra
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
2
|
Zimmermann RC, Sardiu ME, Manton CA, Miah MS, Banks CAS, Adams MK, Koestler DC, Hurst DR, Edmonds MD, Washburn MP, Welch DR. Perturbation of BRMS1 interactome reveals pathways that impact metastasis. PLoS One 2021; 16:e0259128. [PMID: 34788285 PMCID: PMC8598058 DOI: 10.1371/journal.pone.0259128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/12/2021] [Indexed: 11/25/2022] Open
Abstract
Breast Cancer Metastasis Suppressor 1 (BRMS1) expression is associated with longer patient survival in multiple cancer types. Understanding BRMS1 functionality will provide insights into both mechanism of action and will enhance potential therapeutic development. In this study, we confirmed that the C-terminus of BRMS1 is critical for metastasis suppression and hypothesized that critical protein interactions in this region would explain its function. Phosphorylation status at S237 regulates BRMS1 protein interactions related to a variety of biological processes, phenotypes [cell cycle (e.g., CDKN2A), DNA repair (e.g., BRCA1)], and metastasis [(e.g., TCF2 and POLE2)]. Presence of S237 also directly decreased MDA-MB-231 breast carcinoma migration in vitro and metastases in vivo. The results add significantly to our understanding of how BRMS1 interactions with Sin3/HDAC complexes regulate metastasis and expand insights into BRMS1's molecular role, as they demonstrate BRMS1 C-terminus involvement in distinct protein-protein interactions.
Collapse
Affiliation(s)
- Rosalyn C. Zimmermann
- Department of Cancer Biology, The Kansas University Medical Center, Kansas City, KS, United States of America
| | - Mihaela E. Sardiu
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Biostatistics and Data Science, The Kansas University Medical Center, Kansas City, KS, United States of America
- The University of Kansas Cancer Center, Kansas City, KS, United States of America
| | - Christa A. Manton
- Department of Cancer Biology, The Kansas University Medical Center, Kansas City, KS, United States of America
- Pathology Department, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Biology, Baker University, Baldwin City, KS, United States of America
| | - Md. Sayem Miah
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Biochemistry and Molecular Biology, University of Arkansas for Health Sciences, Little Rock, AR, United States of America
| | - Charles A. S. Banks
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Mark K. Adams
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Devin C. Koestler
- Department of Biostatistics and Data Science, The Kansas University Medical Center, Kansas City, KS, United States of America
- The University of Kansas Cancer Center, Kansas City, KS, United States of America
| | - Douglas R. Hurst
- Pathology Department, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Mick D. Edmonds
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Michael P. Washburn
- Department of Cancer Biology, The Kansas University Medical Center, Kansas City, KS, United States of America
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- The University of Kansas Cancer Center, Kansas City, KS, United States of America
| | - Danny R. Welch
- Department of Cancer Biology, The Kansas University Medical Center, Kansas City, KS, United States of America
- The University of Kansas Cancer Center, Kansas City, KS, United States of America
| |
Collapse
|
3
|
Dawood M, Fleischer E, Klinger A, Bringmann G, Shan L, Efferth T. Inhibition of cell migration and induction of apoptosis by a novel class II histone deacetylase inhibitor, MCC2344. Pharmacol Res 2020; 160:105076. [PMID: 32659428 DOI: 10.1016/j.phrs.2020.105076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022]
Abstract
Epigenetic modifiers provide a new target for the development of anti-cancer drugs. The eraser histone deacetylase 6 (HDAC6) is a class IIb histone deacetylase that targets various non-histone proteins such as transcription factors, nuclear receptors, cytoskeletal proteins, DNA repair proteins, and molecular chaperones. Therefore, it became an attractive target for cancer treatment. In this study, virtual screening was applied to the MicroCombiChem database with 1162 drug-like compounds to identify new HDAC6 inhibitors. Five compounds were tested in silico and in vitro as HDAC6 inhibitors. Both analyses revealed 1-cyclohexene-1-carboxamide, 2-hydroxy-4,4-dimethyl-N-1-naphthalenyl-6-oxo- (MCC2344) as the best HDAC6 inhibitor among the five ligands. The binding affinity of MCC2344 to HDAC6 was further confirmed by microscale thermophoresis. Additionally, the anti-cancer activity of MCC2344 was tested in several tumor cell lines. Leukemia cells were the most sensitive cells towards MCC2344, particularly the P-glycoprotein-overexpressing multidrug-resistant cell line CEM/ADR5000 exhibited remarkable collateral sensitivity towards MCC2344. Transcriptome analysis using microarray hybridization was performed for investigating downstream mechanisms of action of MCC2344 in leukemia cells. MCC2344 affected microtubule dynamics and suppressed cell migration in the wound healing assay as well as in a spheroid model by hyper-acetylation of tubulin and HSP-90. MCC2344 induced cell death in CEM/ADR5000 cells by activation of PARP, caspase-3, and p21 in addition to the downregulation of p62. MCC2344 significantly inhibited tumor growth in vivo in zebrafish larvae without mortality until 20 pM. We propose MCC2344 as a novel HDAC6 inhibitor for cancer treatment.
Collapse
Affiliation(s)
- Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany; Department of Molecular Biology, Faculty of Medical Laboratory Sciences, Al-Neelain University, Khartoum, Sudan
| | | | | | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074, Würzburg, Germany
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
4
|
Basha O, Mauer O, Simonovsky E, Shpringer R, Yeger-Lotem E. ResponseNet v.3: revealing signaling and regulatory pathways connecting your proteins and genes across human tissues. Nucleic Acids Res 2020; 47:W242-W247. [PMID: 31114913 PMCID: PMC6602570 DOI: 10.1093/nar/gkz421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/23/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022] Open
Abstract
ResponseNet v.3 is an enhanced version of ResponseNet, a web server that is designed to highlight signaling and regulatory pathways connecting user-defined proteins and genes by using the ResponseNet network optimization approach (http://netbio.bgu.ac.il/respnet). Users run ResponseNet by defining source and target sets of proteins, genes and/or microRNAs, and by specifying a molecular interaction network (interactome). The output of ResponseNet is a sparse, high-probability interactome subnetwork that connects the two sets, thereby revealing additional molecules and interactions that are involved in the studied condition. In recent years, massive efforts were invested in profiling the transcriptomes of human tissues, enabling the inference of human tissue interactomes. ResponseNet v.3 expands ResponseNet2.0 by harnessing ∼11,600 RNA-sequenced human tissue profiles made available by the Genotype-Tissue Expression consortium, to support context-specific analysis of 44 human tissues. Thus, ResponseNet v.3 allows users to illuminate the signaling and regulatory pathways potentially active in the context of a specific tissue, and to compare them with active pathways in other tissues. In the era of precision medicine, such analyses open the door for tissue- and patient-specific analyses of pathways and diseases.
Collapse
Affiliation(s)
- Omer Basha
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences
| | - Omry Mauer
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences
| | - Eyal Simonovsky
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences
| | - Rotem Shpringer
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
5
|
Neuromuscular Diseases Due to Chaperone Mutations: A Review and Some New Results. Int J Mol Sci 2020; 21:ijms21041409. [PMID: 32093037 PMCID: PMC7073051 DOI: 10.3390/ijms21041409] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle and the nervous system depend on efficient protein quality control, and they express chaperones and cochaperones at high levels to maintain protein homeostasis. Mutations in many of these proteins cause neuromuscular diseases, myopathies, and hereditary motor and sensorimotor neuropathies. In this review, we cover mutations in DNAJB6, DNAJB2, αB-crystallin (CRYAB, HSPB5), HSPB1, HSPB3, HSPB8, and BAG3, and discuss the molecular mechanisms by which they cause neuromuscular disease. In addition, previously unpublished results are presented, showing downstream effects of BAG3 p.P209L on DNAJB6 turnover and localization.
Collapse
|
6
|
Hsieh YL, Tu HJ, Pan SL, Liou JP, Yang CR. Anti-metastatic activity of MPT0G211, a novel HDAC6 inhibitor, in human breast cancer cells in vitro and in vivo. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:992-1003. [DOI: 10.1016/j.bbamcr.2019.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 02/18/2019] [Accepted: 03/08/2019] [Indexed: 12/12/2022]
|
7
|
Pantoja-Uceda D, Neira JL, Contreras LM, Manton CA, Welch DR, Rizzuti B. The isolated C-terminal nuclear localization sequence of the breast cancer metastasis suppressor 1 is disordered. Arch Biochem Biophys 2019; 664:95-101. [PMID: 30707944 DOI: 10.1016/j.abb.2019.01.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 02/02/2023]
Abstract
BRMS1 is a 246-residue-long protein belonging to the family of metastasis suppressors. It is a predominantly nuclear protein, although it can also function in the cytoplasm. At its C terminus, it has a region that is predicted to be a nuclear localization sequence (NLS); this region, NLS2, is necessary for metastasis suppression. We have studied in vitro and in silico the conformational preferences in aqueous solution of a peptide (NLS2-pep) that comprises the NLS2 of BRMS1, to test whether it has a preferred conformation that could be responsible for its function. Our spectroscopic (far-UV circular dichroism, DOSY-NMR and 2D-NMR) and computational (all-atom molecular dynamics) results indicate that NLS2-pep was disordered in aqueous solution. Furthermore, it did not acquire a structure even when experiments were performed in a more hydrophobic environment, such as the one provided by 2,2,2-trifluoroethanol (TFE). The hydrodynamic radius of the peptide in water was identical to that of a random-coil sequence, in agreement with both our molecular simulations and other theoretical predictions. Thus, we suggest that NLS2 is a disordered region, with non pre-formed structure, that participates in metastasis suppression.
