1
|
Alli N, Lou-Hing A, Bolt EL, He L. POLD3 as Controller of Replicative DNA Repair. Int J Mol Sci 2024; 25:12417. [PMID: 39596481 PMCID: PMC11595029 DOI: 10.3390/ijms252212417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/01/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Multiple modes of DNA repair need DNA synthesis by DNA polymerase enzymes. The eukaryotic B-family DNA polymerase complexes delta (Polδ) and zeta (Polζ) help to repair DNA strand breaks when primed by homologous recombination or single-strand DNA annealing. DNA synthesis by Polδ and Polζ is mutagenic, but is needed for the survival of cells in the presence of DNA strand breaks. The POLD3 subunit of Polδ and Polζ is at the heart of DNA repair by recombination, by modulating polymerase functions and interacting with other DNA repair proteins. We provide the background to POLD3 discovery, investigate its structure, as well as function in cells. We highlight unexplored structural aspects of POLD3 and new biochemical data that will help to understand the pivotal role of POLD3 in DNA repair and mutagenesis in eukaryotes, and its impact on human health.
Collapse
Affiliation(s)
- Nabilah Alli
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Anna Lou-Hing
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Edward L. Bolt
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Liu He
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| |
Collapse
|
2
|
Yakoub G, Choi YS, Wong RP, Strauch T, Ann KJ, Cohen RE, Ulrich HD. Avidity-based biosensors for ubiquitylated PCNA reveal choreography of DNA damage bypass. SCIENCE ADVANCES 2023; 9:eadf3041. [PMID: 37672592 PMCID: PMC10482348 DOI: 10.1126/sciadv.adf3041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 08/03/2023] [Indexed: 09/08/2023]
Abstract
In eukaryotes, the posttranslational modifier ubiquitin is used to regulate the amounts, interactions, or activities of proteins in diverse pathways and signaling networks. Its effects are mediated by monoubiquitin or polyubiquitin chains of varying geometries. We describe the design, validation, and application of a series of avidity-based probes against the ubiquitylated forms of the DNA replication clamp, proliferating cell nuclear antigen (PCNA), in budding yeast. Directed against total ubiquitylated PCNA or specifically K63-polyubiquitylated PCNA, the probes are tunable in their activities and can be used either as biosensors or as inhibitors of the PCNA-dependent DNA damage bypass pathway. Used in live cells, the probes revealed the timing of PCNA ubiquitylation during damage bypass and a particular susceptibility of the ribosomal DNA locus to the activation of the pathway. Our approach is applicable to a wide range of ubiquitin-conjugated proteins, thus representing a generalizable strategy for the design of biosensors for specific (poly)ubiquitylated forms of individual substrates.
Collapse
Affiliation(s)
- George Yakoub
- Institute of Molecular Biology gGmbH, Ackermannweg 4, D-55128 Mainz, Germany
| | - Yun-Seok Choi
- Department of Biochemistry and Molecular Biology, Colorado State University, 273 MRB, 1870 Campus Delivery, Fort Collins, CO 80523-1870, USA
| | - Ronald P. Wong
- Institute of Molecular Biology gGmbH, Ackermannweg 4, D-55128 Mainz, Germany
| | - Tina Strauch
- Institute of Molecular Biology gGmbH, Ackermannweg 4, D-55128 Mainz, Germany
| | - Kezia J. Ann
- Institute of Molecular Biology gGmbH, Ackermannweg 4, D-55128 Mainz, Germany
| | - Robert E. Cohen
- Department of Biochemistry and Molecular Biology, Colorado State University, 273 MRB, 1870 Campus Delivery, Fort Collins, CO 80523-1870, USA
| | - Helle D. Ulrich
- Institute of Molecular Biology gGmbH, Ackermannweg 4, D-55128 Mainz, Germany
| |
Collapse
|
3
|
Martín-Rufo R, de la Vega-Barranco G, Lecona E. Ubiquitin and SUMO as timers during DNA replication. Semin Cell Dev Biol 2022; 132:62-73. [PMID: 35210137 DOI: 10.1016/j.semcdb.2022.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/14/2022]
Abstract
Every time a cell copies its DNA the genetic material is exposed to the acquisition of mutations and genomic alterations that corrupt the information passed on to daughter cells. A tight temporal regulation of DNA replication is necessary to ensure the full copy of the DNA while preventing the appearance of genomic instability. Protein modification by ubiquitin and SUMO constitutes a very complex and versatile system that allows the coordinated control of protein stability, activity and interactome. In chromatin, their action is complemented by the AAA+ ATPase VCP/p97 that recognizes and removes ubiquitylated and SUMOylated factors from specific cellular compartments. The concerted action of the ubiquitin/SUMO system and VCP/p97 determines every step of DNA replication enforcing the ordered activation/inactivation, loading/unloading and stabilization/destabilization of replication factors. Here we analyze the mechanisms used by ubiquitin/SUMO and VCP/p97 to establish molecular timers throughout DNA replication and their relevance in maintaining genome stability. We propose that these PTMs are the main molecular watch of DNA replication from origin recognition to replisome disassembly.
Collapse
Affiliation(s)
- Rodrigo Martín-Rufo
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain
| | - Guillermo de la Vega-Barranco
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain
| | - Emilio Lecona
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain.
| |
Collapse
|
4
|
Scrutinizing Deleterious Nonsynonymous SNPs and Their Effect on Human POLD1 Gene. Genet Res (Camb) 2022; 2022:1740768. [PMID: 35620275 PMCID: PMC9117041 DOI: 10.1155/2022/1740768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
POLD1 (DNA polymerase delta 1, catalytic subunit) is a protein-coding gene that encodes the large catalytic subunit (POLD1/p125) of the DNA polymerase delta (Polδ) complex. The consequence of missense or nonsynonymous SNPs (nsSNPs), which occur in the coding region of a specific gene, is the replacement of single amino acid. It may also change the structure, stability, and/or functions of the protein. Mutation in the POLD1 gene is associated with autosomal dominant predisposition to colonic adenomatous polyps, colon cancer, endometrial cancer (EDMC), breast cancer, and brain tumors. These de novo mutations in the POLD1 gene also result in autosomal dominant MDPL syndrome (mandibular hypoplasia, deafness, progeroid features, and lipodystrophy). In this study, genetic variations of POLD1 which may affect the structure and/or function were analyzed using different types of bioinformatics tools. A total of 17038 nsSNPs for POLD1 were collected from the NCBI database, among which 1317 were missense variants. Out of all missense nsSNPs, 28 were found to be deleterious functionally and structurally. Among these deleterious nsSNPs, 23 showed a conservation scale of >5, 2 were predicted to be associated with binding site formation, and one acted as a posttranslational modification site. All of them were involved in coil, extracellular structures, or helix formation, and some cause the change in size, charge, and hydrophobicity.
