1
|
Han X, Xu X, Xiong Y, Zhao G, He R, Su Y, Li S, Zhao C, Xi X, Zhao Y, Xu X, Xie S, Wang H, Li X, Zhao S, Ruan J. Enhancing Prime Editing Efficiency Through Modulation of Methylation on the Newly Synthesized DNA Strand and Prolonged Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417790. [PMID: 40051369 PMCID: PMC12061241 DOI: 10.1002/advs.202417790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Indexed: 05/10/2025]
Abstract
Prime editors (PEs) have emerged as transformative tools for precision genome engineering, yet their broader application remains constrained by incomplete understanding of repair mechanisms. In this study, it is found that an increase in the methylation level of the CpG sequence on the newly generated strand can increase PE efficiency and that de novo DNA methyltransferases (DNMT3A/3B) are involved in the PE repair pathway. On the basis of these novel findings, the development of an episomal element-driven PE system (epiPE) achieved through the use of EBNA1/oriP are presented, which increases methylation levels around target sites and prolongs PE expression. A comparative analysis with canonical PE systems, including PE2, lentiPE2, and PE4max, reveals that the epiPE2 system significantly enhances editing efficiency while maintaining minimal insertion and deletion (indels) rates. Specifically, comparing to PE2, the epiPE2 system demonstrated an efficiency enhancement of 2.0 to 38.2-fold. In addition, the epiPE2 system is capable of efficient multiplex precise gene editing at up to 10 genetic loci in human cells. In conclusion, this findings increase the understanding of the PE repair mechanism, and presents the epiPE2 system as an efficient and multiplex-capable prime editing tool with potential applications in both basic research and translational studies.
Collapse
Affiliation(s)
- Xiaosong Han
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070P. R. China
- Yazhouwan National LaboratorySanya572024P. R. China
| | - Xianghua Xu
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Youcai Xiong
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Guangxing Zhao
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Ruigao He
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Yinyu Su
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Sheng Li
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Changzhi Zhao
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070P. R. China
- Yazhouwan National LaboratorySanya572024P. R. China
| | - Xiaoning Xi
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Yunxia Zhao
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070P. R. China
- Yazhouwan National LaboratorySanya572024P. R. China
| | - Xuewen Xu
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070P. R. China
- Frontiers Science Center for Animal Breeding and Sustainable ProductionHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Heng Wang
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070P. R. China
- Frontiers Science Center for Animal Breeding and Sustainable ProductionHuazhong Agricultural UniversityWuhan430070P. R. China
- Hubei Hongshan LaboratoryFrontiers Science Center for Animal Breeding and Sustainable ProductionWuhan430070P. R. China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070P. R. China
- Yazhouwan National LaboratorySanya572024P. R. China
- Frontiers Science Center for Animal Breeding and Sustainable ProductionHuazhong Agricultural UniversityWuhan430070P. R. China
- Hubei Hongshan LaboratoryFrontiers Science Center for Animal Breeding and Sustainable ProductionWuhan430070P. R. China
| | - Jinxue Ruan
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070P. R. China
- Frontiers Science Center for Animal Breeding and Sustainable ProductionHuazhong Agricultural UniversityWuhan430070P. R. China
| |
Collapse
|
2
|
Shlyakhtina Y, Bloechl B, Portal MM. BdLT-Seq as a barcode decay-based method to unravel lineage-linked transcriptome plasticity. Nat Commun 2023; 14:1085. [PMID: 36841849 PMCID: PMC9968323 DOI: 10.1038/s41467-023-36744-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/14/2023] [Indexed: 02/26/2023] Open
Abstract
Cell plasticity is a core biological process underlying a myriad of molecular and cellular events taking place throughout organismal development and evolution. It has been postulated that cellular systems thrive to balance the organization of meta-stable states underlying this phenomenon, thereby maintaining a degree of populational homeostasis compatible with an ever-changing environment and, thus, life. Notably, albeit circumstantial evidence has been gathered in favour of the latter conceptual framework, a direct observation of meta-state dynamics and the biological consequences of such a process in generating non-genetic clonal diversity and divergent phenotypic output remains largely unexplored. To fill this void, here we develop a lineage-tracing technology termed Barcode decay Lineage Tracing-Seq. BdLT-Seq is based on episome-encoded molecular identifiers that, supported by the dynamic decay of the tracing information upon cell division, ascribe directionality to a cell lineage tree whilst directly coupling non-genetic molecular features to phenotypes in comparable genomic landscapes. We show that cell transcriptome states are both inherited, and dynamically reshaped following constrained rules encoded within the cell lineage in basal growth conditions, upon oncogene activation and throughout the process of reversible resistance to therapeutic cues thus adjusting phenotypic output leading to intra-clonal non-genetic diversity.