Collapse
Affiliation(s)
| | - José L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBSC-CSIC-BIFI, Universidad de Zaragoza, 50009, Zaragoza, Spain.
| | - Lellys M Contreras
- Center for Environmental Biology and Chemistry Research, Facultad Experimental de Ciencias y Tecnología, Universidad de Carabobo, 2001, Valencia, Venezuela
| | - Christa A Manton
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Danny R Welch
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA; The University of Kansas Cancer Center, Kansas City, KS, 66160, USA
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, 87036, Rende, Italy.
| |
Collapse
|
8
|
Abreu PL, Ferreira LMR, Cunha-Oliveira T, Alpoim MC, Urbano AM. HSP90: A Key Player in Metal-Induced Carcinogenesis? HEAT SHOCK PROTEINS 2019. [DOI: 10.1007/978-3-030-23158-3_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Additive effect of metastamiR-193b and breast cancer metastasis suppressor 1 as an anti-metastatic strategy. Breast Cancer 2018; 26:215-228. [PMID: 30284194 DOI: 10.1007/s12282-018-0915-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 09/21/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND It has been reported that enhancing the cellular levels of miR-193b as well as breast cancer-metastasis-suppressor-1 (BRMS1) protein is associated with diminished metastatic characteristics in breast cancer. In view of these facts, as a new therapeutic intervention, we employed a restoration-based strategy using both miR-193b-3p mimic and optimized BRMS1 in the context of a chimeric construct. METHODS miR-193b-3p and BRMS1 genes were cloned and the resulting plasmids were transfected into the MDA-MB231, MCF-7 and MCF-10A cell lines. microRNA expression levels were assessed by rea time PCR using LNA-primer and protein expression was confirmed by western blot method. Then, apoptosis, MTT, colony formation and invasion assays were carried out. RESULTS The expression levels of miR-146a, miR-146b and miR-373 were up-regulated, while the miR-520c, miR-335 and miR-10b were down-regulated following the exogenous BRMS1 expression. The exogenous over-expression of BRMS1 was associated with higher amounts of endogenous miR-193b-3p expression and enabled more efficient targeting of the 3'UTR of uPA. Although, miR-193b-3p and BRMS1 are individually capable of suppressing breast cancer cell growth, migration and invasion abilities, their cistronic expression was capable of enhancing the ability to repress the breast cancer cells invasion. CONCLUSIONS Our results collectively indicated the existence of an additive anti-metastatic effect between miR-193b-3p and BRMS1. Moreover, it has been hypothesized that the exogenous expression of a protein can effect endogenous expression of non-relevant microRNA. Our findings provide new grounds for miR-restoration therapy applications as an amenable anti-metastatic strategy.
Collapse
|
10
|
Liu X, Ehmed E, Li B, Dou J, Qiao X, Jiang W, Yang X, Qiao S, Wu Y. Breast cancer metastasis suppressor 1 modulates SIRT1-dependent p53 deacetylation through interacting with DBC1. Am J Cancer Res 2016; 6:1441-1449. [PMID: 27429856 PMCID: PMC4937745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/22/2016] [Indexed: 06/06/2023] Open
Abstract
Breast cancer metastasis suppressor 1 (BRMS1) is a specific tumor metastasis suppressor implicated in the regulation of chromatin modification and gene transcription. However, the molecular mechanism of BRMS1 remains to be elucidated. Here, we report that DBC1 (deleted in breast cancer 1), is a novel interacting protein of BRMS1. The imperfect leucine zipper motifs of BRMS1 and the N-terminal domain of DBC1 are required for the interaction. DBC1 is identified as an important negative regulator of SIRT1's activity and genotoxic stress response. We demonstrated that BRMS1 is able to interrupt endogenous DBC1-SIRT1 association. Consistently, SIRT1-dependent p53 acetylation under genotoxic stress is also affected by BRMS1. Overall, our results identify BRMS1 as a novel regulator of DBC1-SIRT1 complex and SIRT1-dependent p53 deacetylation.
Collapse
Affiliation(s)
- Xueni Liu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University Shanghai 200438, P. R. China
| | - Elphire Ehmed
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University Shanghai 200438, P. R. China
| | - Boyao Li
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University Shanghai 200438, P. R. China
| | - Jianming Dou
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University Shanghai 200438, P. R. China
| | - Xiaojing Qiao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University Shanghai 200438, P. R. China
| | - Wenyong Jiang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University Shanghai 200438, P. R. China
| | - Xi Yang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University Shanghai 200438, P. R. China
| | - Shouyi Qiao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University Shanghai 200438, P. R. China
| | - Yanhua Wu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University Shanghai 200438, P. R. China
| |
Collapse
|
11
|
Welch D, Manton C, Hurst D. Breast Cancer Metastasis Suppressor 1 (BRMS1): Robust Biological and Pathological Data, But Still Enigmatic Mechanism of Action. Adv Cancer Res 2016; 132:111-37. [PMID: 27613131 DOI: 10.1016/bs.acr.2016.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metastasis requires coordinated expression of multiple genetic cassettes, often via epigenetic regulation of gene transcription. BRMS1 blocks metastasis, but not orthotopic tumor growth in multiple tumor types, presumably via SIN3 chromatin remodeling complexes. Although there is an abundance of strong data supporting BRMS1 as a metastasis suppressor, the mechanistic data directly connecting molecular pathways with inhibition of particular steps in metastasis are not well defined. In this review, the data for BRMS1-mediated metastasis suppression in multiple tumor types are discussed along with the steps in metastasis that are inhibited.
Collapse
|
12
|
Putcha P, Yu J, Rodriguez-Barrueco R, Saucedo-Cuevas L, Villagrasa P, Murga-Penas E, Quayle SN, Yang M, Castro V, Llobet-Navas D, Birnbaum D, Finetti P, Woodward WA, Bertucci F, Alpaugh ML, Califano A, Silva J. HDAC6 activity is a non-oncogene addiction hub for inflammatory breast cancers. Breast Cancer Res 2015; 17:149. [PMID: 26643555 PMCID: PMC4672555 DOI: 10.1186/s13058-015-0658-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/25/2015] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Inflammatory breast cancer (IBC) is the most lethal form of breast cancers with a 5-year survival rate of only 40 %. Despite its lethality, IBC remains poorly understood which has greatly limited its therapeutic management. We thus decided to utilize an integrative functional genomic strategy to identify the Achilles' heel of IBC cells. METHODS We have pioneered the development of genetic tools as well as experimental and analytical strategies to perform RNAi-based loss-of-function studies at a genome-wide level. Importantly, we and others have demonstrated that these functional screens are able to identify essential functions linked to certain cancer phenotypes. Thus, we decided to use this approach to identify IBC specific sensitivities. RESULTS We identified and validated HDAC6 as a functionally necessary gene to maintain IBC cell viability, while being non-essential for other breast cancer subtypes. Importantly, small molecule inhibitors for HDAC6 already exist and are in clinical trials for other tumor types. We thus demonstrated that Ricolinostat (ACY1215), a leading HDAC6 inhibitor, efficiently controls IBC cell proliferation both in vitro and in vivo. Critically, functional HDAC6 dependency is not associated with genomic alterations at its locus and thus represents a non-oncogene addiction. Despite HDAC6 not being overexpressed, we found that its activity is significantly higher in IBC compared to non-IBC cells, suggesting a possible rationale supporting the observed dependency. CONCLUSION Our finding that IBC cells are sensitive to HDAC6 inhibition provides a foundation to rapidly develop novel, efficient, and well-tolerated targeted therapy strategies for IBC patients.
Collapse
Affiliation(s)
- Preeti Putcha
- Herbert Irving Comprehensive Cancer Center, Columbia University, 1130 St. Nicholas Avenue, New York, NY, 10032, USA
| | - Jiyang Yu
- Department of Biomedical Informatics, Department of Systems Biology, Center for Computational Biology and Bioinformatics, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
| | - Ruth Rodriguez-Barrueco
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA.,Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laura Saucedo-Cuevas
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Patricia Villagrasa
- Department of Pathology, Columbia University Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Eva Murga-Penas
- Department of Pathology, Columbia University Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Steven N Quayle
- Acetylon Pharmaceuticals, Inc., 70 Fargo St, Suite 205, Boston, MA, 02210, USA
| | - Min Yang
- Acetylon Pharmaceuticals, Inc., 70 Fargo St, Suite 205, Boston, MA, 02210, USA
| | - Veronica Castro
- Department of Pathology, Columbia University Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - David Llobet-Navas
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Daniel Birnbaum
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Pascal Finetti
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Wendy A Woodward
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - François Bertucci
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Mary L Alpaugh
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Andrea Califano
- Department of Biomedical Informatics, Department of Systems Biology, Center for Computational Biology and Bioinformatics, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA. .,Department of Biochemistry and Molecular Biophysics, Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA. .,Herbert Irving Comprehensive Cancer Center, Columbia University, 1130 St. Nicholas Avenue, New York, NY, 10032, USA.
| | - Jose Silva
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA.
| |
Collapse
|
13
|
Vartholomaiou E, Echeverría PC, Picard D. Unusual Suspects in the Twilight Zone Between the Hsp90 Interactome and Carcinogenesis. Adv Cancer Res 2015; 129:1-30. [PMID: 26915999 DOI: 10.1016/bs.acr.2015.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The molecular chaperone Hsp90 has attracted a lot of interest in cancer research ever since cancer cells were found to be more sensitive to Hsp90 inhibition than normal cells. Why that is has remained a matter of debate and is still unclear. In addition to increased Hsp90 dependence for some mutant cancer proteins and modifications of the Hsp90 machinery itself, a number of other characteristics of cancer cells probably contribute to this phenomenon; these include aneuploidy and overall increased numbers and levels of defective and mutant proteins, which all contribute to perturbed proteostasis. Work over the last two decades has demonstrated that many cancer-related proteins are Hsp90 clients, and yet only few of them have been extensively investigated, selected either on the basis of their obvious function as cancer drivers or because they proved to be convenient biomarkers for monitoring the effects of Hsp90 inhibitors. The purpose of our review is to go beyond these "usual suspects." We established a workflow to select poorly studied proteins that are related to cancer processes and qualify as Hsp90 clients. By discussing and taking a fresh look at these "unusual suspects," we hope to stimulate others to revisit them as novel therapeutic targets or diagnostic markers.
