1
|
Yamaguchi T, Taborosi A, Tsugane K, Wood K, Whitten AE, Mori S, Kohzuma T. Unraveling the unfolding mechanism of pseudoazurin: Insights into stabilizing cupredoxin fold as a common domain of Cu-containing proteins. J Inorg Biochem 2025; 268:112907. [PMID: 40203645 DOI: 10.1016/j.jinorgbio.2025.112907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/18/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
Understanding protein unfolding mechanisms is crucial for comprehending protein-folding related diseases, developing diagnostic methods, and designing proteins with desired stability for medicinal or industrial applications. However, investigating structures at atomic resolution is often difficult due to the flexibility and transiency of unfolding intermediate states. Pseudoazurin (PAz) is a well-characterized simple cupredoxin composed of a small polypeptide (124 amino acids) and a single metal cofactor (Cu2+), making it suitable to study the unfolding mechanism. In this study, combining the merits of structure determination by small-angle neutron scattering (SANS) and molecular dynamics (MD) simulations enabled us to access the details of the unfolding mechanism. The unfolding of PAz proceeds through a two-step mechanism involving the "native", "open-domain", and "random-coil" states. Several amino acid residues at the vicinity of Cu2+ ion are involved in the structural transitions, where the interactions among these residues are important in controlling the stability of PAz. These findings may be applicable to stabilizing metalloproteins with cupredoxin domain structures.
Collapse
Affiliation(s)
- Takahide Yamaguchi
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 2-1-1, Bunkyo, Mito, Ibaraki 310-8512, Japan; Research and Education Center for Atomic Sciences, Ibaraki University,162-1, Shirakata, Tokai, Ibaraki 319-1106, Japan.
| | - Attila Taborosi
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 2-1-1, Bunkyo, Mito, Ibaraki 310-8512, Japan; Research Initiative for Supra-Materials, Faculty of Engineering, Shinshu University, 4-17-1, Wakasato, Nagano 380-8553, Japan.
| | - Kiyokazu Tsugane
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 2-1-1, Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Kathleen Wood
- Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Andrew E Whitten
- Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Seiji Mori
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 2-1-1, Bunkyo, Mito, Ibaraki 310-8512, Japan; Research and Education Center for Atomic Sciences, Ibaraki University,162-1, Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Takamitsu Kohzuma
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 2-1-1, Bunkyo, Mito, Ibaraki 310-8512, Japan
| |
Collapse
|
2
|
Chen M, Zhang H, Tian L, Lv H, Chen C, Liu X, Wang W, Wang Y, Zhao Y, Wang J, Zhou H, Mao Y, Xiong C, Wu Y. Solid Migration to Assemble a Flower-like Nanozyme with Highly Dense Single Copper Sites for Specific Phenol Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:407-415. [PMID: 36575927 DOI: 10.1021/acsami.2c17231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanozymes with high catalytic stability and sustainability have emerged as powerful competitors to natural enzymes for diverse biocatalytic applications. However, constructing a nanozyme with high specificity is one of their biggest challenges. Herein, we develop a facile solid migration strategy to access a flower-like single copper site nanozyme (Cu SSN) via direct transformation of copper foam activated by 2-methylimidazole. With highly clustered CuN3 sites whose local structure is similar to that of natural polyphenol oxidase, the Cu SSN exhibits excellent activity and specificity to oxidize phenols without peroxidase-like activity. Furthermore, the Cu SSN shows high sensitivity in the colorimetric detection of epinephrine with a low detection limit of 0.10 μg mL-1, exceeding that of most previously reported enzyme-mimicking catalysts. This work not only provides a simple method for the large-scale preparation of high-performance nanozymes but also offers an inspiration for the design of highly specific nanozymes by mimicking the synergy among sites in natural enzymes.
Collapse
Affiliation(s)
- Min Chen
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230026, China
- Dalian National Laboratory for Clean Energy, Dalian116023, China
| | - Huijuan Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei230026, China
| | - Lin Tian
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Hongwei Lv
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Cai Chen
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Xiaokang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei230026, China
| | - Wenyu Wang
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Yiwen Wang
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Yafei Zhao
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Jing Wang
- Research Institute of Single-Atom Catalysts Industry Technology, Linkway Technology Co., Ltd., Nanning530000, China
| | - Huang Zhou
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei230009, China
| | - Can Xiong
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Yuen Wu
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230026, China
- Dalian National Laboratory for Clean Energy, Dalian116023, China
| |
Collapse
|
3
|
Valles M, Kamaruddin AF, Wong LS, Blanford CF. Inhibition in multicopper oxidases: a critical review. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00724b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review critiques the literature on inhibition of O2-reduction catalysis in multicopper oxidases like laccase and bilirubin oxidase and provide recommendations for best practice when carrying out experiments and interpreting published data.
