1
|
Sagun JP, Khan SG, Imoto K, Tamura D, Oh KS, DiGiovanna JJ, Kraemer KH. Different germline variants in the XPA gene are associated with severe, intermediate, or mild neurodegeneration in xeroderma pigmentosum patients. PLoS Genet 2024; 20:e1011265. [PMID: 39621777 PMCID: PMC11637439 DOI: 10.1371/journal.pgen.1011265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/12/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024] Open
Abstract
Xeroderma pigmentosum (XP) is a rare autosomal recessive disease caused by pathogenic variants in seven nucleotide excision repair genes (XPA to XPG) and POLH involved in translesion synthesis. XP patients have a >1000-fold increased risk for sunlight-induced skin cancers. Many Japanese XP-A patients have severe neurological symptoms due to a founder variant in intron 3 of the XPA gene. However, in the United States we found XP-A patients with milder clinical features. We developed a simple scoring scale to assess XP-A patients of varying neurological disease severity. We report 18 XP-A patients examined between 1973 and 2023 under an IRB approved natural history study. Using our scale, we classified our XP-A cohort into severe (n = 8), intermediate (n = 5), and mild (n = 5) disease groups at age 10 years. DNA repair tests demonstrated greatest reduction of DNA repair in cells from severe patients as compared to cells from mild patients. Nucleotide sequencing identified 18 germline pathogenic variants in the 273 amino acid, 6 exon-containing XPA gene. Based on patient clinical features, we associated these XPA variants to severe (n = 8), intermediate (n = 6), and mild (n = 4) clinical phenotypes in the patients. Protein structural analysis showed that nonsense and frameshift premature stop codon pathogenic variants located in exons 3 and 5 correlated with severe disease. Intermediate disease correlated with a splice variant at the last base in exon 4. Mild disease correlated with a frameshift variant in exon 1 with a predicted re-initiation in exon 2; a splice variant that created a new strong donor site in intron 4; and a large genomic deletion spanning exon 6. Our findings revealed correlations between disease severity, DNA repair capacity, and XPA variant type and location. In addition, both XPA alleles contributed to the phenotypic differences in XP-A patients.
Collapse
Affiliation(s)
- Jeffrey P. Sagun
- Laboratory of Cancer Biology and Genetics, DNA Repair Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sikandar G. Khan
- Laboratory of Cancer Biology and Genetics, DNA Repair Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kyoko Imoto
- Laboratory of Cancer Biology and Genetics, DNA Repair Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Nara Medical University, Kashihara, Japan
| | - Deborah Tamura
- Laboratory of Cancer Biology and Genetics, DNA Repair Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kyu-Seon Oh
- Laboratory of Cancer Biology and Genetics, DNA Repair Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - John J. DiGiovanna
- Laboratory of Cancer Biology and Genetics, DNA Repair Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kenneth H. Kraemer
- Laboratory of Cancer Biology and Genetics, DNA Repair Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
2
|
Dasgupta A, Prensner JR. Upstream open reading frames: new players in the landscape of cancer gene regulation. NAR Cancer 2024; 6:zcae023. [PMID: 38774471 PMCID: PMC11106035 DOI: 10.1093/narcan/zcae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
The translation of RNA by ribosomes represents a central biological process and one of the most dysregulated processes in cancer. While translation is traditionally thought to occur exclusively in the protein-coding regions of messenger RNAs (mRNAs), recent transcriptome-wide approaches have shown abundant ribosome activity across diverse stretches of RNA transcripts. The most common type of this kind of ribosome activity occurs in gene leader sequences, also known as 5' untranslated regions (UTRs) of the mRNA, that precede the main coding sequence. Translation of these upstream open reading frames (uORFs) is now known to occur in upwards of 25% of all protein-coding genes. With diverse functions from RNA regulation to microprotein generation, uORFs are rapidly igniting a new arena of cancer biology, where they are linked to cancer genetics, cancer signaling, and tumor-immune interactions. This review focuses on the contributions of uORFs and their associated 5'UTR sequences to cancer biology.
Collapse
Affiliation(s)
- Anwesha Dasgupta
- Chad Carr Pediatric Brain Tumor Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - John R Prensner
- Chad Carr Pediatric Brain Tumor Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Kiss RS, Chicoine J, Khalil Y, Sladek R, Chen H, Pisaturo A, Martin C, Dale JD, Brudenell TA, Kamath A, Kyei-Boahen J, Hafiane A, Daliah G, Alecki C, Hopes TS, Heier M, Aligianis IA, Lebrun JJ, Aspden J, Paci E, Kerksiek A, Lütjohann D, Clayton P, Wills JC, von Kriegsheim A, Nilsson T, Sheridan E, Handley MT. Comparative proximity biotinylation implicates the small GTPase RAB18 in sterol mobilization and biosynthesis. J Biol Chem 2023; 299:105295. [PMID: 37774976 PMCID: PMC10641524 DOI: 10.1016/j.jbc.2023.105295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 10/01/2023] Open
Abstract
Loss of functional RAB18 causes the autosomal recessive condition Warburg Micro syndrome. To better understand this disease, we used proximity biotinylation to generate an inventory of potential RAB18 effectors. A restricted set of 28 RAB18 interactions were dependent on the binary RAB3GAP1-RAB3GAP2 RAB18-guanine nucleotide exchange factor complex. Twelve of these 28 interactions are supported by prior reports, and we have directly validated novel interactions with SEC22A, TMCO4, and INPP5B. Consistent with a role for RAB18 in regulating membrane contact sites, interactors included groups of microtubule/membrane-remodeling proteins, membrane-tethering and docking proteins, and lipid-modifying/transporting proteins. Two of the putative interactors, EBP and OSBPL2/ORP2, have sterol substrates. EBP is a Δ8-Δ7 sterol isomerase, and ORP2 is a lipid transport protein. This prompted us to investigate a role for RAB18 in cholesterol biosynthesis. We found that the cholesterol precursor and EBP-product lathosterol accumulates in both RAB18-null HeLa cells and RAB3GAP1-null fibroblasts derived from an affected individual. Furthermore, de novo cholesterol biosynthesis is impaired in cells in which RAB18 is absent or dysregulated or in which ORP2 expression is disrupted. Our data demonstrate that guanine nucleotide exchange factor-dependent Rab interactions are highly amenable to interrogation by proximity biotinylation and may suggest that Micro syndrome is a cholesterol biosynthesis disorder.