Collapse
Affiliation(s)
| | - Pablo C Echeverría
- Département de Biologie Cellulaire, Université de Genève, Sciences III, Geneva, Switzerland
| | - Didier Picard
- Département de Biologie Cellulaire, Université de Genève, Sciences III, Geneva, Switzerland.
| |
Collapse
|
14
|
Fang TJ, Lin YZ, Liu CC, Lin CH, Li RN, Wu CC, Ou TT, Tsai WC, Yen JH. Methylation and gene expression of histone deacetylases 6 in systemic lupus erythematosus. Int J Rheum Dis 2015; 19:968-973. [PMID: 26461065 DOI: 10.1111/1756-185x.12783] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIM The purpose of this study is to investigate the role of methylation in the histone deacetylases 6 (HDAC6) promoter and HDAC6 messenger RNA (mRNA) expression in the pathogenesis of systemic lupus erythematosus (SLE). METHOD Direct bisulfite-polymerase chain reaction (PCR) sequencing was performed to detect the HDAC6 promoter methylation in 33 patients with SLE and 35 healthy controls. The HDAC6 mRNA expression was measured in 93 SLE patients and 84 healthy controls by using the method of quantitative real-time PCR. RESULTS This study demonstrated that the methylation rates at HDAC6-680, -660 and -658 were significantly increased in the SLE patients compared with healthy controls (P = 0.041, 0.034 and 0.029, respectively). The SLE patients also had lower HDAC6 mRNA expression than the controls (P = 0.031). However, there was no significant difference in HDAC6 mRNA expression between patients with active and inactive SLE. CONCLUSION The SLE patients had higher methylation in the HDAC6 promoter and lower HDAC6 mRNA expression than the controls. These changes may be related to the susceptibility of SLE. However, they are not associated with the disease activity of SLE.
Collapse
Affiliation(s)
- Tzu-Jung Fang
- Division of Geriatrics and Gerontology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yuan-Zhao Lin
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ching-Ching Liu
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chia-Hui Lin
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ruei-Nian Li
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Chin Wu
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Tsan-Teng Ou
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wen-Chan Tsai
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jeng-Hsien Yen
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
15
|
Revealing the Potential Pathogenesis of Glioma by Utilizing a Glioma Associated Protein-Protein Interaction Network. Pathol Oncol Res 2014; 21:455-62. [DOI: 10.1007/s12253-014-9848-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 09/19/2014] [Indexed: 12/18/2022]
|
16
|
Khotskaya YB, Beck BH, Hurst DR, Han Z, Xia W, Hung MC, Welch DR. Expression of metastasis suppressor BRMS1 in breast cancer cells results in a marked delay in cellular adhesion to matrix. Mol Carcinog 2013; 53:1011-26. [PMID: 24000122 DOI: 10.1002/mc.22068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/22/2013] [Accepted: 06/17/2013] [Indexed: 12/29/2022]
Abstract
Metastatic dissemination is a multi-step process that depends on cancer cells' ability to respond to microenvironmental cues by adapting adhesion abilities and undergoing cytoskeletal rearrangement. Breast Cancer Metastasis Suppressor 1 (BRMS1) affects several steps of the metastatic cascade: it decreases survival in circulation, increases susceptibility to anoikis, and reduces capacity to colonize secondary organs. In this report, BRMS1 expression is shown to not significantly alter expression levels of integrin monomers, while time-lapse and confocal microscopy revealed that BRMS1-expressing cells exhibited reduced activation of both β1 integrin and focal adhesion kinase, and decreased localization of these molecules to sites of focal adhesions. Short-term plating of BRMS1-expressing cells onto collagen or fibronectin markedly decreased cytoskeletal reorganization and formation of cellular adhesion projections. Under 3D culture conditions, BRMS1-expressing cells remained rounded and failed to reorganize their cytoskeleton and form invasive colonies. Taken together, BRMS1-expressing breast cancer cells are greatly attenuated in their ability to respond to microenvironment changes. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yekaterina B Khotskaya
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | | |
Collapse
|
17
|
Metastasis suppression by BRMS1 associated with SIN3 chromatin remodeling complexes. Cancer Metastasis Rev 2013; 31:641-51. [PMID: 22678236 DOI: 10.1007/s10555-012-9363-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Epigenetic regulation of gene transcription by histone modification and chromatin remodeling has been linked to many biological and pathological events including cancer metastasis. Breast cancer metastasis suppressor 1 (BRMS1) interacts with SIN3 chromatin remodeling complexes, and, upon forced expression in metastatic cells, a nearly complete suppression of metastasis is noted without preventing primary tumor growth. The data for BRMS1-mediated metastasis suppression and SIN3 interaction are clear; however, connecting the inhibition directly to the association of BRMS1 with SIN3 complexes is currently not well defined. Considering the recent advancements in developing epigenetic drugs for cancer therapy, an improved understanding of how the interactions between BRMS1 and SIN3 regulate the process of metastasis should lead to novel therapies specifically targeting the most deadly aspect of tumor progression. In this article, the data for BRMS1-mediated metastasis suppression are reviewed with a focus on how the SIN3 chromatin remodeling complexes may be functionally involved.
Collapse
|
18
|
HDAC6 and ovarian cancer. Int J Mol Sci 2013; 14:9514-35. [PMID: 23644884 PMCID: PMC3676797 DOI: 10.3390/ijms14059514] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 11/17/2022] Open
Abstract
The special class IIb histone deacetylase, HDAC6, plays a prominent role in many cellular processes related to cancer, including oncogenesis, the cell stress response, motility, and myriad signaling pathways. Many of the lessons learned from other cancers can be applied to ovarian cancer as well. HDAC6 interacts with diverse proteins such as HSP90, cortactin, tubulin, dynein, p300, Bax, and GRK2 in both the nucleus and cytoplasm to carry out these cancerous functions. Not all pro-cancer interactions of HDAC6 involve deacetylation. The idea of using HDAC6 as a target for cancer treatment continues to expand in recent years, and more potent and specific HDAC6 inhibitors are required to effectively down-regulate the tumor-prone cell signaling pathways responsible for ovarian cancer.
Collapse
|
19
|
Spínola-Amilibia M, Rivera J, Ortiz-Lombardía M, Romero A, Neira JL, Bravo J. BRMS151-98 and BRMS151-84 are crystal oligomeric coiled coils with different oligomerization states, which behave as disordered protein fragments in solution. J Mol Biol 2013; 425:2147-63. [PMID: 23500495 DOI: 10.1016/j.jmb.2013.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 01/09/2013] [Accepted: 03/05/2013] [Indexed: 01/12/2023]
Abstract
The breast cancer metastasis suppressor 1 (BRMS1) gene suppresses metastasis without affecting the primary tumor growth. Cellular localization of BRMS1 appears to be important for exerting its effects on metastasis inhibition. We recently described a nucleo-cytoplasmic shuttling for BRMS1 and identified a nuclear export signal within the N-terminal coiled coil. The structure of these regions shows an antiparallel coiled coil capable of oligomerizing, which compromises the accessibility to the nuclear export signal consensus residues. We have studied the structural and biophysical features of this region to further understand the contribution of the N-terminal coiled coil to the biological function of BRMS1. We have observed that residues 85 to 98 might be important in defining the oligomerization state of the BRMS1 N-terminal coiled coil. The fragments are mainly disordered in solution, with evidence of residual structure. In addition, we report the presence of a conformational dynamic equilibrium (oligomeric folded species ↔ oligomeric unfolded) in solution in the BRMS1 N-terminal coiled coil that might facilitate the nuclear export of BRMS1 to the cytoplasm.