Collapse
Affiliation(s)
- Morgane Valles
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Chemistry
| | - Amirah F. Kamaruddin
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Materials
| | - Lu Shin Wong
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Chemistry
| | - Christopher F. Blanford
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Materials
| |
Collapse
|
4
|
Multiple Factors Influencing the Strategy of Lignin Mycodegradation. Fungal Biol 2019. [DOI: 10.1007/978-3-030-23834-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Ernst HA, Jørgensen LJ, Bukh C, Piontek K, Plattner DA, Østergaard LH, Larsen S, Bjerrum MJ. A comparative structural analysis of the surface properties of asco-laccases. PLoS One 2018; 13:e0206589. [PMID: 30395580 PMCID: PMC6218047 DOI: 10.1371/journal.pone.0206589] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/16/2018] [Indexed: 11/24/2022] Open
Abstract
Laccases of different biological origins have been widely investigated and these studies have elucidated fundamentals of the generic catalytic mechanism. However, other features such as surface properties and residues located away from the catalytic centres may also have impact on enzyme function. Here we present the crystal structure of laccase from Myceliophthora thermophila (MtL) to a resolution of 1.62 Å together with a thorough structural comparison with other members of the CAZy family AA1_3 that comprises fungal laccases from ascomycetes. The recombinant protein produced in A. oryzae has a molecular mass of 75 kDa, a pI of 4.2 and carries 13.5 kDa N-linked glycans. In the crystal, MtL forms a dimer with the phenolic substrate binding pocket blocked, suggesting that the active form of the enzyme is monomeric. Overall, the MtL structure conforms with the canonical fold of fungal laccases as well as the features specific for the asco-laccases. However, the structural comparisons also reveal significant variations within this taxonomic subgroup. Notable differences in the T1-Cu active site topology and polar motifs imply molecular evolution to serve different functional roles. Very few surface residues are conserved and it is noticeable that they encompass residues that interact with the N-glycans and/or are located at domain interfaces. The N-glycosylation sites are surprisingly conserved among asco-laccases and in most cases the glycan displays extensive interactions with the protein. In particular, the glycans at Asn88 and Asn210 appear to have evolved as an integral part of the asco-laccase structure. An uneven distribution of the carbohydrates around the enzyme give unique properties to a distinct part of the surface of the asco-laccases which may have implication for laccase function–in particular towards large substrates.
Collapse
Affiliation(s)
- Heidi A. Ernst
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Lise J. Jørgensen
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Christian Bukh
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Klaus Piontek
- Institute of Organic Chemistry and Biochemistry, University of Freiburg, Freiburg im Breisgau, Germany
| | - Dietmar A. Plattner
- Institute of Organic Chemistry and Biochemistry, University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Sine Larsen
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (SL); (MJB)
| | - Morten J. Bjerrum
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (SL); (MJB)
| |
Collapse
|
6
|
Glazunova OA, Polyakov KM, Moiseenko KV, Kurzeev SA, Fedorova TV. Structure-function study of two new middle-redox potential laccases from basidiomycetes Antrodiella faginea and Steccherinum murashkinskyi. Int J Biol Macromol 2018; 118:406-418. [DOI: 10.1016/j.ijbiomac.2018.06.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 11/26/2022]
|
7
|
A new crystal form of Aspergillus oryzae catechol oxidase and evaluation of copper site structures in coupled binuclear copper enzymes. PLoS One 2018; 13:e0196691. [PMID: 29715329 PMCID: PMC5929527 DOI: 10.1371/journal.pone.0196691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/17/2018] [Indexed: 11/19/2022] Open
Abstract
Coupled binuclear copper (CBC) enzymes have a conserved type 3 copper site that binds molecular oxygen to oxidize various mono- and diphenolic compounds. In this study, we found a new crystal form of catechol oxidase from Aspergillus oryzae (AoCO4) and solved two new structures from two different crystals at 1.8-Å and at 2.5-Å resolutions. These structures showed different copper site forms (met/deoxy and deoxy) and also differed from the copper site observed in the previously solved structure of AoCO4. We also analysed the electron density maps of all of the 56 CBC enzyme structures available in the protein data bank (PDB) and found that many of the published structures have vague copper sites. Some of the copper sites were then re-refined to find a better fit to the observed electron density. General problems in the refinement of metalloproteins and metal centres are discussed.