Collapse
|
5
|
Anuntakarun S, Larbcharoensub N, Payungporn S, Reamtong O. Identification of genes associated with Kikuchi-Fujimoto disease using RNA and exome sequencing. Mol Cell Probes 2021; 57:101728. [PMID: 33819568 DOI: 10.1016/j.mcp.2021.101728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022]
Abstract
Kikuchi-Fujimoto disease (KFD) is an extremely rare disease, and although it is reported to have a worldwide distribution, young Asian women are most likely to be affected. Although this disease is generally benign and self-limiting, distinguishing it from other diseases that cause lymphadenopathy (e.g., leukemia, lymphoma, and infectious diseases) is challenging. A lymph node biopsy is a definitive diagnostic technique for KFD and only requires skillful pathologists. There are no specific symptoms or laboratory tests for KFD, and more than 50% of KFD patients have suffered from being misdiagnosed with lymphoma, which leads to improper treatment. In this study, lymph node tissue samples from KFD patients were used to reveal their exomes and transcriptomes using a high-throughput nucleotide sequencer. Fourteen single nucleotide polymorphisms (SNPs) were identified as candidate KFD markers and were compared with a healthy lymph node exome dataset. The mutation of these genes caused disruptive impact in the proteins. Several SNPs associated with KFD involve genes related to human cancers, olfaction, and osteoblast differentiation. According to the transcriptome data, there were 238 up-regulated and 1,519 down-regulated genes. RANBP2-like and ribosomal protein L13 were the most up-regulated and down-regulated genes in KFD patients, respectively. The altered gene expression involved in the human immune system, chromatin remodeling, and gene transcription. A comparison of KFD and healthy datasets of exomes and transcriptomes may allow further insights into the KFD phenotype. The results may also facilitate future KFD diagnosis and treatment.
Collapse
Affiliation(s)
- Songtham Anuntakarun
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Noppadol Larbcharoensub
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
6
|
Regulation of Mammalian DNA Replication via the Ubiquitin-Proteasome System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:421-454. [PMID: 29357069 DOI: 10.1007/978-981-10-6955-0_19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Proper regulation of DNA replication ensures the faithful transmission of genetic material essential for optimal cellular and organismal physiology. Central to this regulation is the activity of a set of enzymes that induce or reverse posttranslational modifications of various proteins critical for the initiation, progression, and termination of DNA replication. This is particularly important when DNA replication proceeds in cancer cells with elevated rates of genomic instability and increased proliferative capacities. Here, we describe how DNA replication in mammalian cells is regulated via the activity of the ubiquitin-proteasome system as well as the consequence of derailed ubiquitylation signaling involved in this important cellular activity.
Collapse
|
7
|
Barnes R, Eckert K. Maintenance of Genome Integrity: How Mammalian Cells Orchestrate Genome Duplication by Coordinating Replicative and Specialized DNA Polymerases. Genes (Basel) 2017; 8:genes8010019. [PMID: 28067843 PMCID: PMC5295014 DOI: 10.3390/genes8010019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/19/2016] [Accepted: 12/27/2016] [Indexed: 12/30/2022] Open
Abstract
Precise duplication of the human genome is challenging due to both its size and sequence complexity. DNA polymerase errors made during replication, repair or recombination are central to creating mutations that drive cancer and aging. Here, we address the regulation of human DNA polymerases, specifically how human cells orchestrate DNA polymerases in the face of stress to complete replication and maintain genome stability. DNA polymerases of the B-family are uniquely adept at accurate genome replication, but there are numerous situations in which one or more additional DNA polymerases are required to complete genome replication. Polymerases of the Y-family have been extensively studied in the bypass of DNA lesions; however, recent research has revealed that these polymerases play important roles in normal human physiology. Replication stress is widely cited as contributing to genome instability, and is caused by conditions leading to slowed or stalled DNA replication. Common Fragile Sites epitomize “difficult to replicate” genome regions that are particularly vulnerable to replication stress, and are associated with DNA breakage and structural variation. In this review, we summarize the roles of both the replicative and Y-family polymerases in human cells, and focus on how these activities are regulated during normal and perturbed genome replication.
Collapse
Affiliation(s)
- Ryan Barnes
- Biomedical Sciences Graduate Program, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Kristin Eckert
- Departments of Pathology and Biochemistry & Molecular Biology, The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
8
|
Hirota K, Tsuda M, Mohiuddin, Tsurimoto T, Cohen IS, Livneh Z, Kobayashi K, Narita T, Nishihara K, Murai J, Iwai S, Guilbaud G, Sale JE, Takeda S. In vivo evidence for translesion synthesis by the replicative DNA polymerase δ. Nucleic Acids Res 2016; 44:7242-50. [PMID: 27185888 PMCID: PMC5009730 DOI: 10.1093/nar/gkw439] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/06/2016] [Indexed: 12/17/2022] Open
Abstract
The intolerance of DNA polymerase δ (Polδ) to incorrect base pairing contributes to its extremely high accuracy during replication, but is believed to inhibit translesion synthesis (TLS). However, chicken DT40 cells lacking the POLD3 subunit of Polδ are deficient in TLS. Previous genetic and biochemical analysis showed that POLD3 may promote lesion bypass by Polδ itself independently of the translesion polymerase Polζ of which POLD3 is also a subunit. To test this hypothesis, we have inactivated Polδ proofreading in pold3 cells. This significantly restored TLS in pold3 mutants, enhancing dA incorporation opposite abasic sites. Purified proofreading-deficient human Polδ holoenzyme performs TLS of abasic sites in vitro much more efficiently than the wild type enzyme, with over 90% of TLS events resulting in dA incorporation. Furthermore, proofreading deficiency enhances the capability of Polδ to continue DNA synthesis over UV lesions both in vivo and in vitro. These data support Polδ contributing to TLS in vivo and suggest that the mutagenesis resulting from loss of Polδ proofreading activity may in part be explained by enhanced lesion bypass.