Collapse
|
20
|
The C-terminal putative nuclear localization sequence of breast cancer metastasis suppressor 1, BRMS1, is necessary for metastasis suppression. PLoS One 2013; 8:e55966. [PMID: 23390556 PMCID: PMC3563580 DOI: 10.1371/journal.pone.0055966] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/04/2013] [Indexed: 12/19/2022] Open
Abstract
Breast cancer metastasis suppressor 1 (BRMS1) is a predominantly nuclear protein that suppresses metastasis in multiple human and murine carcinoma cell lines. BRMS1 interacts with several nuclear proteins including SIN3:HDAC chromatin remodeling complexes that are involved in repressing transcription. However, recent reports suggest BRMS1 may function in the cytoplasm. BRMS1 has two predicted nuclear localization sequences (NLS) that are located near the C-terminus (amino acids 198–205 and 238–244, NLS1 and NLS2 respectively). We hypothesized that nuclear localization sequences of BRMS1 were essential for BRMS1 mediated metastasis suppression. Replacement of NLS2 with NLS1 (BRMS1NLS1,1), truncation at 238 (BRMS1ΔNLS2), or switching the location of NLS1 and NLS2 (BRMS1NLS2,1) did not affect nuclear localization; but, replacement of NLS1 with NLS2 (BRMS1NLS2,2) or truncation at 197 (BRMS1ΔNLS which removes both NLS) promoted cytoplasmic localization. MDA-MB-231 human metastatic breast cancer cells transduced with BRMS1NLS1,1, BRMS1NLS2,2 or BRMS1NLS2,1 were evaluated for metastasis suppression in an experimental xenograft mouse model. Interestingly, while NLS2 was not necessary for nuclear localization, it was found to be important for metastasis suppression since BRMS1NLS2,2 suppressed metastasis by 85%. In contrast, BRMS1NLS2,1 and BRMS1NLS1,1 did not significantly suppress metastasis. Both BRMS1 and BRMS1NLS2,2 co-immunoprecipitated with SIN3A in the nucleus and cytoplasm; however, BRMS1NLS1,1 and BRMS1NLS2,1 were associated with SIN3A in the nucleus only. Moreover, BRMS1 and BRMS1NLS2,2, but not BRMS1NLS1,1 and BRMS1NLS2,1, down-regulated the pro-metastatic microRNA, miR-10b. Together, these data demonstrate an important role for NLS2 in the cytoplasm that is critical for metastasis suppression and is distinct from nuclear localization.
Collapse
|
21
|
Li Y, Shin D, Kwon SH. Histone deacetylase 6 plays a role as a distinct regulator of diverse cellular processes. FEBS J 2012. [PMID: 23181831 DOI: 10.1111/febs.12079] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Histone deacetylase (HDAC) 6 is the best-characterized class IIb deacetylase that regulates many important biological processes via the formation of complexes with its partner proteins. HDAC6 is important both for cytoplasmic and nuclear functions. Unlike other deacetylases, HDAC6 has unique substrate specificity for nonhistone proteins. Such diverse functions of HDAC6 suggest that it serves a potential therapeutic target for the treatment of a wide range of diseases. This therapeutic interest in HDAC6 stems from the observation that HDAC6 may be overexpressed or deregulated in various cancers, neurodegenerative diseases and inflammatory disorders. Despite extensive efforts, however, very few HDAC6-selective inhibitors have been identified and the precise structural determinants remain undefined. Future efforts aiming to better define the structure and function of HDAC6 should provide the basis for the discovery of novel effective inhibitors. In this review, we focus on recent studies that highlight the importance of HDAC6-mediated biological processes, disease mechanisms and HDAC6-selective inhibitors.
Collapse
Affiliation(s)
- Yingxiu Li
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | | | | |
Collapse
|
22
|
Andrews JF, Sykora LJ, Letostak TB, Menezes ME, Mitra A, Barik S, Shevde LA, Samant RS. Cellular stress stimulates nuclear localization signal (NLS) independent nuclear transport of MRJ. Exp Cell Res 2012; 318:1086-93. [PMID: 22504047 DOI: 10.1016/j.yexcr.2012.03.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 03/12/2012] [Accepted: 03/23/2012] [Indexed: 12/14/2022]
Abstract
HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington's, Parkinson's diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies imply that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S).
Collapse
Affiliation(s)
- Joel F Andrews
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Slipicevic A, Holm R, Emilsen E, Ree Rosnes AK, Welch DR, Mælandsmo GM, Flørenes VA. Cytoplasmic BRMS1 expression in malignant melanoma is associated with increased disease-free survival. BMC Cancer 2012; 12:73. [PMID: 22356677 PMCID: PMC3341185 DOI: 10.1186/1471-2407-12-73] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 02/22/2012] [Indexed: 12/31/2022] Open
Abstract
Background/aims Breast cancer metastasis suppressor 1 (BRMS1) blocks metastasis in melanoma xenografts; however, its usefulness as a biomarker in human melanomas has not been widely studied. The goal was to measure BRMS1 expression in benign nevi, primary and metastatic melanomas and evaluate its impact on disease progression and prognosis. Methods Paraffin-embedded tissue from 155 primary melanomas, 69 metastases and 15 nevi was examined for BRMS1 expression using immunohistochemistry. siRNA mediated BRMS1 down-regulation was used to study impact on invasion and migration in melanoma cell lines. Results A significantly higher percentage of nevi (87%), compared to primary melanomas (20%) and metastases (48%), expressed BRMS1 in the nucelus (p < 0.0001). Strong nuclear staining intensity was observed in 67% of nevi, and in 9% and 24% of the primary and metastatic melanomas, respectively (p < 0.0001). Comparable cytoplasmic expression was observed (nevi; 87%, primaries; 86%, metastases; 72%). However, a decline in cytoplasmic staining intensity was observed in metastases compared to nevi and primary tumors (26%, 47%, and 58%, respectively, p < 0.0001). Score index (percentage immunopositive celles multiplied with staining intensity) revealed that high cytoplasmic score index (≥ 4) was associated with thinner tumors (p = 0.04), lack of ulceration (p = 0.02) and increased disease-free survival (p = 0.036). When intensity and percentage BRMS1 positive cells were analyzed separately, intensity remained associated with tumor thickness (p = 0.024) and ulceration (p = 0.004) but was inversely associated with expression of proliferation markers (cyclin D3 (p = 0.008), cyclin A (p = 0.007), and p21Waf1/Cip1 (p = 0.009)). Cytoplasmic score index was inversely associated with nuclear p-Akt (p = 0.013) and positively associated with cytoplasmic p-ERK1/2 expression (p = 0.033). Nuclear BRMS1 expression in ≥ 10% of primary melanoma cells was associated with thicker tumors (p = 0.016) and decreased relapse-free period (p = 0.043). Nuclear BRMS1 was associated with expression of fatty acid binding protein 7 (FABP7; p = 0.011), a marker of invasion in melanomas. In line with this, repression of BRMS1 expression reduced the ability of melanoma cells to migrate and invade in vitro. Conclusion Our data suggest that BRMS1 is localized in cytoplasm and nucleus of melanocytic cells and that cellular localization determines its in vivo effect. We hypothesize that cytoplasmic BRMS1 restricts melanoma progression while nuclear BRMS1 possibly promotes melanoma cell invasion. Please see related article: http://www.biomedcentral.com/1741-7015/10/19
Collapse
Affiliation(s)
- Ana Slipicevic
- Department of Pathology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
24
|
Kim B, Nam HJ, Pyo KE, Jang MJ, Kim IS, Kim D, Boo K, Lee SH, Yoon JB, Baek SH, Kim JH. Breast cancer metastasis suppressor 1 (BRMS1) is destabilized by the Cul3-SPOP E3 ubiquitin ligase complex. Biochem Biophys Res Commun 2011; 415:720-6. [PMID: 22085717 DOI: 10.1016/j.bbrc.2011.10.154] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 10/29/2011] [Indexed: 12/22/2022]
Abstract
Breast cancer metastasis suppressor 1 (BRMS1) suppresses metastasis without affecting primary tumorigenesis. The regulatory mechanism of BRMS1 at the protein level has not been revealed until recently. Here, we found that cullin 3 (Cul3), a component of E3 ubiquitin ligase, is a new binding partner of BRMS1 and the interaction between BRMS1 and Cul3 is mediated by the SPOP adaptor protein. Intriguingly, BRMS1 turns out to be a potent substrate that is ubiquitinated by the Cul3-SPOP complex. Knockdown of SPOP increases the level of BRMS1 protein and represses the expression of BRMS1 repressive target genes such as OPN and uPA in breast cancer cells. These results suggest that the novel regulatory mechanism of BRMS1 by Cul3-SPOP complex is important for breast cancer progression.
Collapse
Affiliation(s)
- Bogyou Kim
- Department of Biological Sciences, Creative Research Initiative Center for Chromatin Dynamics, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Watson ED, Hughes M, Simmons DG, Natale DR, Sutherland AE, Cross JC. Cell-cell adhesion defects in Mrj mutant trophoblast cells are associated with failure to pattern the chorion during early placental development. Dev Dyn 2011; 240:2505-19. [DOI: 10.1002/dvdy.22755] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2011] [Indexed: 11/12/2022] Open
|
26
|
Abstract
Metastasis is a complex process divided into a number of steps including detachment of tumor cells from the primary tumor, invasion, migration, intravasation, survival in the vasculature, extravasation, and colonization of the secondary site. Proteins that block metastasis without inhibiting primary tumor formation are known as metastasis suppressors; examples are NM23, Maspin, KAI1, KISS1, and MKK4. Breast cancer metastasis suppressor 1 (BRMS1) was identified as a suppressor of breast cancer metastasis in the late 1990s. In vitro and in vivo studies have confirmed that BRMS1 is a potent metastasis suppressor not limited to breast cancer. However, conflicting clinical observations regarding its role as a metastasis suppressor and its validity as a diagnostic biomarker warrant more in-depth clinical study. In this review, the authors provide an overview of its biology, function, action mechanism and pathological significance.