Collapse
|
8
|
Hu J, Lu K, Dong S, Huang Q, Mao L. Inactivation of Laccase by the Attack of As (III) Reaction in Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2945-2952. [PMID: 29405708 DOI: 10.1021/acs.est.7b05650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Laccase is a multicopper oxidase containing four coppers as reaction sites, including one type 1, one type 2, and two type 3. We here provide the first experimental data showing that As (III) can be effectively removed from water and transformed to As (V) through reactions mediated by laccase with the presence of oxygen. To this end, the As (III) removal, As (V) yields, total protein, active laccase, and copper concentrations in the aqueous phase were determined, respectively. Additionally, electron paramagnetic resonance spectra and UV-vis spectra were applied to probe possible structural changes of the laccase during the reaction. The data offer the first evidence that laccase can be inactivated by As (III) attack thus leading to the release of type 2 copper. The released copper has no reactivity with the As (III). These findings provide new ideas into a significant pathway likely to master the environmental transformation of arsenite, and advance the understanding of laccase inactivation mechanisms, thus providing a foundation for optimization of enzyme-based processes and potential development for removal and remediation of arsenite contamination in the environment.
Collapse
Affiliation(s)
- Jinyuan Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210093 , P. R. China
| | - Kun Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210093 , P. R. China
| | - Shipeng Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210093 , P. R. China
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences , University of Georgia , Griffin , Georgia 30223 , United States
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210093 , P. R. China
| |
Collapse
|
9
|
Polyakov KM, Gavryushov S, Ivanova S, Fedorova TV, Glazunova OA, Popov AN, Koroleva OV. Structural study of the X-ray-induced enzymatic reduction of molecular oxygen to water bySteccherinum murashkinskyilaccase: insights into the reaction mechanism. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2017; 73:388-401. [DOI: 10.1107/s2059798317003667] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/07/2017] [Indexed: 01/07/2023]
Abstract
The laccase fromSteccherinum murashkinskyiis a member of the large family of multicopper oxidases that catalyze the oxidation of a wide range of organic and inorganic substrates, accompanied by the reduction of dioxygen to water. The reducing properties of X-ray radiation and the high quality of the laccase crystals allow the study of the catalytic reduction of dioxygen to water directly in a crystal. A series of diffraction data sets with increasing absorbed radiation dose were collected from a single crystal ofSteccherinum murashkinskyilaccase at 1.35 Å resolution. Changes in the active-site structure associated with the reduction of molecular oxygen to water on increasing the absorbed dose of ionizing radiation were detected. The structures in the series are mixtures of different states of the enzyme–substrate complex. Nevertheless, it was possible to interpret these structures as complexes of various oxygen ligands with copper ions in different oxidation states. The results allowed the mechanism of oxygen reduction catalyzed by laccases to be refined.
Collapse
|
10
|
Abstract
Laccases are multi-copper oxidoreductases which catalyze the oxidation of a wide range of substrates during the simultaneous reduction of oxygen to water. These enzymes, originally found in fungi, plants, and other natural sources, have many industrial and biotechnological applications. They are used in the food, textile, pulp, and paper industries, as well as for bioremediation purposes. Although natural hosts can provide relatively high levels of active laccases after production optimization, heterologous expression can bring, moreover, engineered enzymes with desired properties, such as different substrate specificity or improved stability. Hence, diverse hosts suitable for laccase production are reviewed here, while the greatest emphasis is placed on yeasts which are commonly used for industrial production of various proteins. Different approaches to optimize the laccase expression and activity are also discussed in detail here.