Collapse
Affiliation(s)
- Robert S Kiss
- Cardiovascular Health Across the Lifespan (CHAL) Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| | - Jarred Chicoine
- Metabolic Disorders and Complications (MEDIC) Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Youssef Khalil
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Robert Sladek
- Metabolic Disorders and Complications (MEDIC) Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - He Chen
- Cardiovascular Health Across the Lifespan (CHAL) Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Alessandro Pisaturo
- Cardiovascular Health Across the Lifespan (CHAL) Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Cyril Martin
- Cardiovascular Health Across the Lifespan (CHAL) Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jessica D Dale
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, United Kingdom
| | - Tegan A Brudenell
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, United Kingdom
| | - Archith Kamath
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom; Division of Medical Sciences, University of Oxford, Oxford, United Kingdom
| | - Jeffrey Kyei-Boahen
- Department of Medicine, McGill University Health Centre, CHAL Research Program, Montreal, Canada
| | - Anouar Hafiane
- Department of Medicine, McGill University Health Centre, CHAL Research Program, Montreal, Canada
| | - Girija Daliah
- Department of Medicine, McGill University Health Centre, Cancer Research Program, Montreal, Canada
| | - Célia Alecki
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Tayah S Hopes
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Martin Heier
- Department of Clinical Neuroscience for Children, Oslo University Hospital, Oslo, Norway
| | - Irene A Aligianis
- Medical and Developmental Genetics, Medical Research Council Human Genetics Unit, Edinburgh, United Kingdom
| | - Jean-Jacques Lebrun
- Department of Medicine, McGill University Health Centre, Cancer Research Program, Montreal, Canada
| | - Julie Aspden
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Emanuele Paci
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Peter Clayton
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Jimi C Wills
- Cancer Research United Kingdom Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom; Firefinch Software Ltd, Edinburgh, United Kingdom
| | - Alex von Kriegsheim
- Cancer Research United Kingdom Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Tommy Nilsson
- Cancer Research Program (CRP), Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Eamonn Sheridan
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, United Kingdom
| | - Mark T Handley
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, United Kingdom; Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
4
|
Homayoonfal M, Gilasi H, Asemi Z, Mahabady MK, Asemi R, Yousefi B. Quercetin modulates signal transductions and targets non-coding RNAs against cancer development. Cell Signal 2023; 107:110667. [PMID: 37023996 DOI: 10.1016/j.cellsig.2023.110667] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/22/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
In recent decades, various investigations have indicated that natural compounds have great potential in the prevention and treatment of different chronic disorders including different types of cancer. As a bioactive flavonoid, Quercetin (Qu) is a dietary ingredient enjoying high pharmacological values and health-promoting effects due to its antioxidant and anti-inflammatory characterization. Conclusive in vitro and in vivo evidence has revealed that Qu has great potential in cancer prevention and development. Qu exerts its anticancer influences by altering various cellular processes such as apoptosis, autophagy, angiogenesis, metastasis, cell cycle, and proliferation. In this way, Qu by targeting numerous signaling pathways as well as non-coding RNAs regulates several cellular mechanisms to suppress cancer occurrence and promotion. This review aimed to summarize the impact of Qu on the molecular pathways and non-coding RNAs in modulating various cancer-associated cellular mechanisms.
Collapse
Affiliation(s)
- Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamidreza Gilasi
- Department of Biostatistics and Epidemiology, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Kovalski JR, Kuzuoglu‐Ozturk D, Ruggero D. Protein synthesis control in cancer: selectivity and therapeutic targeting. EMBO J 2022; 41:e109823. [PMID: 35315941 PMCID: PMC9016353 DOI: 10.15252/embj.2021109823] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 11/09/2022] Open
Abstract
Translational control of mRNAs is a point of convergence for many oncogenic signals through which cancer cells tune protein expression in tumorigenesis. Cancer cells rely on translational control to appropriately adapt to limited resources while maintaining cell growth and survival, which creates a selective therapeutic window compared to non-transformed cells. In this review, we first discuss how cancer cells modulate the translational machinery to rapidly and selectively synthesize proteins in response to internal oncogenic demands and external factors in the tumor microenvironment. We highlight the clinical potential of compounds that target different translation factors as anti-cancer therapies. Next, we detail how RNA sequence and structural elements interface with the translational machinery and RNA-binding proteins to coordinate the translation of specific pro-survival and pro-growth programs. Finally, we provide an overview of the current and emerging technologies that can be used to illuminate the mechanisms of selective translational control in cancer cells as well as within the microenvironment.