Collapse
Affiliation(s)
- Yelyzaveta Shlyakhtina
- Cell Plasticity & Epigenetics Lab, Cancer Research UK - Manchester Institute, The University of Manchester, SK10 4TG, Manchester, UK
| | - Bianca Bloechl
- Cell Plasticity & Epigenetics Lab, Cancer Research UK - Manchester Institute, The University of Manchester, SK10 4TG, Manchester, UK
| | - Maximiliano M Portal
- Cell Plasticity & Epigenetics Lab, Cancer Research UK - Manchester Institute, The University of Manchester, SK10 4TG, Manchester, UK.
| |
Collapse
|
3
|
Schlaeger TM. Nonintegrating Human Somatic Cell Reprogramming Methods. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 163:1-21. [PMID: 29075799 DOI: 10.1007/10_2017_29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Traditional biomedical research and preclinical studies frequently rely on animal models and repeatedly draw on a relatively small set of human cell lines, such as HeLa, HEK293, HepG2, HL60, and PANC1 cells. However, animal models often fail to reproduce important clinical phenotypes and conventional cell lines only represent a small number of cell types or diseases, have very limited ethnic/genetic diversity, and either senesce quickly or carry potentially confounding immortalizing mutations. In recent years, human pluripotent stem cells have attracted a lot of attention, in part because these cells promise more precise modeling of human diseases. Expectations are also high that pluripotent stem cell technologies can deliver cell-based therapeutics for the cure of a wide range of degenerative and other diseases. This review focuses on episomal and Sendai viral reprogramming modalities, which are the most popular methods for generating transgene-free human induced pluripotent stem cells (hiPSCs) from easily accessible cell sources. Graphical Abstract.
Collapse
Affiliation(s)
- Thorsten M Schlaeger
- Stem Cell Program, Boston Children's Hospital, Karp RB09213, 1 Blackfan Circle, Boston, MA, 02446, USA.
| |
Collapse
|
4
|
Bruter AV, Kandarakov OF, Belyavsky AV. Persistence of plasmid-mediated expression of transgenes in human mesenchymal stem cells depends primarily on CpG levels of both vector and transgene. J Gene Med 2018; 20:e3009. [DOI: 10.1002/jgm.3009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/20/2018] [Accepted: 01/20/2018] [Indexed: 01/25/2023] Open
Affiliation(s)
- Alexandra V. Bruter
- Russian Academy of Sciences; Engelhardt Institute of Molecular Biology; Moscow Russia
| | - Oleg F. Kandarakov
- Russian Academy of Sciences; Engelhardt Institute of Molecular Biology; Moscow Russia
| | | |
Collapse
|
5
|
Transdifferentiation and reprogramming: Overview of the processes, their similarities and differences. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1359-1369. [PMID: 28460880 DOI: 10.1016/j.bbamcr.2017.04.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 12/24/2022]
Abstract
Reprogramming, or generation of induced pluripotent stem (iPS) cells (functionally similar to embryonic stem cells or ES cells) by the use of transcription factors (typically: Oct3/4, Sox2, c-Myc, Klf4) called "Yamanaka factors" (OSKM), has revolutionized regenerative medicine. However, factors used to induce stemness are also overexpressed in cancer. Both, ES cells and iPS cells cause teratoma formation when injected to tissues. This raises a safety concern for therapies based on iPS derivates. Transdifferentiation (lineage reprogramming, or -conversion), is a process in which one mature, specialized cell type changes into another without entering a pluripotent state. This process involves an ectopic expression of transcription factors and/or other stimuli. Unlike in the case of reprogramming, tissues obtained by this method do not carry the risk of subsequent teratomagenesis.