Collapse
Affiliation(s)
- Zuzana Antošová
- Department of Membrane Transport, Institute of Physiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| | - Hana Sychrová
- Department of Membrane Transport, Institute of Physiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
11
|
Serrano-Posada H, Centeno-Leija S, Rojas-Trejo SP, Rodríguez-Almazán C, Stojanoff V, Rudiño-Piñera E. X-ray-induced catalytic active-site reduction of a multicopper oxidase: structural insights into the proton-relay mechanism and O2-reduction states. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:2396-411. [PMID: 26627648 PMCID: PMC4934174 DOI: 10.1107/s1399004715018714] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 10/05/2015] [Indexed: 12/14/2022]
Abstract
During X-ray data collection from a multicopper oxidase (MCO) crystal, electrons and protons are mainly released into the system by the radiolysis of water molecules, leading to the X-ray-induced reduction of O2 to 2H2O at the trinuclear copper cluster (TNC) of the enzyme. In this work, 12 crystallographic structures of Thermus thermophilus HB27 multicopper oxidase (Tth-MCO) in holo, apo and Hg-bound forms and with different X-ray absorbed doses have been determined. In holo Tth-MCO structures with four Cu atoms, the proton-donor residue Glu451 involved in O2 reduction was found in a double conformation: Glu451a (∼7 Å from the TNC) and Glu451b (∼4.5 Å from the TNC). A positive peak of electron density above 3.5σ in an Fo - Fc map for Glu451a O(ℇ2) indicates the presence of a carboxyl functional group at the side chain, while its significant absence in Glu451b strongly suggests a carboxylate functional group. In contrast, for apo Tth-MCO and in Hg-bound structures neither the positive peak nor double conformations were observed. Together, these observations provide the first structural evidence for a proton-relay mechanism in the MCO family and also support previous studies indicating that Asp106 does not provide protons for this mechanism. In addition, eight composite structures (Tth-MCO-C1-8) with different X-ray-absorbed doses allowed the observation of different O2-reduction states, and a total depletion of T2Cu at doses higher than 0.2 MGy showed the high susceptibility of this Cu atom to radiation damage, highlighting the importance of taking radiation effects into account in biochemical interpretations of an MCO structure.
Collapse
Affiliation(s)
- Hugo Serrano-Posada
- Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, 62210 Cuernavaca, MOR, Mexico
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, DF, Mexico
| | - Sara Centeno-Leija
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, DF, Mexico
| | - Sonia Patricia Rojas-Trejo
- Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, 62210 Cuernavaca, MOR, Mexico
| | - Claudia Rodríguez-Almazán
- Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, 62210 Cuernavaca, MOR, Mexico
| | - Vivian Stojanoff
- NSLS, Brookhaven National Laboratory, 75 Brookhaven Avenue, Building 725D, Upton, NY 11973-5000, USA
| | - Enrique Rudiño-Piñera
- Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, 62210 Cuernavaca, MOR, Mexico
| |
Collapse
|
12
|
Sitarz AK, Mikkelsen JD, Meyer AS. Structure, functionality and tuning up of laccases for lignocellulose and other industrial applications. Crit Rev Biotechnol 2015; 36:70-86. [DOI: 10.3109/07388551.2014.949617] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Komori H, Higuchi Y. Structural insights into the O2reduction mechanism of multicopper oxidase. J Biochem 2015; 158:293-8. [DOI: 10.1093/jb/mvv079] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/23/2015] [Indexed: 01/26/2023] Open
|
14
|
Komori H, Higuchi Y. Structure and molecular evolution of multicopper blue proteins. Biomol Concepts 2015; 1:31-40. [PMID: 25961983 DOI: 10.1515/bmc.2010.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The multicopper blue protein family, which contains cupredoxin-like domains as a structural unit, is one of the most diverse groups of proteins. This protein family is divided into two functionally different types of enzymes: multicopper oxidase and nitrite reductase. Multicopper oxidase catalyzes the oxidation of the substrate and then reduces dioxygen. The structures of many multicopper oxidases are already known, and until recently they were classified into two main groups: the three- and six-domain types. Both function as monomers and have three spectroscopically different copper sites: Types I (blue), II, and III (tri-nuclear). Nitrite reductase is a closely related protein that contains Types I and II (mono-nuclear) coppers but reduces nitrite instead of dioxygen. Nitrite reductase, which consists of two domains, forms a homotrimer. Multicopper oxidase and nitrite reductase share similar structural architectures and also contain Type I copper. Therefore, it is proposed that they have a common ancestor protein. Recently, some two-domain type multicopper oxidases have been found and their crystal structures have been determined. They have a trimeric quaternary structure and contain an active site at the molecular interface such as nitrite reductase. These results support previous hypotheses and provide an insight into the molecular evolution of multicopper blue proteins.