Collapse
Affiliation(s)
- Joanna R Kovalski
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of UrologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Duygu Kuzuoglu‐Ozturk
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of UrologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Davide Ruggero
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of UrologyUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoCAUSA
| |
Collapse
|
6
|
Li H, Xiao L, Zhang L, Wu J, Wei B, Sun N, Zhao Y. FSPP: A Tool for Genome-Wide Prediction of smORF-Encoded Peptides and Their Functions. Front Genet 2018; 9:96. [PMID: 29675032 PMCID: PMC5896265 DOI: 10.3389/fgene.2018.00096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 03/08/2018] [Indexed: 02/01/2023] Open
Abstract
smORFs are small open reading frames of less than 100 codons. Recent low throughput experiments showed a lot of smORF-encoded peptides (SEPs) played crucial rule in processes such as regulation of transcription or translation, transportation through membranes and the antimicrobial activity. In order to gather more functional SEPs, it is necessary to have access to genome-wide prediction tools to give profound directions for low throughput experiments. In this study, we put forward a functional smORF-encoded peptides predictor (FSPP) which tended to predict authentic SEPs and their functions in a high throughput method. FSPP used the overlap of detected SEPs from Ribo-seq and mass spectrometry as target objects. With the expression data on transcription and translation levels, FSPP built two co-expression networks. Combing co-location relations, FSPP constructed a compound network and then annotated SEPs with functions of adjacent nodes. Tested on 38 sequenced samples of 5 human cell lines, FSPP successfully predicted 856 out of 960 annotated proteins. Interestingly, FSPP also highlighted 568 functional SEPs from these samples. After comparison, the roles predicted by FSPP were consistent with known functions. These results suggest that FSPP is a reliable tool for the identification of functional small peptides. FSPP source code can be acquired at https://www.bioinfo.org/FSPP.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.,School of Computer and Control Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Li Xiao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Lili Zhang
- School of Computer and Control Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, China.,CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jiarui Wu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Bin Wei
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Ninghui Sun
- State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Yi Zhao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Young SK, Wek RC. Upstream Open Reading Frames Differentially Regulate Gene-specific Translation in the Integrated Stress Response. J Biol Chem 2016; 291:16927-35. [PMID: 27358398 DOI: 10.1074/jbc.r116.733899] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Translation regulation largely occurs during initiation, which features ribosome assembly onto mRNAs and selection of the translation start site. Short, upstream ORFs (uORFs) located in the 5'-leader of the mRNA can be selected for translation. Multiple transcripts associated with stress amelioration are preferentially translated through uORF-mediated mechanisms during activation of the integrated stress response (ISR) in which phosphorylation of the α subunit of eIF2 results in a coincident global reduction in translation initiation. This review presents key features of uORFs that serve to optimize translational control that is essential for regulation of cell fate in response to environmental stresses.
Collapse
Affiliation(s)
- Sara K Young
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5126
| | - Ronald C Wek
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5126
| |
Collapse
|
8
|
Wethmar K, Schulz J, Muro EM, Talyan S, Andrade-Navarro MA, Leutz A. Comprehensive translational control of tyrosine kinase expression by upstream open reading frames. Oncogene 2015; 35:1736-42. [PMID: 26096937 PMCID: PMC4820681 DOI: 10.1038/onc.2015.233] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 04/02/2015] [Accepted: 05/10/2015] [Indexed: 12/24/2022]
Abstract
Post-transcriptional control has emerged as a major regulatory event in gene expression and often occurs at the level of translation initiation. Although overexpression or constitutive activation of tyrosine kinases (TKs) through gene amplification, translocation or mutation are well-characterized oncogenic events, current knowledge about translational mechanisms of TK activation is scarce. Here, we report the presence of translational cis-regulatory upstream open reading frames (uORFs) in the majority of transcript leader sequences of human TK mRNAs. Genetic ablation of uORF initiation codons in TK transcripts resulted in enhanced translation of the associated downstream main protein-coding sequences (CDSs) in all cases studied. Similarly, experimental removal of uORF start codons in additional non-TK proto-oncogenes, and naturally occurring loss-of-uORF alleles of the c-met proto-oncogene (MET) and the kinase insert domain receptor (KDR), was associated with increased CDS translation. Based on genome-wide sequence analyses we identified polymorphisms in 15.9% of all human genes affecting uORF initiation codons, associated Kozak consensus sequences or uORF-related termination codons. Together, these data suggest a comprehensive role of uORF-mediated translational control and delineate how aberrant induction of proto-oncogenes through loss-of-function mutations at uORF initiation codons may be involved in the etiology of cancer. We provide a detailed map of uORFs across the human genome to stimulate future research on the pathogenic role of uORFs.
Collapse
Affiliation(s)
- K Wethmar
- Department of Cell Differentiation and Tumorigenesis, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany.,Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - J Schulz
- Department of Cell Differentiation and Tumorigenesis, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - E M Muro
- Department of Computational Biology and Data Mining, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany.,Department of Biology, Institute of Molecular Biology, Johannes-Gutenberg University, Mainz, Germany
| | - S Talyan
- Department of Biology, Institute of Molecular Biology, Johannes-Gutenberg University, Mainz, Germany
| | - M A Andrade-Navarro
- Department of Computational Biology and Data Mining, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany.,Department of Biology, Institute of Molecular Biology, Johannes-Gutenberg University, Mainz, Germany
| | - A Leutz
- Department of Cell Differentiation and Tumorigenesis, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany.,Department of Biology, Humboldt-University, Berlin, Germany
| |
Collapse
|
9
|
Wethmar K, Barbosa-Silva A, Andrade-Navarro MA, Leutz A. uORFdb--a comprehensive literature database on eukaryotic uORF biology. Nucleic Acids Res 2013; 42:D60-7. [PMID: 24163100 PMCID: PMC3964959 DOI: 10.1093/nar/gkt952] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Approximately half of all human transcripts contain at least one upstream translational initiation site that precedes the main coding sequence (CDS) and gives rise to an upstream open reading frame (uORF). We generated uORFdb, publicly available at http://cbdm.mdc-berlin.de/tools/uorfdb, to serve as a comprehensive literature database on eukaryotic uORF biology. Upstream ORFs affect downstream translation by interfering with the unrestrained progression of ribosomes across the transcript leader sequence. Although the first uORF-related translational activity was observed >30 years ago, and an increasing number of studies link defective uORF-mediated translational control to the development of human diseases, the features that determine uORF-mediated regulation of downstream translation are not well understood. The uORFdb was manually curated from all uORF-related literature listed at the PubMed database. It categorizes individual publications by a variety of denominators including taxon, gene and type of study. Furthermore, the database can be filtered for multiple structural and functional uORF-related properties to allow convenient and targeted access to the complex field of eukaryotic uORF biology.