Collapse
|
6
|
Hu K. All roads lead to induced pluripotent stem cells: the technologies of iPSC generation. Stem Cells Dev 2014; 23:1285-300. [PMID: 24524728 PMCID: PMC4046204 DOI: 10.1089/scd.2013.0620] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/12/2014] [Indexed: 12/26/2022] Open
Abstract
Generation of induced pluripotent stem cells (iPSCs) via the ectopic expression of reprogramming factors is a simple, advanced, yet often perplexing technology due to low efficiency, slow kinetics, and the use of numerous distinct systems for factor delivery. Scientists have used almost all available approaches for the delivery of reprogramming factors. Even the well-established retroviral vectors confuse some scientists due to different tropisms in use. The canonical virus-based reprogramming poses many problems, including insertional mutagenesis, residual expression and re-activation of reprogramming factors, uncontrolled silencing of transgenes, apoptosis, cell senescence, and strong immunogenicity. To eliminate or alleviate these problems, scientists have tried various other approaches for factor delivery and transgene removal. These include transient transfection, nonintegrating viral vectors, Cre-loxP excision of transgenes, excisable transposon, protein transduction, RNA transfection, microRNA transfection, RNA virion, RNA replicon, nonintegrating replicating episomal plasmids, minicircles, polycistron, and preintegration of inducible reprogramming factors. These alternative approaches have their own limitations. Even iPSCs generated with RNA approaches should be screened for possible transgene insertions mediated by active endogenous retroviruses in the human genome. Even experienced researchers may encounter difficulty in selecting and using these different technologies. This survey presents overviews of iPSC technologies with the intention to provide a quick yet comprehensive reference for both new and experienced reprogrammers.
Collapse
Affiliation(s)
- Kejin Hu
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Insitute, School of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
7
|
Hou Z, Zhang Y, Propson NE, Howden SE, Chu LF, Sontheimer EJ, Thomson JA. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci U S A 2013; 110:15644-9. [PMID: 23940360 PMCID: PMC3785731 DOI: 10.1073/pnas.1313587110] [Citation(s) in RCA: 500] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genome engineering in human pluripotent stem cells (hPSCs) holds great promise for biomedical research and regenerative medicine. Recently, an RNA-guided, DNA-cleaving interference pathway from bacteria [the type II clustered, regularly interspaced, short palindromic repeats (CRISPR)-CRISPR-associated (Cas) pathway] has been adapted for use in eukaryotic cells, greatly facilitating genome editing. Only two CRISPR-Cas systems (from Streptococcus pyogenes and Streptococcus thermophilus), each with their own distinct targeting requirements and limitations, have been developed for genome editing thus far. Furthermore, limited information exists about homology-directed repair (HDR)-mediated gene targeting using long donor DNA templates in hPSCs with these systems. Here, using a distinct CRISPR-Cas system from Neisseria meningitidis, we demonstrate efficient targeting of an endogenous gene in three hPSC lines using HDR. The Cas9 RNA-guided endonuclease from N. meningitidis (NmCas9) recognizes a 5'-NNNNGATT-3' protospacer adjacent motif (PAM) different from those recognized by Cas9 proteins from S. pyogenes and S. thermophilus (SpCas9 and StCas9, respectively). Similar to SpCas9, NmCas9 is able to use a single-guide RNA (sgRNA) to direct its activity. Because of its distinct protospacer adjacent motif, the N. meningitidis CRISPR-Cas machinery increases the sequence contexts amenable to RNA-directed genome editing.