Collapse
|
15
|
Hakulinen N, Rouvinen J. Three-dimensional structures of laccases. Cell Mol Life Sci 2015; 72:857-68. [PMID: 25586561 PMCID: PMC11113281 DOI: 10.1007/s00018-014-1827-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
Abstract
Laccases are phenol oxidases that belong to the family of multi-copper oxidases and the superfamily of cupredoxins. A number of potential industrial applications for laccases have led to intensive structure-function studies and an increased amount of crystal structures has been solved. The objective of this review is to summarize and analyze available crystal structures of laccases. The experimental crystallographic data are now easily available from the websites and electron density maps can be used for the interpretation of the structural models. The crystal structures can give valuable insights into the functional mechanisms and may serve as the basis for the development of laccases for industrial applications.
Collapse
Affiliation(s)
- N Hakulinen
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, PO Box 111, 80101, Joensuu, Finland,
| | | |
Collapse
|
16
|
Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Copper active sites in biology. Chem Rev 2014; 114:3659-853. [PMID: 24588098 PMCID: PMC4040215 DOI: 10.1021/cr400327t] [Citation(s) in RCA: 1210] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - David E. Heppner
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | - Jake W. Ginsbach
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Jordi Cirera
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Munzarin Qayyum
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | | | - Ryan G. Hadt
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Li Tian
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| |
Collapse
|
17
|
Komori H, Sugiyama R, Kataoka K, Miyazaki K, Higuchi Y, Sakurai T. New insights into the catalytic active-site structure of multicopper oxidases. ACTA ACUST UNITED AC 2014; 70:772-9. [PMID: 24598746 DOI: 10.1107/s1399004713033051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/06/2013] [Indexed: 11/10/2022]
Abstract
Structural models determined by X-ray crystallography play a central role in understanding the catalytic mechanism of enzymes. However, X-ray radiation generates hydrated electrons that can cause significant damage to the active sites of metalloenzymes. In the present study, crystal structures of the multicopper oxidases (MCOs) CueO from Escherichia coli and laccase from a metagenome were determined. Diffraction data were obtained from a single crystal under low to high X-ray dose conditions. At low levels of X-ray exposure, unambiguous electron density for an O atom was observed inside the trinuclear copper centre (TNC) in both MCOs. The gradual reduction of copper by hydrated electrons monitored by measurement of the Cu K-edge X-ray absorption spectra led to the disappearance of the electron density for the O atom. In addition, the size of the copper triangle was enlarged by a two-step shift in the location of the type III coppers owing to reduction. Further, binding of O2 to the TNC after its full reduction was observed in the case of the laccase. Based on these novel structural findings, the diverse resting structures of the MCOs and their four-electron O2-reduction process are discussed.
Collapse
Affiliation(s)
- Hirofumi Komori
- Faculty of Education, Kagawa University, 1-1 Saiwai-cho, Takamatsu, Kagawa 760-8522, Japan
| | - Ryosuke Sugiyama
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Kunishige Kataoka
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Kentaro Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, Hokkaido 062-8517, Japan
| | - Yoshiki Higuchi
- RIKEN SPring-8 Center, 1-1-1 Koto, Mikazuki-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Takeshi Sakurai
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| |
Collapse
|
18
|
Rivera-Hoyos CM, Morales-Álvarez ED, Poutou-Piñales RA, Pedroza-Rodríguez AM, RodrÍguez-Vázquez R, Delgado-Boada JM. Fungal laccases. FUNGAL BIOL REV 2013. [DOI: 10.1016/j.fbr.2013.07.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
19
|
The crystal structure of an extracellular catechol oxidase from the ascomycete fungus Aspergillus oryzae. J Biol Inorg Chem 2013; 18:917-29. [PMID: 24043469 DOI: 10.1007/s00775-013-1038-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
Catechol oxidases (EC 1.10.3.1) catalyse the oxidation of o-diphenols to their corresponding o-quinones. These oxidases contain two copper ions (CuA and CuB) within the so-called coupled type 3 copper site as found in tyrosinases (EC 1.14.18.1) and haemocyanins. The crystal structures of a limited number of bacterial and fungal tyrosinases and plant catechol oxidases have been solved. In this study, we present the first crystal structure of a fungal catechol oxidase from Aspergillus oryzae (AoCO4) at 2.5-Å resolution. AoCO4 belongs to the newly discovered family of short-tyrosinases, which are distinct from other tyrosinases and catechol oxidases because of their lack of the conserved C-terminal domain and differences in the histidine pattern for CuA. The sequence identity of AoCO4 with other structurally known enzymes is low (less than 30 %), and the crystal structure of AoCO4 diverges from that of enzymes belonging to the conventional tyrosinase family in several ways, particularly around the central α-helical core region. A diatomic oxygen moiety was identified as a bridging molecule between the two copper ions CuA and CuB separated by a distance of 4.2-4.3 Å. The UV/vis absorption spectrum of AoCO4 exhibits a distinct maximum of absorbance at 350 nm, which has been reported to be typical of the oxy form of type 3 copper enzymes.