Collapse
|
27
|
Unraveling the enigmatic complexities of BRMS1-mediated metastasis suppression. FEBS Lett 2011; 585:3185-90. [PMID: 21827753 DOI: 10.1016/j.febslet.2011.07.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 01/15/2023]
Abstract
Expression of BRMS1 causes dramatic suppression of metastasis in multiple in vivo model systems. As we gain further insight into the biochemical mechanisms of BRMS1, we appreciate the importance of both molecular and cellular context for functional metastasis suppression. BRMS1 associates with large chromatin remodeling complexes including SIN3:HDAC which are powerful epigenetic regulators of gene expression. Additionally, BRMS1 inhibits the activity of NFκB, a well-known transcription factor that plays significant roles in tumor progression. Moreover, BRMS1 coordinately regulates the expression of metastasis-associated microRNA known as metastamir. How these biochemical mechanisms and biological pathways are linked, either directly or indirectly, and the influence of molecular and cellular context, are critical considerations for the discovery of novel therapeutic targets for the most deadly aspect of tumor progression-metastasis.
Collapse
|
28
|
Connor RE, Marnett LJ, Liebler DC. Protein-selective capture to analyze electrophile adduction of hsp90 by 4-hydroxynonenal. Chem Res Toxicol 2011; 24:1275-82. [PMID: 21749116 PMCID: PMC3155980 DOI: 10.1021/tx200157t] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
The analysis of protein modification by electrophiles is a challenging problem. Most reported protein–electrophile adducts have been characterized from in vitro reactions or through affinity capture of the adduct moiety, which enables global analyses but is poorly suited to targeted studies of specific proteins. We employed a targeted molecular probe approach to study modifications of the molecular chaperone heat shock protein 90 (Hsp90), which regulates diverse client proteins. Noncovalent affinity capture with a biotinyl–geldanamycin probe isolated both isoforms of the native protein (Hsp90α and Hsp90β) from human RKO colorectal cancer cells. Geldanamycin–biotin capture afforded higher purity Hsp90 than did immunoprecipitation and enabled detection of endogenously phosphorylated protein by liquid chromatography–tandem mass spectrometry (LC-MS/MS). We applied this approach to map and quantify adducts formed on Hsp90 by 4-hydroxynonenal (HNE) in RKO cells. LC-MS/MS analyses of tryptic digests by identified His450 and His490 of Hsp90α as having a 158 Da modification, corresponding to NaBH4-reduced HNE adducts. Five histidine residues were also adducted on Hsp90β: His171, His442, His458, His625, and His632. The rates of adduction at these sites were determined with Hsp90 protein in vitro and with Hsp90 in HNE-treated cells with a LC-MS/MS-based, label-free relative quantitation method. During in vitro and cell treatment with HNE, residues on Hsp90α and Hsp90β displayed adduction rates ranging from 3.0 × 10–5 h–1 to 1.08 ± 0.17 h–1. Within the middle client-binding domain of Hsp90α, residue His450 demonstrated the most rapid adduction with kobs of 1.08 ± 0.17 h–1 in HNE-treated cells. The homologous residue on Hsp90β, His442, was adducted more rapidly than the N-terminal residue, His171, despite very similar predicted pKa values of both residues. The Hsp90 middle client-binding domain thus may play a signicant role in HNE-mediated disruption of Hsp90–client protein interactions. The results illustrate the utility of a protein-selective affinity capture approach for targeted analysis of electrophile adducts and their biological effects.
Collapse
Affiliation(s)
- Rebecca E Connor
- Department of Biochemistry, Vanderbilt Institute of Chemical Biology and Center in Molecular Toxicology, Vanderbilt University School of Medicine , U1213 MRBIII, 465 21st Avenue South, Nashville, Tennessee 37232-6350, United States
| | | | | |
Collapse
|
29
|
Spínola-Amilibia M, Rivera J, Ortiz-Lombardía M, Romero A, Neira JL, Bravo J. The structure of BRMS1 nuclear export signal and SNX6 interacting region reveals a hexamer formed by antiparallel coiled coils. J Mol Biol 2011; 411:1114-27. [PMID: 21777593 DOI: 10.1016/j.jmb.2011.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/21/2011] [Accepted: 07/06/2011] [Indexed: 01/28/2023]
Abstract
We present here the first structural report derived from breast cancer metastasis suppressor 1 (BRMS1), a member of the metastasis suppressor protein group, which, during recent years, have drawn much attention since they suppress metastasis without affecting the growth of the primary tumor. The relevance of the predicted N-terminal coiled coil on the molecular recognition of some of the BRMS1 partners, on its cellular localization and on the role of BRMS1 biological functions such as transcriptional repression prompted us to characterize its three-dimensional structure by X-ray crystallography. The structure of BRMS1 N-terminal region reveals that residues 51-98 form an antiparallel coiled-coil motif and, also, that it has the capability of homo-oligomerizing in a hexameric conformation by forming a trimer of coiled-coil dimers. We have also performed hydrodynamic experiments that strongly supported the prevalence in solution of this quaternary structure for BRMS1(51-98). This work explores the structural features of BRMS1 N-terminal region to help clarify the role of this area in the context of the full-length protein. Our crystallographic and biophysical results suggest that the biological function of BRMS1 may be affected by its ability to promote molecular clustering through its N-terminal coiled-coil region.
Collapse
|
30
|
Yip L, Kelly L, Shuai Y, Armstrong MJ, Nikiforov YE, Carty SE, Nikiforova MN. MicroRNA signature distinguishes the degree of aggressiveness of papillary thyroid carcinoma. Ann Surg Oncol 2011; 18:2035-41. [PMID: 21537871 DOI: 10.1245/s10434-011-1733-0] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Indexed: 12/27/2022]
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) has relatively indolent behavior, although some tumors recur and disseminate to distant sites. The aggressive biological behavior of PTC is difficult to predict. MicroRNAs (miRNAs) are dysregulated in various tumors types, and some of them serve as markers of poor prognosis. In this study, we evaluated miRNA expression as a marker of more aggressive behavior in PTC. METHODS miRNA array was used to identify a subset of differentially expressed miRNAs between aggressive and nonaggressive PTC. These miRNAs were further validated by real-time RT-PCR in a cohort of 17 PTC with local tumor recurrence or distant metastases and 15 PTC with no extrathyroidal dissemination and correlated with BRAF, RAS, and RET/PTC mutations and MET expression. RESULTS The miRNA array identified miR-146b, miR-221, miR-222, miR-155, miR-31 upregulation and miR-1, miR-34b, miR-130b, miR-138 downregulation in aggressive compared with nonaggressive PTC. Significant miRNA deregulation was confirmed in the validation cohort, with upregulation of miR-146b and miR-222 and downregulation of miR-34b and miR-130b seen in aggressive PTC. Among BRAF-positive tumors, miR-146b showed strong association with aggressive PTC. MET was identified as a potential target gene for 2 downregulated miRNAs (miR-34b and miR-1), and significantly higher level of MET expression was observed in aggressive PTC. CONCLUSIONS We demonstrate that miR-146b, miR-222, miR-34b, miR-130b are differentially expressed in aggressive compared with nonaggressive PTC. Among BRAF-positive tumors, overexpression of miR-146b was associated with aggressive behavior, suggesting that it may further refine the prognostic importance of BRAF.
Collapse
Affiliation(s)
- Linwah Yip
- Department of Surgery, Section of Endocrine Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Hurst DR, Welch DR. Metastasis suppressor genes at the interface between the environment and tumor cell growth. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:107-80. [PMID: 21199781 DOI: 10.1016/b978-0-12-385859-7.00003-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The molecular mechanisms and genetic programs required for cancer metastasis are sometimes overlapping, but components are clearly distinct from those promoting growth of a primary tumor. Every sequential, rate-limiting step in the sequence of events leading to metastasis requires coordinated expression of multiple genes, necessary signaling events, and favorable environmental conditions or the ability to escape negative selection pressures. Metastasis suppressors are molecules that inhibit the process of metastasis without preventing growth of the primary tumor. The cellular processes regulated by metastasis suppressors are diverse and function at every step in the metastatic cascade. As we gain knowledge into the molecular mechanisms of metastasis suppressors and cofactors with which they interact, we learn more about the process, including appreciation that some are potential targets for therapy of metastasis, the most lethal aspect of cancer. Until now, metastasis suppressors have been described largely by their function. With greater appreciation of their biochemical mechanisms of action, the importance of context is increasingly recognized especially since tumor cells exist in myriad microenvironments. In this chapter, we assemble the evidence that selected molecules are indeed suppressors of metastasis, collate the data defining the biochemical mechanisms of action, and glean insights regarding how metastasis suppressors regulate tumor cell communication to-from microenvironments.