Collapse
Affiliation(s)
| | - Yan Zhang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3500
| | | | | | - Li-Fang Chu
- Morgridge Institute for Research, Madison, WI 53715
| | - Erik J. Sontheimer
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3500
| | - James A. Thomson
- Morgridge Institute for Research, Madison, WI 53715
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI 53706; and
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106
| |
Collapse
|
8
|
Feng X, Zhang J, Smuga-Otto K, Tian S, Yu J, Stewart R, Thomson JA. Protein kinase C mediated extraembryonic endoderm differentiation of human embryonic stem cells. Stem Cells 2012; 30:461-70. [PMID: 22213079 DOI: 10.1002/stem.1018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Unlike mouse embryonic stem cells (ESCs), which are closely related to the inner cell mass, human ESCs appear to be more closely related to the later primitive ectoderm. For example, human ESCs and primitive ectoderm share a common epithelial morphology, growth factor requirements, and the potential to differentiate to all three embryonic germ layers. However, it has previously been shown that human ESCs can also differentiate to cells expressing markers of trophoblast, an extraembryonic lineage formed before the formation of primitive ectoderm. Here, we show that phorbol ester 12-O-tetradecanoylphorbol 13-acetate causes human ESCs to undergo an epithelial mesenchymal transition and to differentiate into cells expressing markers of parietal endoderm, another extraembryonic lineage. We further confirmed that this differentiation is through the activation of protein kinase C (PKC) pathway and demonstrated that a particular PKC subtype, PKC-δ, is most responsible for this transition.
Collapse
Affiliation(s)
- Xuezhu Feng
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Smirnikhina SA, Lavrov AV, Bochkov NP. Dynamics of elimination of plasmids and expression of VEGF121 gene transfected into human mesenchymal stem cells by different methods. Bull Exp Biol Med 2012; 151:121-5. [PMID: 22442816 DOI: 10.1007/s10517-011-1272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We compared two methods of transfection (lipofection and electroporation) with plasmid containing VEGF121 gene in four cultures of mesenchymal stem cells from the human adipose tissue. The efficacy of transfection after 1 day, the dynamics of plasmid elimination after 3, 6, 9 days, and expression of the target gene were evaluated. Transfection by both methods failed in one of 4 cultures. Analysis of the plasmid elimination dynamics showed that the content of plasmids introduced by both methods decreased by 30-69% in all cultures by day 3 and then remained unchanged from day 3 to day 9. The expression of the target gene did not correlate with the content of plasmids in cells and varied by 2-10 times in control cells and cells transfected by both methods. Fluctuation of VEGF121 expression was not related to methylation.
Collapse
Affiliation(s)
- S A Smirnikhina
- Medical Genetics Research Center, Russian Academy of Medical Sciences, Moscow, Russia.
| | | | | |
Collapse
|
10
|
Efficient feeder-free episomal reprogramming with small molecules. PLoS One 2011; 6:e17557. [PMID: 21390254 PMCID: PMC3046978 DOI: 10.1371/journal.pone.0017557] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 01/26/2011] [Indexed: 11/19/2022] Open
Abstract
Genetic reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) could offer replenishable cell sources for transplantation therapies. To fulfill their promises, human iPSCs will ideally be free of exogenous DNA (footprint-free), and be derived and cultured in chemically defined media free of feeder cells. Currently, methods are available to enable efficient derivation of footprint-free human iPSCs. However, each of these methods has its limitations. We have previously derived footprint-free human iPSCs by employing episomal vectors for transgene delivery, but the process was inefficient and required feeder cells. Here, we have greatly improved the episomal reprogramming efficiency using a cocktail containing MEK inhibitor PD0325901, GSK3β inhibitor CHIR99021, TGF-β/Activin/Nodal receptor inhibitor A-83-01, ROCK inhibitor HA-100 and human leukemia inhibitory factor. Moreover, we have successfully established a feeder-free reprogramming condition using chemically defined medium with bFGF and N2B27 supplements and chemically defined human ESC medium mTeSR1 for the derivation of footprint-free human iPSCs. These improvements enabled the routine derivation of footprint-free human iPSCs from skin fibroblasts, adipose tissue-derived cells and cord blood cells. This technology will likely be valuable for the production of clinical-grade human iPSCs.