Collapse
|
20
|
Mot AC, Silaghi-Dumitrescu R. Laccases: Complex architectures for one-electron oxidations. BIOCHEMISTRY (MOSCOW) 2012; 77:1395-407. [DOI: 10.1134/s0006297912120085] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
21
|
Ferraroni M, Matera I, Chernykh A, Kolomytseva M, Golovleva LA, Scozzafava A, Briganti F. Reaction intermediates and redox state changes in a blue laccase from Steccherinum ochraceum observed by crystallographic high/low X-ray dose experiments. J Inorg Biochem 2012; 111:203-9. [DOI: 10.1016/j.jinorgbio.2012.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 12/23/2011] [Accepted: 01/20/2012] [Indexed: 12/30/2022]
|
22
|
Paliwal R, Rawat AP, Rawat M, Rai JPN. Bioligninolysis: recent updates for biotechnological solution. Appl Biochem Biotechnol 2012; 167:1865-89. [PMID: 22639362 DOI: 10.1007/s12010-012-9735-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 05/10/2012] [Indexed: 10/28/2022]
Abstract
Bioligninolysis involves living organisms and/or their products in degradation of lignin, which is highly resistant, plant-originated polymer having three-dimensional network of dimethoxylated (syringyl), monomethoxylated (guaiacyl), and non-methoxylated (p-hydroxyphenyl) phenylpropanoid and acetylated units. As a major repository of aromatic chemical structures on earth, lignin bears paramount significance for its removal owing to potential application of bioligninolytic systems in industrial production. Early reports illustrating the discovery and cloning of ligninolytic biocatalysts in fungi was truly a landmark in the field of enzymatic delignification. However, the enzymology for bacterial delignification is hitherto poorly understood. Moreover, the lignin-degrading bacterial genes are still unknown and need further exploration. This review deals with the current knowledge about ligninolytic enzyme families produced by fungi and bacteria, their mechanisms of action, and genetic regulation and reservations, which render them attractive candidates in biotechnological applications.
Collapse
Affiliation(s)
- Rashmi Paliwal
- Ecotechnology Laboratory, Department of Environmental Science, G.B.Pant. University of Agriculture and Technology, Pantnagar 263145, India
| | | | | | | |
Collapse
|
23
|
De la Mora E, Lovett JE, Blanford CF, Garman EF, Valderrama B, Rudino-Pinera E. Structural changes caused by radiation-induced reduction and radiolysis: the effect of X-ray absorbed dose in a fungal multicopper oxidase. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:564-77. [PMID: 22525754 PMCID: PMC3335286 DOI: 10.1107/s0907444912005343] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 02/07/2012] [Indexed: 02/20/2023]
Abstract
X-ray radiation induces two main effects at metal centres contained in protein crystals: radiation-induced reduction and radiolysis and a resulting decrease in metal occupancy. In blue multicopper oxidases (BMCOs), the geometry of the active centres and the metal-to-ligand distances change depending on the oxidation states of the Cu atoms, suggesting that these alterations are catalytically relevant to the binding, activation and reduction of O(2). In this work, the X-ray-determined three-dimensional structure of laccase from the basidiomycete Coriolopsis gallica (Cg L), a high catalytic potential BMCO, is described. By combining spectroscopic techniques (UV-Vis, EPR and XAS) and X-ray crystallography, structural changes at and around the active copper centres were related to pH and absorbed X-ray dose (energy deposited per unit mass). Depletion of two of the four active Cu atoms as well as low occupancies of the remaining Cu atoms, together with different conformations of the metal centres, were observed at both acidic pH and high absorbed dose, correlating with more reduced states of the active coppers. These observations provide additional evidence to support the role of flexibility of copper sites during O(2) reduction. This study supports previous observations indicating that interpretations regarding redox state and metal coordination need to take radiation effects explicitly into account.