Collapse
Affiliation(s)
- Douglas R Hurst
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
32
|
Lee S, Terry D, Hurst DR, Welch DR, Sang QXA. Protein Signatures in Human MDA-MB-231 Breast Cancer Cells Indicating a More Invasive Phenotype Following Knockdown of Human Endometase/Matrilysin-2 by siRNA. J Cancer 2011; 2:165-76. [PMID: 21475635 PMCID: PMC3069352 DOI: 10.7150/jca.2.165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 03/14/2011] [Indexed: 12/16/2022] Open
Abstract
Human matrix metalloproteinase-26 (MMP-26/endometase/matrilysin-2) is a putative biomarker for carcinomas of breast, prostate, and other cancers of epithelial origin. MMP-26 expression was silenced using small interfering RNA (siRNA) in the human breast cancer cell line MDA-MB-231. Immunological and proteomics approaches, including two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization time-of-flight mass spectrometry, were employed to identify differential protein expression in MMP-26 knockdown cells. A comparison of the protein expression profiles of control and MMP-26 knockdown cells revealed nine differentially regulated proteins. Five of the proteins (heat shock protein 90, glucose-regulated protein 78 (GRP78), annexin V, tropomyosin, and peroxiredoxin II) were up-regulated, while alpha-tubulin, cystatin SA-III, breast cancer metastasis suppressor 1 (BRMS1) and beta-actin were down-regulated. This decrease of BRMS1 expression is concomitant with an increase of invasion through matrix-coated membranes. These results suggest an important role for MMP-26 in the regulation of proteins involved in invasive and metastatic breast cancers.
Collapse
Affiliation(s)
- Seakwoo Lee
- 1. Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306-4390, USA
| | | | | | | | | |
Collapse
|
33
|
Jovanovic J, Rønneberg JA, Tost J, Kristensen V. The epigenetics of breast cancer. Mol Oncol 2010; 4:242-54. [PMID: 20627830 DOI: 10.1016/j.molonc.2010.04.002] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Revised: 03/23/2010] [Accepted: 04/02/2010] [Indexed: 01/02/2023] Open
Abstract
Epigenetic changes can be defined as stable molecular alterations of a cellular phenotype such as the gene expression profile of a cell that are heritable during somatic cell divisions (and sometimes germ line transmissions) but do not involve changes of the DNA sequence itself. Epigenetic phenomena are mediated by several molecular mechanisms comprising histone modifications, polycomb/trithorax protein complexes, small non-coding or antisense RNAs and DNA methylation. These different modifications are closely interconnected. Epigenetic regulation is critical in normal growth and development and closely conditions the transcriptional potential of genes. Epigenetic mechanisms convey genomic adaption to an environment thereby ultimately contributing towards given phenotype. In this review we will describe the various aspects of epigenetics and in particular DNA methylation in breast carcinogenesis and their potential application for diagnosis, prognosis and treatment decision.
Collapse
Affiliation(s)
- Jovana Jovanovic
- Department for Clinical Molecular Biology (EpiGen), Institute for Clinical Medicine, Akershus University Hospital, University of Oslo, Norway
| | | | | | | |
Collapse
|
34
|
EDMONDS MD, HURST DR, WELCH DR, 王 伟, 李 书. 转移抑制与metastamiR调节的联系. CHINESE JOURNAL OF LUNG CANCER 2010. [PMCID: PMC6136056 DOI: 10.3779/j.issn.1009-3419.2010.02.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Affiliation(s)
- Mick D. EDMONDS
- Department of Pathology; University of Alabama at Birmingham; Birmingham, AL USA,National Foundation for Cancer Research-Center for Metastasis Research; University of Alabama at Birmingham; Birmingham, AL USA
| | - Douglas R. HURST
- Department of Pathology; University of Alabama at Birmingham; Birmingham, AL USA,National Foundation for Cancer Research-Center for Metastasis Research; University of Alabama at Birmingham; Birmingham, AL USA
| | - Danny R. WELCH
- Department of Pathology; University of Alabama at Birmingham; Birmingham, AL USA,Cell Biology; University of Alabama at Birmingham; Birmingham, AL USA,Pharmacology/Toxicology; University of Alabama at Birmingham; Birmingham, AL USA,Comprehensive Cancer Center; University of Alabama at Birmingham; Birmingham, AL USA,National Foundation for Cancer Research-Center for Metastasis Research; University of Alabama at Birmingham; Birmingham, AL USA,Danny R. Welch; Department of Pathology; 1670 University Blvd. room VH-G019; Birmingham, AL 35294-0019 USA,
| | - 伟强 王
- 天津医科大学总医院,天津市肺癌研究所,天津市肺癌转移与肿瘤微环境重点实验室
| | - 书军 李
- 天津医科大学总医院,天津市肺癌研究所,天津市肺癌转移与肿瘤微环境重点实验室
| |
Collapse
|
35
|
Wang J, Lin A, Lu L. Effect of EGF-induced HDAC6 activation on corneal epithelial wound healing. Invest Ophthalmol Vis Sci 2010; 51:2943-8. [PMID: 20089874 DOI: 10.1167/iovs.09-4639] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
PURPOSE Epidermal growth factor (EGF) stimulates migration in corneal epithelial wound healing. The purpose of this study was to investigate the effect of EGF-induced alpha-tubulin deacetylation through activating HDAC6 on migration in corneal epithelial wound healing. METHODS Human corneal epithelial (HCE) cells were cultured in DMEM/F12 medium containing 10% FBS in a 37 degrees C incubator supplied with 5% CO(2). Western blot analysis was used to determine protein expression. Activity of HDAC6 was suppressed by trichostatin A (TSA) and by siRNA specific to HDAC6. Corneal epithelial cell migration was measured by using scratch-induced directional migration assay in cultured cells and by corneal epithelial debridement using a mouse whole-eye organ culture model. RESULTS The authors found EGF stimulated corneal epithelial cell migration in wound healing by enhancing HDAC6 activity, resulting in the deacetylation of alpha-tubulin. EGF stimulated HDAC6 enzymatic activity and protein translocation toward the leading edge of the cell. Inhibition of HDAC6 activity by TSA significantly suppressed EGF-induced cell migration and delayed EGF-induced wound healing in epithelially debrided mouse corneas. In the meantime, knockdown of HDAC6 mRNA with specific siRNA effectively abolished EGF-induced deacetylation of alpha-tubulin, resulting in the inhibition of cell migration. CONCLUSIONS These results reveal an important mechanism that involves EGF-induced HDAC6 activation and alpha-tubulin deacetylation, subsequently affecting corneal epithelial migration in the wound-healing process.
Collapse
Affiliation(s)
- Jie Wang
- Division of Molecular Medicine, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Torrance, California 90502, USA
| | | | | |
Collapse
|
36
|
Watson ED, Mattar P, Schuurmans C, Cross JC. Neural stem cell self-renewal requires the Mrj co-chaperone. Dev Dyn 2009; 238:2564-74. [DOI: 10.1002/dvdy.22088] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
37
|
Edmonds MD, Hurst DR, Vaidya KS, Stafford LJ, Chen D, Welch DR. Breast cancer metastasis suppressor 1 coordinately regulates metastasis-associated microRNA expression. Int J Cancer 2009; 125:1778-85. [PMID: 19585508 DOI: 10.1002/ijc.24616] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer metastasis suppressor 1 (BRMS1) suppresses metastasis of multiple tumor types without blocking tumorigenesis. BRMS1 forms complexes with SIN3, histone deacetylases and selected transcription factors that modify metastasis-associated gene expression (e.g., EGFR, OPN, PI4P5K1A, PLAU). microRNA (miRNA) are a recently discovered class of regulatory, noncoding RNA, some of which are involved in neoplastic progression. Based on these data, we hypothesized that BRMS1 may also exert some of its antimetastatic effects by regulating miRNA expression. MicroRNA arrays were done comparing small RNAs that were purified from metastatic MDA-MB-231 and MDA-MB-435 and their nonmetastatic BRMS1-transfected counterparts. miRNA expression changed by BRMS1 were validated using SYBR Green RT-PCR. BRMS1 decreased metastasis-promoting (miR-10b, -373 and -520c) miRNA, with corresponding reduction of their downstream targets (e.g., RhoC which is downstream of miR-10b). Concurrently, BRMS1 increased expression of metastasis suppressing miRNA (miR-146a, -146b and -335). Collectively, these data show that BRMS1 coordinately regulates expression of multiple metastasis-associated miRNA and suggests that recruitment of BRMS1-containing SIN3:HDAC complexes to, as yet undefined, miRNA promoters might be involved in the regulation of cancer metastasis.
Collapse
Affiliation(s)
- Mick D Edmonds
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Cancer metastasis requires the coordinate expression of multiple genes during every step of the metastatic cascade. Molecules that regulate these genetic programs have the potential to impact metastasis at multiple levels. Breast cancer metastasis suppressor 1 (BRMS1) suppresses metastasis by inhibiting multiple steps in the cascade through regulation of many protein-encoding, metastasis-associated genes as well as metastasis-regulatory microRNA, termed metastamiR. In this Feature , we will highlight connections between BRMS1 biology and regulation of metastamiR.