Collapse
Affiliation(s)
- Klaus Wethmar
- Max Delbrück Center for Molecular Medicine (MDC), Cell Differentiation and Tumorigenesis, Robert-Rössle-Strasse 10, D-13092 Berlin, Germany, Hematology, Oncology and Tumor Immunology, Helios Klinikum Berlin-Buch, Schwanebecker Chaussee 50, D-13125 Berlin, Germany, Max Delbrück Center for Molecular Medicine (MDC), Computational Biology and Data Mining, Robert-Rössle-Strasse 10, D-13092 Berlin, Germany and Humoldt-University, Department of Biology, Invalidenstrasse 43, D-10115 Berlin, Germany
| | | | | | | |
Collapse
|
10
|
Occhi G, Regazzo D, Trivellin G, Boaretto F, Ciato D, Bobisse S, Ferasin S, Cetani F, Pardi E, Korbonits M, Pellegata NS, Sidarovich V, Quattrone A, Opocher G, Mantero F, Scaroni C. A novel mutation in the upstream open reading frame of the CDKN1B gene causes a MEN4 phenotype. PLoS Genet 2013; 9:e1003350. [PMID: 23555276 PMCID: PMC3605397 DOI: 10.1371/journal.pgen.1003350] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 01/16/2013] [Indexed: 11/19/2022] Open
Abstract
The CDKN1B gene encodes the cyclin-dependent kinase inhibitor p27KIP1, an atypical tumor suppressor playing a key role in cell cycle regulation, cell proliferation, and differentiation. Impaired p27KIP1 expression and/or localization are often observed in tumor cells, further confirming its central role in regulating the cell cycle. Recently, germline mutations in CDKN1B have been associated with the inherited multiple endocrine neoplasia syndrome type 4, an autosomal dominant syndrome characterized by varying combinations of tumors affecting at least two endocrine organs. In this study we identified a 4-bp deletion in a highly conserved regulatory upstream ORF (uORF) in the 5′UTR of the CDKN1B gene in a patient with a pituitary adenoma and a well-differentiated pancreatic neoplasm. This deletion causes the shift of the uORF termination codon with the consequent lengthening of the uORF–encoded peptide and the drastic shortening of the intercistronic space. Our data on the immunohistochemical analysis of the patient's pancreatic lesion, functional studies based on dual-luciferase assays, site-directed mutagenesis, and on polysome profiling show a negative influence of this deletion on the translation reinitiation at the CDKN1B starting site, with a consequent reduction in p27KIP1 expression. Our findings demonstrate that, in addition to the previously described mechanisms leading to reduced p27KIP1 activity, such as degradation via the ubiquitin/proteasome pathway or non-covalent sequestration, p27KIP1 activity can also be modulated by an uORF and mutations affecting uORF could change p27KIP1 expression. This study adds the CDKN1B gene to the short list of genes for which mutations that either create, delete, or severely modify their regulatory uORFs have been associated with human diseases. Gene expression can be modulated at different steps on the way from DNA to protein including control of transcription, translation, and post-translational modifications. An abnormality in the regulation of mRNA and protein expression is a hallmark of many human diseases, including cancer. In some eukaryotic genes translation can be influenced by small DNA sequences termed upstream open reading frames (uORFs). These elements located upstream to the gene start codon may either negatively influence the ability of the translational machinery to reinitiate translation of the main protein or, much less frequently, stimulate protein translation by enabling the ribosomes to bypass cis-acting inhibitory elements. CDKN1B, which encodes the cell cycle inhibitor p27KIP1, includes an uORF in its 5′UTR sequence. p27KIP1 expression is often reduced in cancer, and germline mutations have been identified in CDKN1B in patients affected with a syndrome (MEN4) characterized by varying combinations of tumors in endocrine glands. Here we show that a small deletion in the uORF upstream to CDKN1B reduces translation reinitiation efficiency, leading to underexpression of p27KIP1 and coinciding with tumorigenesis. This study describes a novel mechanism by which p27KIP1 could be underexpressed in human tumors. In addition, our data provide a new insight to the unique pathogenic potential of uORFs in human diseases.