Collapse
|
11
|
Chédin F. The DNMT3 family of mammalian de novo DNA methyltransferases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 101:255-85. [PMID: 21507354 DOI: 10.1016/b978-0-12-387685-0.00007-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The deposition of DNA methylation at promoters of transposons, X-linked genes, imprinted genes, and other lineage-specific genes is clearly associated with long-term transcriptional silencing. Thus, DNA methylation represents a key layer of epigenetic information in mammals that is required for embryonic development, germline differentiation, and, as shown more recently, for the function and maturation of neuronal tissues. The DNMT3A, DNMT3B, and DNMT3L proteins are primarily responsible for the establishment of genomic DNA methylation patterns and, as such, play an important role in human developmental, reproductive, and mental health. Progress in our understanding of this important protein family has been rapid in recent years and has been accompanied by stunning developments in the analysis of the human DNA methylome in multiple cell types. This review focuses on recent developments in the characterization of the DNMT3 family of DNA methyltransferases at the biochemical, structural, and functional levels. Interconnections between the DNA-based and histone-based layers of epigenetic information are particularly highlighted, as it is now clear that de novo methylation occurs chiefly in the context of nucleosomal templates.
Collapse
Affiliation(s)
- Frédéric Chédin
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA
| |
Collapse
|
12
|
Wienholz BL, Kareta MS, Moarefi AH, Gordon CA, Ginno PA, Chédin F. DNMT3L modulates significant and distinct flanking sequence preference for DNA methylation by DNMT3A and DNMT3B in vivo. PLoS Genet 2010; 6:e1001106. [PMID: 20838592 PMCID: PMC2936528 DOI: 10.1371/journal.pgen.1001106] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 08/02/2010] [Indexed: 12/11/2022] Open
Abstract
The DNTM3A and DNMT3B de novo DNA methyltransferases (DNMTs) are responsible for setting genomic DNA methylation patterns, a key layer of epigenetic information. Here, using an in vivo episomal methylation assay and extensive bisulfite methylation sequencing, we show that human DNMT3A and DNMT3B possess significant and distinct flanking sequence preferences for target CpG sites. Selection for high or low efficiency sites is mediated by the base composition at the -2 and +2 positions flanking the CpG site for DNMT3A, and at the -1 and +1 positions for DNMT3B. This intrinsic preference reproducibly leads to the formation of specific de novo methylation patterns characterized by up to 34-fold variations in the efficiency of DNA methylation at individual sites. Furthermore, analysis of the distribution of signature methylation hotspot and coldspot motifs suggests that DNMT flanking sequence preference has contributed to shaping the composition of CpG islands in the human genome. Our results also show that the DNMT3L stimulatory factor modulates the formation of de novo methylation patterns in two ways. First, DNMT3L selectively focuses the DNA methylation machinery on properly chromatinized DNA templates. Second, DNMT3L attenuates the impact of the intrinsic DNMT flanking sequence preference by providing a much greater boost to the methylation of poorly methylated sites, thus promoting the formation of broader and more uniform methylation patterns. This study offers insights into the manner by which DNA methylation patterns are deposited and reveals a new level of interplay between members of the de novo DNMT family.
Collapse
Affiliation(s)
- Bethany L. Wienholz
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Michael S. Kareta
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Amir H. Moarefi
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Catherine A. Gordon
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Paul A. Ginno
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
13
|
Saito K, Abe H, Nakazawa M, Irokawa E, Watanabe M, Hosoi Y, Soma M, Kasuga K, Kojima I, Kobayashi M. Cloning of complementary DNAs encoding structurally related homeoproteins from preimplantation mouse embryos: their involvement in the differentiation of embryonic stem cells. Biol Reprod 2009; 82:687-97. [PMID: 20018908 DOI: 10.1095/biolreprod.108.075697] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
During the preimplantation development of mouse embryos between the 4-cell to 8-cell stage and the morula stage, when the first irreversible segregation of cell fates proceeds into the pluripotent inner cell mass (progenitor cells to form the fetus) and the trophectoderm (to form the placenta) of blastocysts, pluripotency-maintaining and differentiation-inducing genes are expressed to coordinately regulate cell fates. Three structurally related cDNAs (Crxos1, Crxos1 sv2, and Crxos1 tv3) that exhibited concomitant elevated expression during this critical period were identified by subtractive cDNA cloning. CRXOS1 contains two homeodomains, while CRXOS1 sv2 and CRXOS1 tv3 each contain one of the homeodomains included in CRXOS1. Crxos1, Crxos1 sv2, and Crxos1 tv3 were expressed differentially during in vitro embryonic stem (ES) cell differentiation. Even under differentiation-inducing conditions, forced expression of Crxos1 sv2 inhibited the differentiation of ES cells. In contrast, under conditions that promote self-renewal of ES cells, forced expression of Crxos1 induced differentiation. Forced expression of Crxos1 resulted in induction of Gata4 but in repression of T, probably indicating that Crxos1 promotes the differentiation of ES cells into primitive endoderm, while inhibiting differentiation into mesoderm. On the other hand, no apparent effects of forced expression of Crxos1 tv3 were observed. Taken together, it was concluded that these transcripts encoding homeoproteins are capable of regulating the maintenance and/or differentiation of mouse ES cells and likely regulate that of preimplantation embryos.