Collapse
Affiliation(s)
- Kouji Hirota
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji- shi, Tokyo 192-0397, Japan
| | - Masataka Tsuda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mohiuddin
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toshiki Tsurimoto
- Department of Biology, School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Isadora S Cohen
- Weizmann Institute of Science, Department of Biological Chemistry, Rehovot 76100, Israel
| | - Zvi Livneh
- Weizmann Institute of Science, Department of Biological Chemistry, Rehovot 76100, Israel
| | - Kaori Kobayashi
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji- shi, Tokyo 192-0397, Japan
| | - Takeo Narita
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kana Nishihara
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Junko Murai
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Guillaume Guilbaud
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Julian E Sale
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
García-Rodríguez N, Wong RP, Ulrich HD. Functions of Ubiquitin and SUMO in DNA Replication and Replication Stress. Front Genet 2016; 7:87. [PMID: 27242895 PMCID: PMC4865505 DOI: 10.3389/fgene.2016.00087] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/27/2016] [Indexed: 12/14/2022] Open
Abstract
Complete and faithful duplication of its entire genetic material is one of the essential prerequisites for a proliferating cell to maintain genome stability. Yet, during replication DNA is particularly vulnerable to insults. On the one hand, lesions in replicating DNA frequently cause a stalling of the replication machinery, as most DNA polymerases cannot cope with defective templates. This situation is aggravated by the fact that strand separation in preparation for DNA synthesis prevents common repair mechanisms relying on strand complementarity, such as base and nucleotide excision repair, from working properly. On the other hand, the replication process itself subjects the DNA to a series of hazardous transformations, ranging from the exposure of single-stranded DNA to topological contortions and the generation of nicks and fragments, which all bear the risk of inducing genomic instability. Dealing with these problems requires rapid and flexible responses, for which posttranslational protein modifications that act independently of protein synthesis are particularly well suited. Hence, it is not surprising that members of the ubiquitin family, particularly ubiquitin itself and SUMO, feature prominently in controlling many of the defensive and restorative measures involved in the protection of DNA during replication. In this review we will discuss the contributions of ubiquitin and SUMO to genome maintenance specifically as they relate to DNA replication. We will consider cases where the modifiers act during regular, i.e., unperturbed stages of replication, such as initiation, fork progression, and termination, but also give an account of their functions in dealing with lesions, replication stalling and fork collapse.
Collapse
|
10
|
Kobayashi S, Keka IS, Guilbaud G, Sale J, Narita T, Abdel-Aziz HI, Wang X, Ogawa S, Sasanuma H, Chiu R, Oestergaard VH, Lisby M, Takeda S. The role of HERC2 and RNF8 ubiquitin E3 ligases in the promotion of translesion DNA synthesis in the chicken DT40 cell line. DNA Repair (Amst) 2016; 40:67-76. [PMID: 26994443 DOI: 10.1016/j.dnarep.2016.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/12/2016] [Accepted: 02/03/2016] [Indexed: 12/20/2022]
Abstract
The replicative DNA polymerases are generally blocked by template DNA damage. The resulting replication arrest can be released by one of two post-replication repair (PRR) pathways, translesion DNA synthesis (TLS) and template switching by homologous recombination (HR). The HERC2 ubiquitin ligase plays a role in homologous recombination by facilitating the assembly of the Ubc13 ubiquitin-conjugating enzyme with the RNF8 ubiquitin ligase. To explore the role of HERC2 and RNF8 in PRR, we examined immunoglobulin diversification in chicken DT40 cells deficient in HERC2 and RNF8. Unexpectedly, the HERC2(-/-) and RNF8(-/-) cells and HERC2(-/-)/RNF8(-/-) double mutant cells exhibit a significant reduction in the rate of immunoglobulin (Ig) hypermutation, compared to wild-type cells. Further, the HERC2(-/-) and RNF8(-/-) mutants exhibit defective maintenance of replication fork progression immediately after exposure to UV while retaining proficient post-replicative gap filling. These mutants are both proficient in mono-ubiquitination of PCNA. Taken together, these results suggest that HERC2 and RNF8 promote TLS past abasic sites and UV-lesions at or very close to stalled replication forks.
Collapse
Affiliation(s)
- Shunsuke Kobayashi
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Islam Shamima Keka
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Guillaume Guilbaud
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Julian Sale
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Takeo Narita
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan; Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - H Ismail Abdel-Aziz
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan; Faculty of Medicine, Seuz Canal University, circular road Ez-Eldeen, Ismailia 41522, Egypt
| | - Xin Wang
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Saki Ogawa
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Roland Chiu
- University College Groningen, University of Groningen, 9718 BG Groningen, Hoendiepskade 23-24, The Netherlands
| | - Vibe H Oestergaard
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Shunichi Takeda
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
11
|
Moreno SP, Gambus A. Regulation of Unperturbed DNA Replication by Ubiquitylation. Genes (Basel) 2015; 6:451-68. [PMID: 26121093 PMCID: PMC4584310 DOI: 10.3390/genes6030451] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/05/2015] [Accepted: 06/16/2015] [Indexed: 02/07/2023] Open
Abstract
Posttranslational modification of proteins by means of attachment of a small globular protein ubiquitin (i.e., ubiquitylation) represents one of the most abundant and versatile mechanisms of protein regulation employed by eukaryotic cells. Ubiquitylation influences almost every cellular process and its key role in coordination of the DNA damage response is well established. In this review we focus, however, on the ways ubiquitylation controls the process of unperturbed DNA replication. We summarise the accumulated knowledge showing the leading role of ubiquitin driven protein degradation in setting up conditions favourable for replication origin licensing and S-phase entry. Importantly, we also present the emerging major role of ubiquitylation in coordination of the active DNA replication process: preventing re-replication, regulating the progression of DNA replication forks, chromatin re-establishment and disassembly of the replisome at the termination of replication forks.