Collapse
Affiliation(s)
- Gianluca Occhi
- Department of Medicine, Endocrinology Unit, University of Padova, Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kochetov AV, Merkulova TI, Merkulov VM. Possible link between the synthesis of GR alpha isoforms and eIF2 alpha phosphorylation state. Med Hypotheses 2012; 79:709-12. [PMID: 22981593 DOI: 10.1016/j.mehy.2012.07.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 07/23/2012] [Indexed: 01/30/2023]
Abstract
Glucocorticoid hormones regulate numerous physiological processes and are widely used in the treatment of inflammation, autoimmune disease and cancer. Glucocorticoid receptor (GR) - a transcription factor, derived from a single gene, is responsible for the diverse actions of glucocorticoids. It was shown that GR gene gives rise a variety of mRNA species that produces several protein isoforms, among them GRα is the most abundant. In addition, GRα N-end-truncated protein isoforms (A, B, C, D) are generated by translational mechanisms. As it was found that the ratio between the translational isoforms amounts varied in different tissues and cell lines and distinct isoforms could control transcription of different sets of genes, molecular mechanisms underlining the synthesis of translational GRα isoforms are of great interest. It was considered that GRα isoform A is translated by a conventional linear scanning, isoform B is translated by leaky scanning, isoform C is translated by leaky scanning and ribosomal shunt whereas translation of isoform D occurs through ribosomal shunt only. Since the sequence organization of GRα mRNA strongly resembles the cases of ATF4 or ATF5, the well-known examples of reinitiation-dependent synthesis of functional isoforms, we hypothesize that translation of isoform C could be controlled by reinitiation mechanism also. If this assumption is correct, the ratio between GRα N-end isoforms could depend on the eIF2α phosphorylation state that could provide an additional connection between the GR and cellular stresses. We believe that this hypothesis could be of interest to plan more robust experiments or for better interpretation of available data.
Collapse
|
12
|
Seo HS, Choi HS, Kim SR, Choi YK, Woo SM, Shin I, Woo JK, Park SY, Shin YC, Ko SG, Ko SK. Apigenin induces apoptosis via extrinsic pathway, inducing p53 and inhibiting STAT3 and NFκB signaling in HER2-overexpressing breast cancer cells. Mol Cell Biochem 2012; 366:319-34. [PMID: 22527937 DOI: 10.1007/s11010-012-1310-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 04/03/2012] [Indexed: 12/12/2022]
Abstract
Phytoestrogens are known to prevent tumor induction. But their molecular mechanisms of action are still unknown. This study aimed to examine the effect of apigenin on proliferation and apoptosis in HER2-expressing breast cancer cells. In our experiments, apigenin inhibited the proliferation of MCF-7 vec and MCF-7 HER2 cells. This growth inhibition was accompanied with an increase of sub G(0)/G(1) apoptotic fractions. Overexpression of HER2 did not confer resistance to apigenin in MCF-7 cells. Apigenin-induced extrinsic apoptosis pathway up-regulating the levels of cleaved caspase-8, and inducing the cleavage of poly (ADP-ribose) polymerase, whereas apigenin did not induce apoptosis via intrinsic mitochondrial apoptosis pathway since this compound did not decrease mitochondrial membrane potential maintaining red fluorescence and did not affect the levels of B-cell lymphoma 2 (BCL2) and Bcl-2-associated X protein. Moreover, apigenin reduced the tyrosine phosphorylation of HER2 (phospho-HER2 level) in MCF-7 HER2 cells, and up-regulated the levels of p53, phospho-p53 and p21 in MCF-7 vec and MCF-7 HER2 cells. This suggests that apigenin induces apoptosis through p53-dependent pathway. Apigenin also reduced the expression of phospho-JAK1 and phospho-STAT3 and decreased STAT3-dependent luciferase reporter gene activity in MCF-7 vec and MCF-7 HER2 cells. Apigenin decreased the phosphorylation level of IκBα in the cytosol, and abrogated the nuclear translocation of p65 within the nucleus suggesting that it blocks the activation of NFκB signaling pathway in MCF-7 vec and MCF-7 HER2 cells. Our study indicates that apigenin could be a potential useful compound to prevent or treat HER2-overexpressing breast cancer.
Collapse
Affiliation(s)
- Hye-Sook Seo
- Laboratory of Clinical Biology and Pharmacogenomics and Center for Clinical Research and Genomics, Institute of Oriental Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lohse I, Reilly P, Zaugg K. The CPT1C 5'UTR contains a repressing upstream open reading frame that is regulated by cellular energy availability and AMPK. PLoS One 2011; 6:e21486. [PMID: 21961029 PMCID: PMC3178533 DOI: 10.1371/journal.pone.0021486] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/30/2011] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Translational control is utilized as a means of regulating gene expression in many species. In most cases, posttranscriptional regulatory mechanisms play an important role in stress response pathways and can lead to dysfunctional physiology if blocked by mutations. Carnitine Palmitoyltransferase 1 C (CPT1C), the brain-specific member of the CPT 1 family, has previously been shown to be involved in regulating metabolism in situations of energy surplus. PRINCIPAL FINDINGS Sequence analysis of the CPT1C mRNA revealed that it contains an upstream open reading frame (uORF) in the 5' UTR of its mRNA. Using CPT1C 5' UTR/luciferase constructs, we investigated the role of the uORF in translational regulation. The results presented here show that translation from the CPT1C main open reading frame (mORF) is repressed by the presence of the uORF, that this repression is relieved in response to specific stress stimuli, namely glucose deprivation and palmitate-BSA treatment, and that AMPK inhibition can relieve this uORF-dependent repression. SIGNIFICANCE The fact that the mORF regulation is relieved in response to a specific set of stress stimuli rather than general stress response, hints at an involvement of CPT1C in cellular energy-sensing pathways and provides further evidence for a role of CPT1C in hypothalamic regulation of energy homeostasis.