Collapse
Affiliation(s)
- Koichi Saito
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Marchetto MCN, Yeo GW, Kainohana O, Marsala M, Gage FH, Muotri AR. Transcriptional signature and memory retention of human-induced pluripotent stem cells. PLoS One 2009; 4:e7076. [PMID: 19763270 PMCID: PMC2741600 DOI: 10.1371/journal.pone.0007076] [Citation(s) in RCA: 231] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 08/20/2009] [Indexed: 12/15/2022] Open
Abstract
Genetic reprogramming of somatic cells to a pluripotent state (induced pluripotent stem cells or iPSCs) by over-expression of specific genes has been accomplished using mouse and human cells. However, it is still unclear how similar human iPSCs are to human Embryonic Stem Cells (hESCs). Here, we describe the transcriptional profile of human iPSCs generated without viral vectors or genomic insertions, revealing that these cells are in general similar to hESCs but with significant differences. For the generation of human iPSCs without viral vectors or genomic insertions, pluripotent factors Oct4 and Nanog were cloned in episomal vectors and transfected into human fetal neural progenitor cells. The transient expression of these two factors, or from Oct4 alone, resulted in efficient generation of human iPSCs. The reprogramming strategy described here revealed a potential transcriptional signature for human iPSCs yet retaining the gene expression of donor cells in human reprogrammed cells free of viral and transgene interference. Moreover, the episomal reprogramming strategy represents a safe way to generate human iPSCs for clinical purposes and basic research.
Collapse
Affiliation(s)
- Maria C. N. Marchetto
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California, United States of America
| | - Gene W. Yeo
- University of California San Diego, School of Medicine, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, California, United States of America
| | - Osamu Kainohana
- University of California, San Diego, School of Medicine, Department of Anesthesiology, La Jolla, California, United States of America
| | - Martin Marsala
- University of California, San Diego, School of Medicine, Department of Anesthesiology, La Jolla, California, United States of America
| | - Fred H. Gage
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California, United States of America
| | - Alysson R. Muotri
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
|
16
|
Thyagarajan B, Scheyhing K, Xue H, Fontes A, Chesnut J, Rao M, Lakshmipathy U. A single EBV-based vector for stable episomal maintenance and expression of GFP in human embryonic stem cells. Regen Med 2009; 4:239-50. [DOI: 10.2217/17460751.4.2.239] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aim: Stable expression of transgenes in stem cells has been a challenge due to the nonavailability of efficient transfection methods and the inability of transgenes to support sustained gene expression. Several methods have been reported to stably modify both embryonic and adult stem cells. These methods rely on integration of the transgene into the genome of the host cell, which could result in an expression pattern dependent on the number of integrations and the genomic locus of integration. To overcome this issue, site-specific integration methods mediated by integrase, adeno-associated virus or via homologous recombination have been used to generate stable human embryonic stem cell (hESC) lines. In this study, we describe a vector that is maintained episomally in hESCs. Methods: The vector used in this study is based on components derived from the Epstein–Barr virus, containing the Epstein–Barr virus nuclear antigen 1 expression cassette and the OriP origin of replication. The vector also expresses the drug-resistance marker gene hygromycin, which allows for selection and long-term maintenance of cells harboring the plasmid. Results: Using this vector system, we show sustained expression of green fluorescent protein in undifferentiated hESCs and their differentiating embryoid bodies. In addition, the stable hESC clones show comparable expression with and without drug selection. Consistent with this observation, bulk-transfected adipose tissue-derived mesenchymal stem cells showed persistent marker gene expression as they differentiate into adipocytes, osteoblasts and chondroblasts. Conclusions: Episomal vectors offer a fast and efficient method to create hESC reporter lines, which in turn allows one to test the effect of overexpression of various genes on stem cell growth, proliferation and differentiation.