Collapse
Affiliation(s)
- Sara Priego Moreno
- School of Cancer Sciences, University of Birmingham, Vincent Drive, B15 2TT, Birmingham, UK
| | - Agnieszka Gambus
- School of Cancer Sciences, University of Birmingham, Vincent Drive, B15 2TT, Birmingham, UK.
| |
Collapse
|
12
|
Bursomanno S, Beli P, Khan AM, Minocherhomji S, Wagner SA, Bekker-Jensen S, Mailand N, Choudhary C, Hickson ID, Liu Y. Proteome-wide analysis of SUMO2 targets in response to pathological DNA replication stress in human cells. DNA Repair (Amst) 2014; 25:84-96. [PMID: 25497329 DOI: 10.1016/j.dnarep.2014.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/26/2014] [Accepted: 10/28/2014] [Indexed: 02/04/2023]
Abstract
SUMOylation is a form of post-translational modification involving covalent attachment of SUMO (Small Ubiquitin-like Modifier) polypeptides to specific lysine residues in the target protein. In human cells, there are four SUMO proteins, SUMO1-4, with SUMO2 and SUMO3 forming a closely related subfamily. SUMO2/3, in contrast to SUMO1, are predominantly involved in the cellular response to certain stresses, including heat shock. Substantial evidence from studies in yeast has shown that SUMOylation plays an important role in the regulation of DNA replication and repair. Here, we report a proteomic analysis of proteins modified by SUMO2 in response to DNA replication stress in S phase in human cells. We have identified a panel of 22 SUMO2 targets with increased SUMOylation during DNA replication stress, many of which play key functions within the DNA replication machinery and/or in the cellular response to DNA damage. Interestingly, POLD3 was found modified most significantly in response to a low dose aphidicolin treatment protocol that promotes common fragile site (CFS) breakage. POLD3 is the human ortholog of POL32 in budding yeast, and has been shown to act during break-induced recombinational repair. We have also shown that deficiency of POLD3 leads to an increase in RPA-bound ssDNA when cells are under replication stress, suggesting that POLD3 plays a role in the cellular response to DNA replication stress. Considering that DNA replication stress is a source of genome instability, and that excessive replication stress is a hallmark of pre-neoplastic and tumor cells, our characterization of SUMO2 targets during a perturbed S-phase should provide a valuable resource for future functional studies in the fields of DNA metabolism and cancer biology.
Collapse
Affiliation(s)
- Sara Bursomanno
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, DK-2200 Copenhagen, Denmark
| | - Petra Beli
- Department of Proteomics, The Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Panum Institute, DK-2200 Copenhagen, Denmark; Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Asif M Khan
- Molecular Oncology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Sheroy Minocherhomji
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, DK-2200 Copenhagen, Denmark
| | - Sebastian A Wagner
- Department of Proteomics, The Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Panum Institute, DK-2200 Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Department of Disease Biology, The Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Panum Institute, DK-2200 Copenhagen, Denmark
| | - Niels Mailand
- Department of Disease Biology, The Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Panum Institute, DK-2200 Copenhagen, Denmark
| | - Chunaram Choudhary
- Department of Proteomics, The Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Panum Institute, DK-2200 Copenhagen, Denmark
| | - Ian D Hickson
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, DK-2200 Copenhagen, Denmark; Molecular Oncology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Ying Liu
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, DK-2200 Copenhagen, Denmark; Molecular Oncology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
13
|
Yang W, Paschen W. SUMO proteomics to decipher the SUMO-modified proteome regulated by various diseases. Proteomics 2014; 15:1181-91. [PMID: 25236368 DOI: 10.1002/pmic.201400298] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/18/2014] [Accepted: 09/15/2014] [Indexed: 01/14/2023]
Abstract
Small ubiquitin-like modifier (SUMO1-3) conjugation is a posttranslational protein modification whereby SUMOs are conjugated to lysine residues of target proteins. SUMO conjugation can alter the activity, stability, and function of target proteins, and thereby modulate almost all major cellular pathways. Many diseases are associated with SUMO conjugation, including heart failure, arthritis, cancer, degenerative diseases, and brain ischemia/stroke. It is, therefore, of major interest to characterize the SUMO-modified proteome regulated by these disorders. SUMO proteomics analysis is hampered by low levels of SUMOylated proteins. Several strategies have, therefore, been developed to enrich SUMOylated proteins from cell/tissue extracts. These include proteomics analysis on cells expressing epitope-tagged SUMO isoforms, use of monoclonal SUMO antibodies for immunoprecipitation and epitope-specific peptides for elution, and affinity purification with peptides containing SUMO interaction motifs to specifically enrich polySUMOylated proteins. Recently, two mouse models were generated and characterized that express tagged SUMO isoforms, and allow purification of SUMOylated proteins from complex organ extracts. Ultimately, these new analytical tools will help to decipher the SUMO-modified proteome regulated by various human diseases, and thereby, identify new targets for preventive and therapeutic purposes.
Collapse
Affiliation(s)
- Wei Yang
- Molecular Neurobiology Laboratory, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
14
|
Zech J, Dalgaard JZ. Replisome components--post-translational modifications and their effects. Semin Cell Dev Biol 2014; 30:144-53. [PMID: 24685613 DOI: 10.1016/j.semcdb.2014.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/10/2014] [Accepted: 03/23/2014] [Indexed: 12/22/2022]
Abstract
The process of DNA replication is highly regulated, but at the same time very dynamic. Once S-phase is initiated and replication elongation is occurring, the cells are committed to complete replication in order to ensure genome stability and survival. Many pathways exist to resolve situations where normal replisome progression is not possible. It is becoming more and more evident that post-translational modifications of replisome components play a key role in regulating these pathways which ensure fork progression. Here we review the known modifications of the progressing replisome and how these modifications are thought to affect DNA replication in unperturbed and perturbed S-phases.