Collapse
Affiliation(s)
- Ines Lohse
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Patrick Reilly
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
- Department of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Kathrin Zaugg
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Pisani F, Rossi A, Nicchia GP, Svelto M, Frigeri A. Translational regulation mechanisms of aquaporin-4 supramolecular organization in astrocytes. Glia 2011; 59:1923-32. [PMID: 21850708 DOI: 10.1002/glia.21234] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 07/27/2011] [Indexed: 12/21/2022]
Abstract
The two predominant isoforms of Aquaporin-4 (AQP4), AQP4-M23 and AQP4-M1, assemble in the plasma membrane to form supramolecular structures called Orthogonal Array of Particles (OAPs) whose dimension is tightly associated to the M1/M23 ratio. Here, we explore translational regulation contribution to M1/M23 expression in primary cultures of rat astrocytes, and analyze the role of M1 mRNA 5'untranslated region (5'UTR) in this mechanism. Using isoform-specific RNAi we found that in rat astrocytes primary cultures a large proportion of M23 protein derives from M1 mRNA translation. Furthermore, site-specific mutagenesis of the 5'UTR sequence of AQP4-M1 mRNA indicates that a multiple-site leaky scanning mechanism, an out-of-frame upstream ORF (uORF), and a reinitiation mechanism are able to modulate the M1/M23 ratio and consequently, OAPs formation. These mechanisms are likely to be shared by different species, including human, and they can also be assumed to play a role in those pathophysiological situations where the organization of AQP4 in supramolecular structures (OAPs) is involved. Finally, we report that, when transfected in Hela cells, the longer rat AQP4 isoform, called Mz, which is not present in human impairs OAPs formation.
Collapse
Affiliation(s)
- Francesco Pisani
- Department of General and Environmental Physiology and Centre of Excellence in Comparative Genomics (CEGBA), University of Bari, Bari, Italy
| | | | | | | | | |
Collapse
|
15
|
Ju JH, Jeon MJ, Yang W, Lee KM, Seo HS, Shin I. Induction of apoptotic cell death by Pharbitis nil extract in HER2-overexpressing MCF-7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2011; 133:126-131. [PMID: 20883766 DOI: 10.1016/j.jep.2010.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 09/14/2010] [Accepted: 09/17/2010] [Indexed: 05/29/2023]
Abstract
AIM OF THE STUDY We performed this study to investigate the anti-cancer activity of Pharbitis nil (PN) ethanol extract which has been used for herbal medicinal treatment against diseases in East Asia. MATERIALS AND METHODS We analyzed the effects of PN extract on proliferation of breast cancer cell lines, MCF-7 control vector (vec) and MCF-7 human epidermal growth factor receptor 2 (HER2) cells engineered to overexpress oncogenic HER2 via retroviral infection. We performed the proliferation assay to measure the growth rate of the cells. FACS analysis was used to analyze the cell cycle. Western blot analysis was used to investigate the effect of PN on the level and activation of intracellular molecules. RESULTS We found that PN extract inhibited the proliferation of both MCF-7 vec and MCF-7 HER2 cells. This growth inhibition was accompanied with the increase of sub G0/G1 apoptotic fractions. When we check the efficiency of PN on the level of intracellular signaling molecules, we found that PN extract induced the inhibition of phosphorylation of HER2 and its downstream effectors, Akt and extracellular signal-regulated kinases (ERK). Active forms of both Akt and ERK were gradually decreased in PN-treated MCF-7 vec and MCF-7 HER2 cells suggesting that the growth suppressive activity of PN is related to signaling pathway. The level of cyclin D also diminished in PN-treated both cells suggesting that PN may inhibit the growth of MCF-7 vec and MCF-7 HER2 cells by perturbing cell cycle progression. It should be noted that PN decreased the growth rate of both MCF-7 vec and MCF-7 HER2 cells without changing the level and activation of p53. CONCLUSION PN extract suppressed the proliferation rate of HER-2 overexpressing MCF-7 breast cancer cells inducing apoptotic cell death in vitro. Our data demonstrates that PN extracts contain useful anti-tumor activity especially against HER2 overexpressing breast cancer.
Collapse
Affiliation(s)
- Ji-hyun Ju
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Conserved upstream open reading frames (uORFs) are found within many eukaryotic transcripts and are known to regulate protein translation. Evidence from genetic and bioinformatic studies implicates disturbed uORF-mediated translational control in the etiology of human diseases. A genetic mouse model has recently provided proof-of-principle support for the physiological relevance of uORF-mediated translational control in mammals. The targeted disruption of the uORF initiation codon within the transcription factor CCAAT/enhancer binding protein β (C/EBPβ) gene resulted in deregulated C/EBPβ protein isoform expression, associated with defective liver regeneration and impaired osteoclast differentiation. The high prevalence of uORFs in the human transcriptome suggests that intensified search for mutations within 5' RNA leader regions may reveal a multitude of alterations affecting uORFs, causing pathogenic deregulation of protein expression.
Collapse
Affiliation(s)
- Klaus Wethmar
- Max Delbrueck Center for Molecular MedicineBerlin, Germany
- Charité, University Medicine BerlinGermany
| | - Jeske J Smink
- Max Delbrueck Center for Molecular MedicineBerlin, Germany
| | - Achim Leutz
- Max Delbrueck Center for Molecular MedicineBerlin, Germany
| |
Collapse
|
17
|
Spevak CC, Ivanov IP, Sachs MS. Sequence requirements for ribosome stalling by the arginine attenuator peptide. J Biol Chem 2010; 285:40933-42. [PMID: 20884617 DOI: 10.1074/jbc.m110.164152] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 5' regions of eukaryotic mRNAs often contain upstream open reading frames (uORFs). The Neurospora crassa arg-2 uORF encodes the 24-residue arginine attenuator peptide (AAP). This regulatory uORF-encoded peptide, which is evolutionarily conserved in fungal transcripts specifying an arginine biosynthetic enzyme, functions as a nascent peptide within the ribosomal tunnel and negatively regulates gene expression. The nascent AAP causes ribosomes to stall at the uORF stop codon in response to arginine, thus, blocking ribosomes from reaching the ARG-2 initiation codon. Here scanning mutagenesis with alanine and proline was performed to systematically determine which AAP residues were important for conferring regulation. Changing many of the most highly conserved residues (Asp-12, Tyr-13, Lys-14, and Trp-19) abolished regulatory function. The minimal functional domain of the AAP was determined by positioning AAP sequences internally within a large polypeptide. Pulse-chase analyses revealed that residues 9-20 of the AAP composed the minimal domain that was sufficient to confer regulatory function. An extensive analysis of predicted fungal AAPs revealed that the minimal functional domain of the N. crassa AAP corresponded closely to the region that was most highly conserved among the fungi. We also observed that the tripeptide RGD could function similarly to arginine in triggering AAP-mediated ribosome stalling. These studies provide a better understanding of the elements required for a nascent peptide and a small regulatory molecule to control translational processes.