Collapse
Affiliation(s)
- Bhaskar Thyagarajan
- Primary and Stem Cell Systems, Life Technologies, 5781 Van Allen Way, Carlsbad, CA 92008, USA
| | - Kelly Scheyhing
- Primary and Stem Cell Systems, Life Technologies, 5781 Van Allen Way, Carlsbad, CA 92008, USA
| | - Haipeng Xue
- Primary and Stem Cell Systems, Life Technologies, 5781 Van Allen Way, Carlsbad, CA 92008, USA
| | - Andrew Fontes
- Primary and Stem Cell Systems, Life Technologies, 5781 Van Allen Way, Carlsbad, CA 92008, USA
| | - Jon Chesnut
- Primary and Stem Cell Systems, Life Technologies, 5781 Van Allen Way, Carlsbad, CA 92008, USA
| | - Mahendra Rao
- Primary and Stem Cell Systems, Life Technologies, 5781 Van Allen Way, Carlsbad, CA 92008, USA
| | - Uma Lakshmipathy
- Primary and Stem Cell Systems, Life Technologies, 5781 Van Allen Way, Carlsbad, CA 92008, USA
| |
Collapse
|
17
|
Braam SR, Denning C, Matsa E, Young LE, Passier R, Mummery CL. Feeder-free culture of human embryonic stem cells in conditioned medium for efficient genetic modification. Nat Protoc 2008; 3:1435-43. [PMID: 18772870 DOI: 10.1038/nprot.2008.140] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Realizing the potential of human embryonic stem cells (hESCs) in research and commercial applications requires generic protocols for culture, expansion and genetic modification that function between multiple lines. Here we describe a feeder-free hESC culture protocol that was tested in 13 independent hESC lines derived in five different laboratories. The procedure is based on Matrigel adaptation in mouse embryonic fibroblast conditioned medium (CM) followed by monolayer culture of hESC. When combined, these techniques provide a robust hESC culture platform, suitable for high-efficiency genetic modification via plasmid transfection (using lipofection or electroporation), siRNA knockdown and viral transduction. In contrast to other available protocols, it does not require optimization for individual lines. hESC transiently expressing ectopic genes are obtained within 9 d and stable transgenic lines within 3 weeks.
Collapse
Affiliation(s)
- Stefan R Braam
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
Schwartz PH, Brick DJ, Stover AE, Loring JF, Müller FJ. Differentiation of neural lineage cells from human pluripotent stem cells. Methods 2008; 45:142-58. [PMID: 18593611 DOI: 10.1016/j.ymeth.2008.03.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 03/25/2008] [Indexed: 01/18/2023] Open
Abstract
Human pluripotent stem cells have the unique properties of being able to proliferate indefinitely in their undifferentiated state and to differentiate into any somatic cell type. These cells are thus posited to be extremely useful for furthering our understanding of both normal and abnormal human development, providing a human cell preparation that can be used to screen for new reagents or therapeutic agents, and generating large numbers of differentiated cells that can be used for transplantation purposes. Critical among the applications for the latter are diseases and injuries of the nervous system, medical approaches to which have been, to date, primarily palliative in nature. Differentiation of human pluripotent stem cells into cells of the neural lineage, therefore, has become a central focus of a number of laboratories. This has resulted in the description in the literature of several dozen methods for neural cell differentiation from human pluripotent stem cells. Among these are methods for the generation of such divergent neural cells as dopaminergic neurons, retinal neurons, ventral motoneurons, and oligodendroglial progenitors. In this review, we attempt to fully describe most of these methods, breaking them down into five basic subdivisions: (1) starting material, (2) induction of loss of pluripotency, (3) neural induction, (4) neural maintenance and expansion, and (5) neuronal/glial differentiation. We also show data supporting the concept that undifferentiated human pluripotent stem cells appear to have an innate neural differentiation potential. In addition, we evaluate data comparing and contrasting neural stem cells differentiated from human pluripotent stem cells with those derived directly from the human brain.