Collapse
Affiliation(s)
- Juergen Zech
- Warwick Medical School, University of Warwick, Gibbert Hill Campus, CV47AL Coventry, UK
| | - Jacob Zeuthen Dalgaard
- Warwick Medical School, University of Warwick, Gibbert Hill Campus, CV47AL Coventry, UK.
| |
Collapse
|
15
|
Qin Y, Bao H, Pan Y, Yin M, Liu Y, Wu S, Li H. SUMOylation alterations are associated with multidrug resistance in hepatocellular carcinoma. Mol Med Rep 2014; 9:877-81. [PMID: 24399357 DOI: 10.3892/mmr.2014.1882] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 12/12/2013] [Indexed: 12/29/2022] Open
Abstract
The development of multidrug resistance (MDR) in hepatocellular carcinoma (HCC) may markedly reduce the efficacy of its chemotherapeutic treatment. However, the mechanism regulating the development of MDR in these tumors remains unknown. Given the emerging role of small ubiquitin‑like modifier (SUMO)ylation in tumorigenesis, the possibility that it may also be involved in MDR development was investigated. The expression of SUMO‑1 was first analyzed using immunohistochemistry in 20 cases of HCC. Nuclear SUMO‑1 immunostaining was observed to be significantly increased in HCC specimens compared with matched adjacent non‑neoplastic controls. To further investigate the potential role of SUMOylation in MDR in HCC, a multidrug‑resistant HCC cell line, HepG2/R, was established by exposing HCC cells to gradually increasing concentrations of 5‑fluorouracil. Western blot analysis revealed that the total levels of SUMO‑1‑conjugated proteins were markedly increased in HepG2/R cells compared with parental HepG2 cells. Furthermore, the expression of ubiquitin‑like modifier activating enzyme 2 and sentrin‑specific protease 1, important enzymes in the SUMOylation cascade, were markedly upregulated in the HepG2/R cell line. These findings support the hypothesis that SUMOylation is important in the development of MDR in HCC.
Collapse
Affiliation(s)
- Yu Qin
- Department of Diagnostics, College of Basic Medical Science, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Huijing Bao
- School of Laboratory Medicine, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Yi Pan
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Meilin Yin
- School of Laboratory Medicine, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Yunde Liu
- School of Laboratory Medicine, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Shangwei Wu
- School of Laboratory Medicine, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Huikai Li
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| |
Collapse
|
16
|
Liu YY, Kogai T, Schultz JJ, Mody K, Brent GA. Thyroid hormone receptor isoform-specific modification by small ubiquitin-like modifier (SUMO) modulates thyroid hormone-dependent gene regulation. J Biol Chem 2012; 287:36499-508. [PMID: 22930759 DOI: 10.1074/jbc.m112.344317] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thyroid hormone receptor (TR) α and β mediate thyroid hormone action at target tissues. TR isoforms have specific roles in development and in adult tissues. The mechanisms underlying TR isoform-specific action, however, are not well understood. We demonstrate that posttranslational modification of TR by conjugation of small SUMO to TRα and TRβ plays an important role in triiodothyronine (T3) action and TR isoform specificity. TRα was sumoylated at lysines 283 and 389, and TRβ at lysines 50, 146, and 443. Sumoylation of TRβ was ligand-dependent, and sumoylation of TRα was ligand-independent. TRα-SUMO conjugation utilized the E3 ligase PIASxβ and TRβ-SUMO conjugation utilized predominantly PIAS1. SUMO1 and SUMO3 conjugation to TR was important for T3-dependent gene regulation, as demonstrated in transient transfection assay and studies of endogenous gene regulation. The functional role of SUMO1 and SUMO3 in T3 induction in transient expression assays was closely matched to the pattern of TR and cofactor recruitment to thyroid hormone response elements (TREs) as determined by ChIP assays. SUMO1 was required for the T3-induced recruitment of the co-activator CREB-binding protein (CBP) and release of nuclear receptor co-repressor (NCoR) on a TRE but had no significant effect on TR DNA binding. SUMO1 was required for T3-mediated recruitment of NCoR and release of CBP from the TSHβ-negative TRE. SUMO3 was required for T3-stimulated TR binding to the TSHβ-negative TRE and recruitment of NCoR. These findings demonstrate that conjugation of SUMO to TR has a TR-isoform preference and is important for T3-dependent gene induction and repression.
Collapse
Affiliation(s)
- Yan-Yun Liu
- Molecular Endocrinology Laboratory, Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System and David Geffen School of Medicine at UCLA, Los Angeles, California 90073, USA.
| | | | | | | | | |
Collapse
|
17
|
Arginine methylation controls growth regulation by E2F-1. EMBO J 2012; 31:1785-97. [PMID: 22327218 DOI: 10.1038/emboj.2012.17] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 01/04/2012] [Indexed: 01/19/2023] Open
Abstract
E2F transcription factors are implicated in diverse cellular functions. The founding member, E2F-1, is endowed with contradictory activities, being able to promote cell-cycle progression and induce apoptosis. However, the mechanisms that underlie the opposing outcomes of E2F-1 activation remain largely unknown. We show here that E2F-1 is directly methylated by PRMT5 (protein arginine methyltransferase 5), and that arginine methylation is responsible for regulating its biochemical and functional properties, which impacts on E2F-1-dependent growth control. Thus, depleting PRMT5 causes increased E2F-1 protein levels, which coincides with decreased growth rate and associated apoptosis. Arginine methylation influences E2F-1 protein stability, and the enhanced transcription of a variety of downstream target genes reflects increased E2F-1 DNA-binding activity. Importantly, E2F-1 is methylated in tumour cells, and a reduced level of methylation is evident under DNA damage conditions that allow E2F-1 stabilization and give rise to apoptosis. Significantly, in a subgroup of colorectal cancer, high levels of PRMT5 frequently coincide with low levels of E2F-1 and reflect a poor clinical outcome. Our results establish that arginine methylation regulates the biological activity of E2F-1 activity, and raise the possibility that arginine methylation contributes to tumourigenesis by influencing the E2F pathway.
Collapse
|
18
|
Abstract
DNA polymerase δ (Pol δ) is a member of the B-family DNA polymerases and is one of the major replicative DNA polymerases in eukaryotes. In addition to chromosomal DNA replication it is also involved in DNA repair and recombination. Pol δ is a multi-subunit complex comprised of a catalytic subunit and accessory subunits. The latter subunits play a critical role in the regulation of Pol δ functions. Recent progress in the structural characterization of Pol δ, together with a vast number of biochemical and functional studies, provides the basis for understanding the intriguing mechanisms of its regulation during DNA replication, repair and recombination. In this chapter we review the current state of the Pol δ structure-function relationship with an emphasis on the role of its accessory subunits.