Collapse
Affiliation(s)
- Christina C Spevak
- Department of Neurobiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
18
|
Watanabe Y, Ohtaki N, Hayashi Y, Ikuta K, Tomonaga K. Autogenous translational regulation of the Borna disease virus negative control factor X from polycistronic mRNA using host RNA helicases. PLoS Pathog 2009; 5:e1000654. [PMID: 19893625 PMCID: PMC2766071 DOI: 10.1371/journal.ppat.1000654] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 10/13/2009] [Indexed: 11/24/2022] Open
Abstract
Borna disease virus (BDV) is a nonsegmented, negative-strand RNA virus that employs several unique strategies for gene expression. The shortest transcript of BDV, X/P mRNA, encodes at least three open reading frames (ORFs): upstream ORF (uORF), X, and P in the 5′ to 3′ direction. The X is a negative regulator of viral polymerase activity, while the P phosphoprotein is a necessary cofactor of the polymerase complex, suggesting that the translation of X is controlled rigorously, depending on viral replication. However, the translation mechanism used by the X/P polycistronic mRNA has not been determined in detail. Here we demonstrate that the X/P mRNA autogenously regulates the translation of X via interaction with host factors. Transient transfection of cDNA clones corresponding to the X/P mRNA revealed that the X ORF is translated predominantly by uORF-termination-coupled reinitiation, the efficiency of which is upregulated by expression of P. We found that P may enhance ribosomal reinitiation at the X ORF by inhibition of the interaction of the DEAD-box RNA helicase DDX21 with the 5′ untranslated region of X/P mRNA, via interference with its phosphorylation. Our results not only demonstrate a unique translational control of viral regulatory protein, but also elucidate a previously unknown mechanism of regulation of polycistronic mRNA translation using RNA helicases. All viruses rely on host cell factors to complete their life cycles. Therefore, the replication strategies of viruses may provide not only the understanding of virus pathogenesis but also useful models to disentangle the complex machinery of host cells. Translation regulation of viral mRNA is a good example of this. Borna disease virus (BDV) is a highly neurotropic RNA virus which is characterized by persistent infection. BDV expresses mRNAs as polycistronic coding transcripts. Among them, the 0.8 kb X/P mRNA encodes at least three open reading frames (ORFs), upstream ORF, X, and P. Although BDV X and P have opposing effects in terms of viral polymerase activity, the translational regulation of X/P polycistronic mRNA has not been elucidated. In this study, we show an ingenious strategy of translational control of viral regulatory protein using host factors. We demonstrate that host RNA helicases, mainly DDX21, can affect ribosomal reinitiation of X via interaction with the 5′ untranslated region (UTR) of X/P mRNA and that the downstream P protein autogenously controls the translation of X by interfering with the binding of DDX21 to the 5′ UTR. Our findings uncover not only a unique translational control of viral regulatory protein but also a previously unknown mechanism of translational regulation of polycistronic mRNA using RNA helicases.
Collapse
Affiliation(s)
- Yohei Watanabe
- Department of Virology, Research Institute for Microbial Diseases (BIKEN), Osaka University, Suita, Osaka, Japan
| | - Naohiro Ohtaki
- Department of Virology, Research Institute for Microbial Diseases (BIKEN), Osaka University, Suita, Osaka, Japan
| | - Yohei Hayashi
- Department of Virology, Research Institute for Microbial Diseases (BIKEN), Osaka University, Suita, Osaka, Japan
| | - Kazuyoshi Ikuta
- Department of Virology, Research Institute for Microbial Diseases (BIKEN), Osaka University, Suita, Osaka, Japan
- Section of Viral Infections, Thailand–Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi, Thailand
| | - Keizo Tomonaga
- Department of Virology, Research Institute for Microbial Diseases (BIKEN), Osaka University, Suita, Osaka, Japan
- PRESTO, Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
19
|
Kochetov AV. Alternative translation start sites and hidden coding potential of eukaryotic mRNAs. Bioessays 2008; 30:683-91. [PMID: 18536038 DOI: 10.1002/bies.20771] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is widely suggested that a eukaryotic mRNA typically contains one translation start site and encodes a single functional protein product. However, according to current points of view on translation initiation mechanisms, eukaryotic ribosomes can recognize several alternative translation start sites and the number of experimentally verified examples of alternative translation is growing rapidly. Also, the frequent occurrence of alternative translation events and their functional significance are supported by the results of computational evaluations. The functional role of alternative translation and its contribution to eukaryotic proteome complexity are discussed.