Collapse
Affiliation(s)
- Philip H Schwartz
- Center for Translational Research, Children's Hospital of Orange County Research Institute, 455 South Main Street, Orange, CA 92868-3874, USA.
| | | | | | | | | |
Collapse
|
19
|
Lee MH, Hook B, Pan G, Kershner AM, Merritt C, Seydoux G, Thomson JA, Wickens M, Kimble J. Conserved regulation of MAP kinase expression by PUF RNA-binding proteins. PLoS Genet 2008; 3:e233. [PMID: 18166083 PMCID: PMC2323325 DOI: 10.1371/journal.pgen.0030233] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 11/14/2007] [Indexed: 01/06/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) and PUF (for Pumilio and FBF [fem-3 binding factor]) RNA-binding proteins control many cellular processes critical for animal development and tissue homeostasis. In the present work, we report that PUF proteins act directly on MAPK/ERK-encoding mRNAs to downregulate their expression in both the Caenorhabditis elegans germline and human embryonic stem cells. In C. elegans, FBF/PUF binds regulatory elements in the mpk-1 3′ untranslated region (3′ UTR) and coprecipitates with mpk-1 mRNA; moreover, mpk-1 expression increases dramatically in FBF mutants. In human embryonic stem cells, PUM2/PUF binds 3′UTR elements in both Erk2 and p38α mRNAs, and PUM2 represses reporter constructs carrying either Erk2 or p38α 3′ UTRs. Therefore, the PUF control of MAPK expression is conserved. Its biological function was explored in nematodes, where FBF promotes the self-renewal of germline stem cells, and MPK-1 promotes oocyte maturation and germ cell apoptosis. We found that FBF acts redundantly with LIP-1, the C. elegans homolog of MAPK phosphatase (MKP), to restrict MAPK activity and prevent apoptosis. In mammals, activated MAPK can promote apoptosis of cancer cells and restrict stem cell self-renewal, and MKP is upregulated in cancer cells. We propose that the dual negative regulation of MAPK by both PUF repression and MKP inhibition may be a conserved mechanism that influences both stem cell maintenance and tumor progression. The mitogen-activated protein (MAP) kinase (MAPK) enzyme is crucial for regulation of both stem cell maintenance and tumorigenesis. Two conserved controls of MAPK include its activation by RAS signaling and a kinase cascade as well as its inactivation by MAPK phosphatases (MKPs). We identify a third mode of conserved MAPK regulation. We demonstrate that PUF (for Pumilio and FBF [fem-3 binding factor]) RNA-binding proteins repress mRNAs encoding MAPK enzymes in both the Caenorhabditis elegans germline and human embryonic stem cells. PUF proteins have emerged as conserved regulators of germline stem cells in C. elegans, Drosophila, and probably vertebrates. Their molecular mode of action relies on binding to sequence elements in the 3′ untranslated region of target mRNAs. We report that PUF proteins bind and repress mRNAs encoding C. elegans MPK-1 as well as human ERK2 and p38α. We also report that PUF repression and MKP inactivation function redundantly in the C. elegans germline to restrict MPK-1/MAPK activity and prevent germ cell apoptosis. We suggest that this dual regulation of MAPK activity by PUF and MKP proteins may be a conserved mechanism for the control of growth and differentiation during animal development and tissue homeostasis.
Collapse
Affiliation(s)
- Myon-Hee Lee
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Brad Hook
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Guangjin Pan
- Genome Centre of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Aaron M Kershner
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Christopher Merritt
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Geraldine Seydoux
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - James A Thomson
- Genome Centre of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Judith Kimble
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|