Collapse
Affiliation(s)
- Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA,
| |
Collapse
|
19
|
SUMO2 and SUMO3 transcription is differentially regulated by oxidative stress in an Sp1-dependent manner. Biochem J 2011; 435:489-98. [DOI: 10.1042/bj20101474] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein SUMOylation (SUMO is small ubiquitin-related modifier) is a dynamic process that is strictly regulated under physiological and pathological conditions. However, little is known about how various intra- or extra-cellular stimuli regulate expression levels of components in the SUMO system. SUMO isoforms SUMO2 and SUMO3 can rapidly convert to be conjugated in response to a variety of cellular stresses. Owing to the limitations of sequence homology, SUMO2 and SUMO3 cannot be differentiated between and are thus referred to as SUMO2/3. Whether these two isoforms are regulated in distinct manners has never been addressed. In the present paper we report that the expression of SUMO3, but not SUMO2, can be down-regulated at the transcription level by cellular oxidative stress. In the present study, we checked SUMO2 and SUMO3 mRNA levels in cells exposed to various doses of H2O2 and in cells bearing different levels of ROS (reactive oxygen species). We found an inverse relationship between SUMO3 transcription and ROS levels. We characterized a promoter region specific for the mouse Sumo3 gene that is bound by the redox-sensitive transcription factor Sp1 (specificity protein 1) and demonstrated oxidation of Sp1, as well as suppression of Sp1–DNA binding upon oxidative stress. This revealed for the first time that the expression of SUMO2 and SUMO3 is regulated differently by ROS. These findings may enhance our understanding about the regulation of SUMOylation and also shed light on the functions of Sp1.
Collapse
|
20
|
van Loon B, Markkanen E, Hübscher U. Oxygen as a friend and enemy: How to combat the mutational potential of 8-oxo-guanine. DNA Repair (Amst) 2010; 9:604-16. [PMID: 20399712 DOI: 10.1016/j.dnarep.2010.03.004] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 03/17/2010] [Indexed: 12/20/2022]
Abstract
The maintenance of genetic stability is of crucial importance for any form of life. Prior to cell division in each mammalian cell, the process of DNA replication must faithfully duplicate the three billion bases with an absolute minimum of mistakes. Various environmental and endogenous agents, such as reactive oxygen species (ROS), can modify the structural properties of DNA bases and thus damage the DNA. Upon exposure of cells to oxidative stress, an often generated and highly mutagenic DNA damage is 7,8-dihydro-8-oxo-guanine (8-oxo-G). The estimated steady-state level of 8-oxo-G lesions is about 10(3) per cell/per day in normal tissues and up to 10(5) lesions per cell/per day in cancer tissues. The presence of 8-oxo-G on the replicating strand leads to frequent (10-75%) misincorporations of adenine opposite the lesion (formation of A:8-oxo-G mispairs), subsequently resulting in C:G to A:T transversion mutations. These mutations are among the most predominant somatic mutations in lung, breast, ovarian, gastric and colorectal cancers. Thus, in order to reduce the mutational burden of ROS, human cells have evolved base excision repair (BER) pathways ensuring (i) the correct and efficient repair of A:8-oxo-G mispairs and (ii) the removal of 8-oxo-G lesions from the genome. Very recently it was shown that MutY glycosylase homologue (MUTYH) and DNA polymerase lambda play a crucial role in the accurate repair of A:8-oxo-G mispairs. Here we review the importance of accurate BER of 8-oxo-G damage and its regulation in prevention of cancer.
Collapse
Affiliation(s)
- Barbara van Loon
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | |
Collapse
|
21
|
Raistrick CA, Day INM, Gaunt TR. Genome-wide data-mining of candidate human splice translational efficiency polymorphisms (STEPs) and an online database. PLoS One 2010; 5:e13340. [PMID: 20948966 PMCID: PMC2952627 DOI: 10.1371/journal.pone.0013340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 08/26/2010] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Variation in pre-mRNA splicing is common and in some cases caused by genetic variants in intronic splicing motifs. Recent studies into the insulin gene (INS) discovered a polymorphism in a 5' non-coding intron that influences the likelihood of intron retention in the final mRNA, extending the 5' untranslated region and maintaining protein quality. Retention was also associated with increased insulin levels, suggesting that such variants--splice translational efficiency polymorphisms (STEPs)--may relate to disease phenotypes through differential protein expression. We set out to explore the prevalence of STEPs in the human genome and validate this new category of protein quantitative trait loci (pQTL) using publicly available data. METHODOLOGY/PRINCIPAL FINDINGS Gene transcript and variant data were collected and mined for candidate STEPs in motif regions. Sequences from transcripts containing potential STEPs were analysed for evidence of splice site recognition and an effect in expressed sequence tags (ESTs). 16 publicly released genome-wide association data sets of common diseases were searched for association to candidate polymorphisms with HapMap frequency data. Our study found 3324 candidate STEPs lying in motif sequences of 5' non-coding introns and further mining revealed 170 with transcript evidence of intron retention. 21 potential STEPs had EST evidence of intron retention or exon extension, as well as population frequency data for comparison. CONCLUSIONS/SIGNIFICANCE Results suggest that the insulin STEP was not a unique example and that many STEPs may occur genome-wide with potentially causal effects in complex disease. An online database of STEPs is freely accessible at http://dbstep.genes.org.uk/.
Collapse
Affiliation(s)
- Christopher A. Raistrick
- Bristol Genetic Epidemiology Laboratories, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Ian N. M. Day
- Bristol Genetic Epidemiology Laboratories, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
- MRC Centre for Causal Analyses in Translational Epidemiology (CAiTE), School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Tom R. Gaunt
- Bristol Genetic Epidemiology Laboratories, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
- MRC Centre for Causal Analyses in Translational Epidemiology (CAiTE), School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
22
|
Johansson E, Macneill SA. The eukaryotic replicative DNA polymerases take shape. Trends Biochem Sci 2010; 35:339-47. [PMID: 20163964 DOI: 10.1016/j.tibs.2010.01.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/14/2010] [Accepted: 01/19/2010] [Indexed: 11/17/2022]
Abstract
Three multi-subunit DNA polymerase enzymes lie at the heart of the chromosome replication machinery in the eukaryotic cell nucleus. Through a combination of genetic, molecular biological and biochemical analysis, significant advances have been made in understanding the essential roles played by each of these enzymes at the replication fork. Until very recently, however, little information was available on their three-dimensional structures. Lately, a series of crystallographic and electron microscopic studies has been published, allowing the structures of the complexes and their constituent subunits to be visualised in detail for the first time. Taken together, these studies provide significant insights into the molecular makeup of the replication machinery in eukaryotic cells and highlight a number of key areas for future investigation.