Collapse
Affiliation(s)
- Mick D. Edmonds
- Department of Pathology, University of Alabama at Birmingham; Birmingham, AL USA
- National Foundation for Cancer Research—Center for Metastasis Research; University of Alabama at Birmingham; Birmingham, AL USA
| | - Douglas R. Hurst
- Department of Pathology, University of Alabama at Birmingham; Birmingham, AL USA
- National Foundation for Cancer Research—Center for Metastasis Research; University of Alabama at Birmingham; Birmingham, AL USA
| | - Danny R. Welch
- Department of Pathology, University of Alabama at Birmingham; Birmingham, AL USA
- Cell Biology, University of Alabama at Birmingham; Birmingham, AL USA
- Pharmacology/Toxicology; University of Alabama at Birmingham; Birmingham, AL USA
- Comprehensive Cancer Center; University of Alabama at Birmingham; Birmingham, AL USA
- National Foundation for Cancer Research—Center for Metastasis Research; University of Alabama at Birmingham; Birmingham, AL USA
| |
Collapse
|
39
|
Rivera J, Megías D, Navas C, Bravo J. Identification of essential sequences for cellular localization in BRMS1 metastasis suppressor. PLoS One 2009; 4:e6433. [PMID: 19649328 PMCID: PMC2713406 DOI: 10.1371/journal.pone.0006433] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 06/30/2009] [Indexed: 12/15/2022] Open
Abstract
Background Breast cancer metastasis suppressor 1 (BRMS1) reduces the number and the size of secondary tumours in a mouse model without affecting the growth of the primary foci upon its re-expression. Knockdown of BRMS1 expression associates with metastasis. The molecular details on BRMS1 mechanism of action include its ability to function as a transcriptional co-repressor and consistently BRMS1 has been described as a predominantly nuclear protein. Since cellular distribution could represent a potential mechanism of regulation, we wanted to characterize BRMS1 sequence motifs that might regulate its cellular distribution. According to its amino acids sequence, BRMS1 contain two putative nuclear localization signals, however none of them has been proved to work so far. Methodology/Principal Findings By using well known in vivo assays to detect both nuclear import and export signal, we have characterized, in the present study, one functional nuclear localisation signal as necessary and sufficient to promote nuclear transport. Additionally, the outcome of a directed yeast two-hybrid assay identify importin α6 as a specific partner of BRMS1 thus speculating that BRMS1 nuclear import could be specifically mediated by the reported nuclear transporter. Besides, the combination of a computational searching approach along the utilization of a nuclear export assay, identified a functional motif within the BRMS1 sequence responsible for its nuclear export, that resulted not affected by the highly specific CRM1 inhibitor Leptomycin-B. Interspecies heterokaryon assay demonstrate the capability of BRMS1 to shuttle between the nuclear and cytosolic compartments Conclusions/Significance Our results show for the first time that BRMS1 contains both nuclear import and export signals enabling its nucleo-cytoplasmic shuttling. These findings contributes new data for the understanding of the BRMS1 functions and allow us to speculate that this phenomenon could represent a novel mechanism for regulating the activity of BRMS1 or its associated cytosolic partners
Collapse
Affiliation(s)
- José Rivera
- Signal Transduction Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
- * E-mail: (JR); (JB)
| | - Diego Megías
- Confocal Microscopy Unit, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Carolina Navas
- Signal Transduction Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Jerónimo Bravo
- Signal Transduction Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
- * E-mail: (JR); (JB)
| |
Collapse
|
40
|
Frolova N, Edmonds MD, Bodenstine TM, Seitz R, Johnson MR, Feng R, Welch DR, Frost AR. A shift from nuclear to cytoplasmic breast cancer metastasis suppressor 1 expression is associated with highly proliferative estrogen receptor-negative breast cancers. Tumour Biol 2009; 30:148-59. [PMID: 19609101 DOI: 10.1159/000228908] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 05/25/2009] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND/AIMS To determine breast cancer metastasis suppressor 1 (BRMS1) expression in breast cancers and the efficacy of BRMS1 as a prognostic indicator, BRMS1 expression was assessed in two sets of breast cancer tissues. METHODS Epithelial cells from 36 frozen samples of breast cancers and corresponding normal breast were collected by laser capture microdissection and assessed for BRMS1 by quantitative RT-PCR and immunohistochemistry. BRMS1 was also evaluated by immunohistochemistry in a tissue microarray of 209 breast cancers and correlated with indicators of prognosis [estrogen receptor (ER), progesterone receptor (PR), ErbB2, p53, p27(Kip1), Bcl2 and Ki-67]. RESULTS BRMS1 mRNA and protein were higher in 94 and 81%, respectively, of breast cancers than in corresponding normal epithelium. BRMS1 localization was predominantly nuclear, but 60-70% of cancers also exhibited cytoplasmic immunostaining. Breast cancers with lower nuclear than cytoplasmic BRMS1 (nuclear score - cytoplasmic score < or =0; 11% of cancers) had lower ER, lower PR and higher Ki-67 expression. There was also a trend toward poorer overall survival in this group of cancers, but this was only of borderline significance (p = 0.073). In Cox proportional hazards models, loss of nuclear BRMS1 was not a significant predictor of overall survival. CONCLUSIONS Loss of nuclear BRMS1 was associated with ER-negative cancers and a high rate of proliferation, but was not an independent indicator of prognosis.
Collapse
Affiliation(s)
- Natalya Frolova
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Vaidya KS, Sanchez JJ, Kim EL, Welch DR. Expression of the Breast Cancer Metastasis Suppressor 1 (BRMS1) maintains in vitro chemosensitivity of breast cancer cells. Cancer Lett 2009; 281:100-7. [PMID: 19307053 DOI: 10.1016/j.canlet.2009.02.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 02/15/2009] [Accepted: 02/16/2009] [Indexed: 01/15/2023]
Abstract
The Breast Cancer Metastasis Suppressor 1 (BRMS1) belongs to an expanding category of proteins called metastasis suppressors that demonstrate in vivo metastasis suppression while still allowing growth of the orthotopic tumor. Since BRMS1 decreases either the expression or function of multiple mediators implicated in resistance to chemotherapy (NF-kappaB, AKT, EGFR), we asked whether breast carcinoma cells expressing BRMS1 could be sensitized upon exposure to commonly used therapeutic agents that inhibit some of these same cellular mediators as BRMS1. In this report, we demonstrate that chemosensitivity of breast cancer cells is preserved in the presence of BRMS1. Further, BRMS1 does not change expression of AKT isoforms or PTEN, implicated in chemoresistance to common drug agents. Overall, our data with two different metastatic breast cancer cell lines indicates that BRMS1 expression status may not interfere with the response to commonly used chemotherapeutic agents in the management of solid tumors such as breast cancer. Since tumor protein expression analysis increasingly guides therapy decisions, our data may be of clinical benefit in disease management including profiling for BRMS1 expression before start of therapy.
Collapse
Affiliation(s)
- Kedar S Vaidya
- Department of Pathology, The University of Alabama at Birmingham, 35294-0019, USA.
| | | | | | | |
Collapse
|
42
|
Smith J, Naseem R, Webb M. Purification and characterisation of the breast cancer metastasis suppressor, BRMS1. Protein Expr Purif 2009; 67:70-5. [PMID: 19401233 DOI: 10.1016/j.pep.2009.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 04/07/2009] [Accepted: 04/20/2009] [Indexed: 10/20/2022]
Abstract
The breast cancer metastasis suppressor 1 (BRMS1) is a member of a family of proteins that actively suppress tumour metastasis. Understanding BRMS1 mediated metastasis suppression is critical to the development of new therapies designed to prevent and treat patients with late stage breast cancer. To aid research into the functional aspects that underpin BRMS1 mediated metastasis suppression we have expressed and purified recombinant BRMS1 and produced BRMS1 polyclonal antibodies. Using these antibodies to immunoprecipitate endogenous BRMS1 containing complexes from MCF7 breast cancer cell lines we have identified, by mass spectrometry, the small heat shock protein Hsp27 in complex with BRMS1. We also show that the expression of both BRMS1 and Hsp27 are inversely correlated with metastatic potential.
Collapse
Affiliation(s)
- Joanne Smith
- University of Manchester, Faculty of Medical and Human Sciences, Department of Medical Genetics, Stopford Building, Manchester M13 9PT, UK
| | | | | |
Collapse
|
43
|
Mitra A, Shevde LA, Samant RS. Multi-faceted role of HSP40 in cancer. Clin Exp Metastasis 2009; 26:559-67. [PMID: 19340594 DOI: 10.1007/s10585-009-9255-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 03/12/2009] [Indexed: 12/25/2022]
Abstract
HSP40 (DNAJ) is an understudied family of co-chaperones. The human genome codes for over 41 members of HSP40 family that reside at distinct intracellular locations. Despite their large numbers, little is known about their physiologic roles. Recent research has revealed involvement of some of the DNAJ family members in various types of cancers. In this article we summarize the information about the involvement of human DNAJ family members in various aspects of cancer biology. Furthermore we discuss the potential role of the J domain of DNAJ proteins in cancer biology.
Collapse
Affiliation(s)
- Aparna Mitra
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | | | | |
Collapse
|
44
|
Silveira AC, Hurst DR, Vaidya KS, Ayer DE, Welch DR. Over-expression of the BRMS1 family member SUDS3 does not suppress metastasis of human cancer cells. Cancer Lett 2008; 276:32-7. [PMID: 19070953 DOI: 10.1016/j.canlet.2008.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 10/20/2008] [Accepted: 10/22/2008] [Indexed: 10/21/2022]
Abstract
BRMS1 and SUDS3 are related members of SIN3-HDAC chromatin remodeling complexes. We hypothesized that they might have overlapping functions and that SUDS3 over-expression could compensate for BRMS1 deficiency. SUDS3 expression was ubiquitous in seven breast cell lines, regardless of metastatic potential. SUDS3 over-expression in BRMS1-non-expressing metastatic cells did not suppress metastasis, motility, osteopontin secretion, or EGF receptor expression, phenotypes associated with BRMS1-mediated metastasis suppression. This study demonstrates functional differences for BRMS1 family members and highlights how the composition of SIN3-HDAC (BRMS1/SUDS3) complexes uniquely affects protein expression and biological behaviors.