Collapse
Affiliation(s)
- Eugenio De la Mora
- Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Janet E. Lovett
- Centre for Advanced Electron Spin Resonance, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, England
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, England
- EaStCHEM School of Chemistry, Joseph Black Building, The King’s Buildings, Edinburgh EH9 3JJ, Scotland
| | - Christopher F. Blanford
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, England
- School of Materials, University of Manchester, Manchester Interdisciplinary Biocentre, 131 Princess Street, Manchester M1 7DN, England
| | - Elspeth F. Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England
| | - Brenda Valderrama
- Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Enrique Rudino-Pinera
- Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
24
|
Serrano-Posada H, Valderrama B, Stojanoff V, Rudiño-Piñera E. Thermostable multicopper oxidase from Thermus thermophilus HB27: crystallization and preliminary X-ray diffraction analysis of apo and holo forms. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1595-8. [PMID: 22139175 PMCID: PMC3232148 DOI: 10.1107/s174430911103805x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 09/17/2011] [Indexed: 11/10/2022]
Abstract
A thermostable multicopper oxidase from Thermus thermophilus HB27 (Tth-MCO) was successfully crystallized using the sitting-drop and hanging-drop vapour-diffusion methods. Crystallization conditions and preliminary X-ray diffraction data to 1.5 Å resolution obtained using synchrotron radiation at 100 K are reported. The crystals belonged to space group C222(1), with unit-cell parameters a = 93.6, b = 110.3, c = 96.3 Å. A monomer in the asymmetric unit yielded a Matthews coefficient (V(M)) of 2.60 Å(3) Da(-1) and a solvent content of 53%. An inactive enzyme form, apo-Tth-MCO, was also crystallized and diffraction data were collected to 1.7 Å resolution. In addition, a second inactive form of the enzyme, Hg-Tth-MCO, was obtained by soaking apo-Tth-MCO crystals with mercury(II) chloride and data were collected to a resolution of 1.7 Å.
Collapse
Affiliation(s)
- Hugo Serrano-Posada
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Avenida Universidad 2001, Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - Brenda Valderrama
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Avenida Universidad 2001, Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - Vivian Stojanoff
- NSLS, Brookhaven National Laboratory, 75 Brookhaven Avenue, Building 725D, Upton, New York 11973-5000, USA
| | - Enrique Rudiño-Piñera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Avenida Universidad 2001, Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| |
Collapse
|
25
|
Piscitelli A, Pezzella C, Giardina P, Faraco V, Giovanni S. Heterologous laccase production and its role in industrial applications. Bioeng Bugs 2011; 1:252-62. [PMID: 21327057 DOI: 10.4161/bbug.1.4.11438] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/25/2010] [Accepted: 01/27/2010] [Indexed: 02/04/2023] Open
Abstract
Laccases are blue multicopper oxidases, catalyzing the oxidation of an array of aromatic substrates concomitantly with the reduction of molecular oxygen to water. These enzymes are implicated in a variety of biological activities. Most of the laccases studied thus far are of fungal origin. The large range of substrates oxidized by laccases has raised interest in using them within different industrial fields, such as pulp delignification, textile dye bleaching, and bioremediation. Laccases secreted from native sources are usually not suitable for large-scale purposes, mainly due to low production yields and high cost of preparation/purification procedures. Heterologous expression may provide higher enzyme yields and may permit to produce laccases with desired properties (such as different substrate specificities, or improved stabilities) for industrial applications. This review surveys researches on heterologous laccase expression focusing on the pivotal role played by recombinant systems towards the development of robust tools for greening modern industry.