Collapse
Affiliation(s)
- Erik Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | | |
Collapse
|
23
|
Bomar MG, D’Souza S, Bienko M, Dikic I, Walker GC, Zhou P. Unconventional ubiquitin recognition by the ubiquitin-binding motif within the Y family DNA polymerases iota and Rev1. Mol Cell 2010; 37:408-17. [PMID: 20159559 PMCID: PMC2841503 DOI: 10.1016/j.molcel.2009.12.038] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 08/10/2009] [Accepted: 11/23/2009] [Indexed: 10/19/2022]
Abstract
Translesion synthesis is an essential cell survival strategy to promote replication after DNA damage. The accumulation of Y family polymerases (pol) iota and Rev1 at the stalled replication machinery is mediated by the ubiquitin-binding motifs (UBMs) of the polymerases and enhanced by PCNA monoubiquitination. We report the solution structures of the C-terminal UBM of human pol iota and its complex with ubiquitin. Distinct from other ubiquitin-binding domains, the UBM binds to the hydrophobic surface of ubiquitin centered at L8. Accordingly, mutation of L8A, but not I44A, of ubiquitin abolishes UBM binding. Human pol iota contains two functional UBMs, both contributing to replication foci formation. In contrast, only the second UBM of Saccharomyces cerevisiae Rev1 binds to ubiquitin and is essential for Rev1-dependent cell survival and mutagenesis. Point mutations disrupting the UBM-ubiquitin interaction also impair the accumulation of pol iota in replication foci and Rev1-mediated DNA damage tolerance in vivo.
Collapse
Affiliation(s)
- Martha G. Bomar
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Sanjay D’Souza
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marzena Bienko
- Institute of Biochemistry II and Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
| | - Ivan Dikic
- Institute of Biochemistry II and Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Pei Zhou
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
24
|
Vlachostergios PJ, Patrikidou A, Daliani DD, Papandreou CN. The ubiquitin-proteasome system in cancer, a major player in DNA repair. Part 1: post-translational regulation. J Cell Mol Med 2009; 13:3006-3018. [PMID: 19522845 PMCID: PMC4516461 DOI: 10.1111/j.1582-4934.2009.00824.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Accepted: 06/03/2009] [Indexed: 11/28/2022] Open
Abstract
DNA repair is a fundamental cellular function, indispensable for cell survival, especially in conditions of exposure to environmental or pharmacological effectors of DNA damage. The regulation of this function requires a flexible machinery to orchestrate the reversal of harmful DNA lesions by making use of existing proteins as well as inducible gene products. The accumulation of evidence for the involvement of ubiquitin-proteasome system (UPS) in DNA repair pathways, that is reviewed here, has expanded its role from a cellular waste disposal basket to a multi-dimensional regulatory system. This review is the first of two that attempt to illustrate the nature and interactions of all different DNA repair pathways where UPS is demonstrated to be involved, with special focus on cancer- and chemotherapy-related DNA-damage repair. In this first review, we will be presenting the proteolytic and non-proteolytic roles of UPS in the post-translational regulation of DNA repair proteins, while the second review will focus on the UPS-dependent transcriptional response of DNA repair after DNA damage and stress.
Collapse
|
25
|
Yang W, Paschen W. Gene expression and cell growth are modified by silencing SUMO2 and SUMO3 expression. Biochem Biophys Res Commun 2009; 382:215-8. [PMID: 19275883 DOI: 10.1016/j.bbrc.2009.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 03/01/2009] [Indexed: 11/30/2022]
Abstract
Small ubiquitin-like modifier (SUMO) is a group of proteins binding to lysine residues of target proteins and thereby modifying their stability, activity and subcellular localization. Here we report that blocking SUMO2 and SUMO3 conjugation by silencing their expression markedly modifies gene expression. A microRNA-based RNAi system was used to specifically silence SUMO2 and SUMO3 expression simultaneously and stably transfected neuroblastoma B35 cells expressing dual SUMO2/3 microRNA were created. In cells stably expressing SUMO2/3 microRNA, mRNA levels of 105 and 58 known genes were significantly up- and down-regulated, respectively. About 20% of differentially regulated genes were associated with pathways involved in cell growth and differentiation. Cell division was significantly suppressed in SUMO2/3 miRNA expressing cells. Elucidating what effect the silencing of SUMO2/3 expression has on gene expression will help to identify the impact of SUMO2/3 conjugation on the various cellular pathways.
Collapse
Affiliation(s)
- Wei Yang
- Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, 130 Sands Building, Research Drive, Durham, NC 27710, USA
| | | |
Collapse
|
26
|
Gao Y, Zhou Y, Xie B, Zhang S, Rahmeh A, Huang HS, Lee MYWT, Lee EYC. Protein Phosphatase-1 Is Targeted to DNA Polymerase δ via an Interaction with the p68 Subunit. Biochemistry 2008; 47:11367-76. [DOI: 10.1021/bi801122t] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yan Gao
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595
| | - Yajing Zhou
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595
| | - Bin Xie
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595
| | - Sufang Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595
| | - Amal Rahmeh
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595
| | - Hua-shan Huang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595
| | - Marietta Y. W. T. Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595
| | - Ernest Y. C. Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595
| |
Collapse
|
27
|
Selak N, Bachrati CZ, Shevelev I, Dietschy T, van Loon B, Jacob A, Hübscher U, Hoheisel JD, Hickson ID, Stagljar I. The Bloom's syndrome helicase (BLM) interacts physically and functionally with p12, the smallest subunit of human DNA polymerase delta. Nucleic Acids Res 2008; 36:5166-79. [PMID: 18682526 PMCID: PMC2532730 DOI: 10.1093/nar/gkn498] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bloom's syndrome (BS) is a cancer predisposition disorder caused by mutation of the BLM gene, encoding a member of the RecQ helicase family. Although the phenotype of BS cells is suggestive of a role for BLM in repair of stalled or damaged replication forks, thus far there has been no direct evidence that BLM associates with any of the three human replicative DNA polymerases. Here, we show that BLM interacts specifically in vitro and in vivo with p12, the smallest subunit of human POL δ (hPOL δ). The hPOL δ enzyme, as well as the isolated p12 subunit, stimulates the DNA helicase activity of BLM. Conversely, BLM stimulates hPOL δ strand displacement activity. Our results provide the first functional link between BLM and the replicative machinery in human cells, and suggest that BLM might be recruited to sites of disrupted replication through an interaction with hPOL δ. Finally, our data also define a novel role for the poorly characterized p12 subunit of hPOL δ.