Collapse
|
20
|
Tran MK, Schultz CJ, Baumann U. Conserved upstream open reading frames in higher plants. BMC Genomics 2008; 9:361. [PMID: 18667093 PMCID: PMC2527020 DOI: 10.1186/1471-2164-9-361] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 07/31/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Upstream open reading frames (uORFs) can down-regulate the translation of the main open reading frame (mORF) through two broad mechanisms: ribosomal stalling and reducing reinitiation efficiency. In distantly related plants, such as rice and Arabidopsis, it has been found that conserved uORFs are rare in these transcriptomes with approximately 100 loci. It is unclear how prevalent conserved uORFs are in closely related plants. RESULTS We used a homology-based approach to identify conserved uORFs in five cereals (monocots) that could potentially regulate translation. Our approach used a modified reciprocal best hit method to identify putative orthologous sequences that were then analysed by a comparative R-nomics program called uORFSCAN to find conserved uORFs. CONCLUSION This research identified new genes that may be controlled at the level of translation by conserved uORFs. We report that conserved uORFs are rare (<150 loci contain them) in cereal transcriptomes, are generally short (less than 100 nt), highly conserved (50% median amino acid sequence similarity), position independent in their 5'-UTRs, and their start codon context and the usage of rare codons for translation does not appear to be important.
Collapse
Affiliation(s)
- Michael K Tran
- Australian Centre for Plant Functional Genomics PMB 1 Glen Osmond SA 5064, Australia.
| | | | | |
Collapse
|
21
|
Kochetov AV, Ahmad S, Ivanisenko V, Volkova OA, Kolchanov NA, Sarai A. uORFs, reinitiation and alternative translation start sites in human mRNAs. FEBS Lett 2008; 582:1293-7. [PMID: 18358843 DOI: 10.1016/j.febslet.2008.03.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Revised: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 11/15/2022]
Abstract
It is known that eukaryotic ribosomes are able to translate small ORFs and reinitiate translation at downstream start codons. However, this mechanism is widely considered to be inefficient and it is not commonly taken into account. We compiled a sample of human mRNAs containing small upstream ORFs overlapping with annotated protein coding sequences. Statistical analysis supported the hypothesis on reinitiation of translation at downstream AUG codons and functional significance of potential alternative ORFs. It may be assumed that some 5'UTR-located upstream ORFs can deliver ribosomes to alternative translation starts, and they should be taken into consideration in the prediction of human mRNA coding potential.
Collapse
Affiliation(s)
- Alex V Kochetov
- Institute of Cytology and Genetics, Lavrentieva Avenue 10, Novosibirsk 630090, Russia.
| | | | | | | | | | | |
Collapse
|
22
|
Rosenstiel P, Huse K, Franke A, Hampe J, Reichwald K, Platzer C, Roberts RG, Mathew CG, Platzer M, Schreiber S. Functional characterization of two novel 5' untranslated exons reveals a complex regulation of NOD2 protein expression. BMC Genomics 2007; 8:472. [PMID: 18096043 PMCID: PMC2228316 DOI: 10.1186/1471-2164-8-472] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 12/20/2007] [Indexed: 02/06/2023] Open
Abstract
Background NOD2 is an innate immune receptor for the bacterial cell wall component muramyl-dipeptide. Mutations in the leucine-rich repeat region of NOD2, which lead to an impaired recognition of muramyl-dipeptide, have been associated with Crohn disease, a human chronic inflammatory bowel disease. Tissue specific constitutive and inducible expression patterns of NOD2 have been described that result from complex regulatory events for which the molecular mechanisms are not yet fully understood. Results We have identified two novel exons of the NOD2 gene (designated exon 1a and 1b), which are spliced to the canonical exon 2 and constitute the 5' untranslated region of two alternative transcript isoforms (i.e. exon 1a/1b/2 and exon 1a/2). The two novel transcripts are abundantly expressed and seem to comprise the majority of NOD2 transcripts under physiological conditions. We confirm the expression of the previously known canonical first exon (designated exon 1c) of the gene in unstimulated mononuclear cells. The inclusion of the second alternative exon 1b, which harbours three short upstream open reading frames (uORFs), is downregulated upon stimulation with TNF-α or under pro-inflammatory conditions in the inflamed intestinal mucosa in vivo. Using the different 5' UTR splice forms fused to a firefly luciferase (LUC) reporter we demonstrate a rapamycin-sensitive inhibitory effect of the uORFs on translation efficacy. Conclusion The differential usage of two alternative promoters in the NOD2 gene leads to tissue-specific and context-dependent NOD2 transcript isoform patterns. We demonstrate for the first time that context-dependent alternative splicing is linked to uORF-mediated translational repression. The results suggest complex parallel control mechanisms that independently regulate NOD2 expression in the context of inflammatory signaling.
Collapse
Affiliation(s)
- Philip Rosenstiel
- Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein, Campus Kiel, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wu C, Amrani N, Jacobson A, Sachs MS. The use of fungal in vitro systems for studying translational regulation. Methods Enzymol 2007; 429:203-25. [PMID: 17913625 DOI: 10.1016/s0076-6879(07)29010-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The use of cell-free systems enables biochemical determination of factors and mechanisms contributing to translational processes. The preparation and use of cell-free translation systems from the fungi Saccharomyces cerevisiae and Neurospora crassa are described. Examples provided illustrate the use of these systems, in conjunction with luciferase assays, [(35)S]Met incorporation, and primer-extension inhibition (toeprint) analyses, to assess the translational effects of upstream open reading frames and premature termination codons.
Collapse
Affiliation(s)
- Cheng Wu
- Department of Environmental and Biomolecular Systems, OGI School of Science and Engineering, Oregon Health and Science University, Beaverton, Oregon, USA
| | | | | | | |
Collapse
|