Collapse
Affiliation(s)
- Alexandra C Silveira
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35209, USA
| | | | | | | | | |
Collapse
|
45
|
Spínola-Amilibia M, Rivera J, Bravo J. Crystallization and preliminary X-ray diffraction analysis of a breast cancer metastasis suppressor 1 predicted coiled-coil region. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:1156-8. [PMID: 19052374 PMCID: PMC2593693 DOI: 10.1107/s1744309108036518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 11/06/2008] [Indexed: 11/10/2022]
Abstract
Breast cancer metastasis suppressor 1 (BRMS1) is an inhibitor of metastatic progression and plays a role in several steps of the metastatic cascade. Apart from the ability of BRMS1 to negatively regulate metastasis formation in breast, melanoma and ovarian tumours, very little is known about the molecular aspects of the antimetastatic properties of BRMS1. Here, the expression, purification and crystallization of a functional fragment of human BRMS1 that is predicted to be a coiled-coil region are reported. The purified fragment crystallized in space group C222(1) using the vapour-diffusion method. The unit-cell parameters were a = 42.6, b = 191.3, c = 71.9 A. The crystals diffracted to 2.0 A resolution and a complete data set was collected under cryoconditions. This is the first structural report of BRMS1.
Collapse
Affiliation(s)
- Mercedes Spínola-Amilibia
- Signal Transduction Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - José Rivera
- Signal Transduction Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Jerónimo Bravo
- Signal Transduction Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| |
Collapse
|
46
|
Dey S, Banerjee P, Saha P. Cell cycle specific expression and nucleolar localization of human J-domain containing co-chaperone Mrj. Mol Cell Biochem 2008; 322:137-42. [PMID: 19002655 DOI: 10.1007/s11010-008-9950-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Accepted: 10/22/2008] [Indexed: 01/28/2023]
Abstract
J-domain containing co-chaperone Mrj (mammalian relative to DnaJ) has been implicated in diverse cellular functions including placental development and inhibition of Huntingtin mediated cytotoxicity. It has also been shown to interact with keratin intermediate filaments. Since keratins undergo extensive reorganization during cell division, its interactor Mrj might also play an important role in the regulation of cell cycle. In support of this hypothesis, we report the up-regulation of Mrj protein in M-phase of HeLa cells implicating its role in mitosis related activities. The protein is dispersed throughout the cell during late mitosis and is localized in nucleolus during interphase, confirming that the activity of Mrj is regulated by its cell cycle specific expression together with its differential subcellular localization.
Collapse
Affiliation(s)
- Sanjib Dey
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Sector I, Block AF, Bidhannagar, Kolkata, 700064, India
| | | | | |
Collapse
|
47
|
Multiple forms of BRMS1 are differentially expressed in the MCF10 isogenic breast cancer progression model. Clin Exp Metastasis 2008; 26:89-96. [PMID: 18841483 DOI: 10.1007/s10585-008-9216-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 09/24/2008] [Indexed: 01/10/2023]
Abstract
Clinical studies evaluating the mRNA expression level of the BRMS1 metastasis suppressor in the progression of breast cancer have not been consistent. The purpose of this study was to characterize endogenous BRMS1 mRNA and protein in a model of the progression of breast cancer. BRMS1 protein expression was evaluated in the genetically related MCF10 cell lines representing 'normal' breast epithelial cells (MCF10A), pre-malignant breast disease (MCF10AT), comedo ductal carcinoma in situ (MCF10DCIS.com), and metastatic carcinoma (MCF10CAa.1 and MCF10CAd.1alpha) with two antibodies that recognize distinct epitopes in the BRMS1 protein. Nuclear expression of the characteristic *35 kDa BRMS1 protein was detected in all cell lines. Because BRMS1 was expressed in the metastatic MCF10 variants, the BRMS1 exons were sequenced to scan for possible genetic mutations. BRMS1 was wild-type with the exception of a synonymous T/C transition in exon 7. However, alternatively spliced variants were detected by RT-PCR. Two variants, BRMS1.v2 and BRMS1.v4 were only detected in the MCF10A and AT cell lines, while BRMS1 and BRMS1.v3 were detected in all lines. These results demonstrate that expression of the characteristic *35 kDa BRMS1 protein is not sufficient to prevent metastasis. The differential expression of alternative splice variants suggests caution should be taken when evaluating BRMS1 mRNA in clinical samples.
Collapse
|
48
|
Zhou Q, Agoston AT, Atadja P, Nelson WG, Davidson NE. Inhibition of histone deacetylases promotes ubiquitin-dependent proteasomal degradation of DNA methyltransferase 1 in human breast cancer cells. Mol Cancer Res 2008; 6:873-83. [PMID: 18505931 DOI: 10.1158/1541-7786.mcr-07-0330] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Histone deacetylases (HDAC) play a critical role in chromatin modification and gene expression. Recent evidence indicates that HDACs can also regulate functions of nonhistone proteins by catalyzing the removal of acetylated lysine residues. Here, we show that the HDAC inhibitor LBH589 down-regulates DNA methyltransferase 1 (DNMT1) protein expression in the nucleus of human breast cancer cells. Cotreatment with the proteasomal inhibitor MG-132 abolishes the ability of LBH589 to reduce DNMT1, suggesting that the proteasomal pathway mediates DNMT1 degradation on HDAC inhibition. Deletion of the NH(2)-terminal 120 amino acids of DNMT1 diminishes LBH589-induced ubiquitination, indicating that this domain is essential for its proteasomal degradation. DNMT1 recruits the molecular chaperone heat shock protein 90 (Hsp90) to form a chaperone complex. Treatment with LBH589 induces hyperacetylation of Hsp90, thereby inhibiting the association of DNMT1 with Hsp90 and promoting ubiquitination of DNMT1. In addition, inactivation of HDAC1 activity by small interfering RNA and MS-275 is associated with Hsp90 acetylation in conjunction with reduction of DNMT1 protein expression. We conclude that the stability of DNMT1 is maintained in part through its association with Hsp90. Disruption of Hsp90 function by HDAC inhibition is a unique mechanism that mediates the ubiquitin-proteasome pathway for DNMT1 degradation. Our studies suggest a new role for HDAC1 and identify a novel mechanism of action for the HDAC inhibitors as down-regulators of DNMT1.
Collapse
Affiliation(s)
- Qun Zhou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans Street, CRB Room 144, Baltimore, MD 21231, USA
| | | | | | | | | |
Collapse
|
49
|
Metge BJ, Frost AR, King JA, Dyess DL, Welch DR, Samant RS, Shevde LA. Epigenetic silencing contributes to the loss of BRMS1 expression in breast cancer. Clin Exp Metastasis 2008; 25:753-63. [PMID: 18566899 DOI: 10.1007/s10585-008-9187-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 05/20/2008] [Indexed: 01/13/2023]
Abstract
Breast Cancer Metastasis Suppressor 1 (BRMS1) suppresses metastasis of human breast cancer, ovarian cancer and melanoma in athymic mice. Studies have also shown that BRMS1 is significantly downregulated in some breast tumors, especially in metastatic disease. However, the mechanisms which regulate BRMS1 expression are currently unknown. Upon examination of the BRMS1 promoter region by methylation specific PCR (MSP) analysis, we discovered a CpG island (-3477 to -2214), which was found to be hypermethylated across breast cancer cell lines. A panel of 20 patient samples analyzed showed that 45% of the primary tumors and 60% of the matched lymph node metastases, displayed hypermethylation of BRMS1 promoter. Furthermore, we found a direct correlation between the methylation status of the BRMS1 promoter in the DNA isolated from tissues, with the loss of BRMS1 expression assessed by immunohistochemistry. There are several studies investigating the mechanism by which BRMS1 suppresses metastasis; however thus far there is no study that reports the cause(s) of loss of BRMS1 expression in aggressive breast cancer. Here we report for the first time that BRMS1 is a novel target of epigenetic silencing; and aberrant methylation in the BRMS1 promoter may serve as a cause of loss of its expression.
Collapse
Affiliation(s)
- Brandon J Metge
- Department of Oncologic Sciences, USA-Mitchell Cancer Institute, University of South Alabama, 307 N. University Blvd., Mobile, AL 36688, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Pan Z, Sikandar S, Witherspoon M, Dizon D, Nguyen T, Benirschke K, Wiley C, Vrana P, Lipkin SM. Impaired placental trophoblast lineage differentiation in Alkbh1(-/-) mice. Dev Dyn 2008; 237:316-27. [PMID: 18163532 DOI: 10.1002/dvdy.21418] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
E. coli AlkB has been intensively studied since 1983, but the in vivo roles of its mammalian homologue Alkbh1 are unknown. We, therefore, created null mice for Alkbh1. Alkbh1 mRNA is expressed at highest levels in the trophoblast lineages of the developing placenta. Alkbh1(-/-) placentas have decreased expression of differentiated trophoblast markers including Tpbp, Gcm1, and Pl-1, and increased expression of the trophoblast stem cell marker Eomes. Alkbh1 localizes to nuclear euchromatin, and interacts strongly with Mrj, an essential placental gene that mediates gene repression by recruitment of class II histone deacetylases (HDACs). Competition experiments show Alkbh1 and HDAC4 binding to Mrj are mutually exclusive, which causes decreased HDAC activity and increased target gene expression. Our study demonstrates Alkbh1 performs important functions in placental trophoblast lineage differentiation and participates in mechanisms of transcriptional regulation.
Collapse
Affiliation(s)
- Zishu Pan
- Department of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | | | | | | | | | | | | | | | | |
Collapse
|