Collapse
Affiliation(s)
- Nives Selak
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Edmunds CE, Simpson LJ, Sale JE. PCNA ubiquitination and REV1 define temporally distinct mechanisms for controlling translesion synthesis in the avian cell line DT40. Mol Cell 2008; 30:519-29. [PMID: 18498753 DOI: 10.1016/j.molcel.2008.03.024] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 11/07/2007] [Accepted: 03/18/2008] [Indexed: 12/18/2022]
Abstract
Translesion synthesis (TLS) is a potentially mutagenic method of bypassing DNA damage encountered during replication that requires the recruitment of specialized DNA polymerases to stalled replication forks or postreplicative gaps. Current models suggest that TLS is activated by monoubiquitination of the DNA sliding clamp PCNA. However, in higher organisms, fully effective TLS also requires a noncatalytic function of the Y family polymerase REV1. Using the genetically tractable chicken cell line DT40, we show that TLS at stalled replication forks requires that both the translesion polymerase-interaction domain and ubiquitin-binding domain in the C terminus of REV1 are intact. Surprisingly, however, PCNA ubiquitination is not required to maintain normal fork progression on damaged DNA. Conversely, PCNA ubiquitination is essential for filling postreplicative gaps. Thus, PCNA ubiquitination and REV1 play distinct roles in the coordination of DNA damage bypass that are temporally separated relative to replication fork arrest.
Collapse
Affiliation(s)
- Charlotte E Edmunds
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | | |
Collapse
|
29
|
Göhler T, Munoz IM, Rouse J, Blow JJ. PTIP/Swift is required for efficient PCNA ubiquitination in response to DNA damage. DNA Repair (Amst) 2008; 7:775-87. [PMID: 18353733 DOI: 10.1016/j.dnarep.2008.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 02/05/2008] [Accepted: 02/07/2008] [Indexed: 11/26/2022]
Abstract
Monoubiquitination of proliferating cell nuclear antigen (PCNA) enables translesion synthesis (TLS) by specialized DNA polymerases to replicate past damaged DNA. We have studied PCNA modification and chromatin recruitment of TLS polymerases in Xenopus egg extracts and mammalian cells. We show that Xenopus PCNA becomes ubiquitinated and sumoylated after replication stress induced by UV or aphidicolin. Under these conditions the TLS polymerase eta was recruited to chromatin and also became monoubiquitinated. PTIP/Swift is an adaptor protein for the ATM/ATR kinases. Immunodepletion of PTIP/Swift from Xenopus extracts prevented efficient PCNA ubiquitination and polymerase eta recruitment to chromatin during replicative stress. In addition to PCNA ubiquitination, efficient polymerase eta recruitment to chromatin also required ATR kinase activity. We also show that PTIP depletion from mammalian cells by RNAi reduced PCNA ubiquitination in response to DNA damage, and also decreased the recruitment to chromatin of polymerase eta and the recombination protein Rad51. Our results suggest that PTIP/Swift is an important new regulator of DNA damage avoidance in metazoans.
Collapse
Affiliation(s)
- Thomas Göhler
- College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | | | | | |
Collapse
|
30
|
Jacobs AMF, Nicol SM, Hislop RG, Jaffray EG, Hay RT, Fuller-Pace FV. SUMO modification of the DEAD box protein p68 modulates its transcriptional activity and promotes its interaction with HDAC1. Oncogene 2007; 26:5866-76. [PMID: 17369852 DOI: 10.1038/sj.onc.1210387] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The nuclear protein p68 (also known as Ddx5) is a prototypic member of the 'DEAD box' family of RNA helicases, which has been shown to be abnormally expressed and modified in colorectal tumors and to function as an important transcriptional regulator. Here, we show that p68 is modified in vivo on a single site (K53) by the small ubiquitin-like modifier-2 (SUMO-2). We demonstrate that the SUMO E3 ligase PIAS1 interacts with p68 and enhances its SUMO modification in vivo. To determine the functional consequences of SUMO modification, we compared the transcriptional activity of p68 and a K53R mutant that could not be SUMO-modified. Our data show that SUMO modification enhances p68 transcriptional repression activity and inhibits the ability of p68 to function as a coactivator of p53. These findings may be explained by the ability of wild type, but not K53R p68, to alter the modification state of chromatin by recruitment of histone deacetylase 1 (HDAC1).
Collapse
Affiliation(s)
- A-M F Jacobs
- Cancer Biology Group, Division of Pathology and Neuroscience, University of Dundee, Ninewells Hospital and Medical School, Ninewells Drive, Dundee, Tayside, UK
| | | | | | | | | | | |
Collapse
|
31
|
Zhang S, Zhou Y, Trusa S, Meng X, Lee EYC, Lee MYWT. A novel DNA damage response: rapid degradation of the p12 subunit of dna polymerase delta. J Biol Chem 2007; 282:15330-40. [PMID: 17317665 DOI: 10.1074/jbc.m610356200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mammalian DNA polymerase (Pol) delta is essential for DNA replication. It consists of four subunits, p125, p50, p68, and p12. We report the discovery that the p12 subunit is rapidly degraded in cultured human cells by DNA damage or replication stress brought about by treatments with UV, methyl methanesulfonate, hydroxyurea, and aphidicolin. The degradation of p12 is due to an accelerated rate of proteolysis that is inhibited by the proteasome inhibitors, MG132 and lactacystin. UV treatment converts Pol delta in vivo to the three-subunit form lacking p12. This was demonstrated by its isolation using immunoaffinity chromatography. The three-subunit enzyme retains activity on poly(dA)/oligo(dT) templates but is impaired in its ability to extend singly primed M13 templates, clearly indicating that its in vivo functions are likely to be compromised. This transformation of Pol delta by modification of its quaternary structure is reversible in vitro by the addition of the p12 subunit and could represent a novel in vivo mechanism for the modulation of Pol delta function. UV and hydroxyurea-triggered p12 degradation is blocked in ATR(-/-) cells but not in ATM(-/-) cells, thereby demonstrating that p12 degradation is regulated by ATR, the apical kinase that regulates the damage response in S-phase. These findings reveal a novel addition to the cellular repertoire of DNA damage responses that also impacts our understanding of the role of Pol delta in both DNA replication and DNA repair.
Collapse
Affiliation(s)
- Sufang Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | |
Collapse
|