Collapse
Affiliation(s)
- Alessandra Piscitelli
- Dipartimento di Chimica Organica e Biochimica, Complesso Universitario Monte S. Angelo, Napoli, Italy.
| | | | | | | | | |
Collapse
|
26
|
Bento I, Silva CS, Chen Z, Martins LO, Lindley PF, Soares CM. Mechanisms underlying dioxygen reduction in laccases. Structural and modelling studies focusing on proton transfer. BMC STRUCTURAL BIOLOGY 2010; 10:28. [PMID: 20822511 PMCID: PMC2944330 DOI: 10.1186/1472-6807-10-28] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 09/07/2010] [Indexed: 01/24/2023]
Abstract
BACKGROUND Laccases are enzymes that couple the oxidation of substrates with the reduction of dioxygen to water. They are the simplest members of the multi-copper oxidases and contain at least two types of copper centres; a mononuclear T1 and a trinuclear that includes two T3 and one T2 copper ions. Substrate oxidation takes place at the mononuclear centre whereas reduction of oxygen to water occurs at the trinuclear centre. RESULTS In this study, the CotA laccase from Bacillus subtilis was used as a model to understand the mechanisms taking place at the molecular level, with a focus in the trinuclear centre. The structures of the holo-protein and of the oxidised form of the apo-protein, which has previously been reconstituted in vitro with Cu(I), have been determined. The former has a dioxygen moiety between the T3 coppers, while the latter has a monoatomic oxygen, here interpreted as a hydroxyl ion. The UV/visible spectra of these two forms have been analysed in the crystals and compared with the data obtained in solution. Theoretical calculations on these and other structures of CotA were used to identify groups that may be responsible for channelling the protons that are needed for reduction of dioxygen to water. CONCLUSIONS These results present evidence that Glu 498 is the only proton-active group in the vicinity of the trinuclear centre. This strongly suggests that this residue may be responsible for channelling the protons needed for the reduction. These results are compared with other data available for these enzymes, highlighting similarities and differences within laccases and multicopper oxidases.
Collapse
Affiliation(s)
- Isabel Bento
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.
| | | | | | | | | | | |
Collapse
|
27
|
Rodgers CJ, Blanford CF, Giddens SR, Skamnioti P, Armstrong FA, Gurr SJ. Designer laccases: a vogue for high-potential fungal enzymes? Trends Biotechnol 2010; 28:63-72. [DOI: 10.1016/j.tibtech.2009.11.001] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 10/29/2009] [Accepted: 11/05/2009] [Indexed: 10/20/2022]
|
28
|
Andberg M, Hakulinen N, Auer S, Saloheimo M, Koivula A, Rouvinen J, Kruus K. Essential role of the C-terminus in Melanocarpus albomyces laccase for enzyme production, catalytic properties and structure. FEBS J 2009; 276:6285-300. [PMID: 19780817 DOI: 10.1111/j.1742-4658.2009.07336.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The C-terminus of the fungal laccase from Melanocarpus albomyces (MaL) is processed during secretion at a processing site conserved among the ascomycete laccases. The three-dimensional structure of MaL has been solved as one of the first complete laccase structures. According to the crystal structure of MaL, the four C-terminal amino acids of the mature protein penetrate into a tunnel leading towards the trinuclear site. The C-terminal carboxylate group forms a hydrogen bond with a side chain of His140, which also coordinates to the type 3 copper. In order to analyze the role of the processed C-terminus, site-directed mutagenesis of the MaL cDNA was performed, and the mutated proteins were expressed in Trichoderma reesei and Saccharomyces cerevisiae. Changes in the C-terminus of MaL caused major defects in protein production in both expression hosts. The deletion of the last four amino acids dramatically affected the activity of the enzyme, as the deletion mutant delDSGL(559) was practically inactive. Detailed characterization of the purified L559A mutant expressed in S. cerevisiae showed the importance of the C-terminal plug for laccase activity, stability, and kinetics. Moreover, the crystal structure of the L559A mutant expressed in S. cerevisiae showed that the C-terminal mutation had clearly affected the trinuclear site geometry. The results in this study clearly confirm the critical role of the last amino acids in the C-terminus of MaL.
Collapse
Affiliation(s)
- Martina Andberg
- VTT Technical Research Center of Finland, P.O. Box 1000, FIN-02044 VTT, Finland.
| | | | | | | | | | | | | |
Collapse
|
29
|
Kallio JP, Auer S, Jänis J, Andberg M, Kruus K, Rouvinen J, Koivula A, Hakulinen N. Structure-function studies of a Melanocarpus albomyces laccase suggest a pathway for oxidation of phenolic compounds. J Mol Biol 2009; 392:895-909. [PMID: 19563811 DOI: 10.1016/j.jmb.2009.06.053] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 06/11/2009] [Accepted: 06/14/2009] [Indexed: 10/20/2022]
Abstract
Melanocarpus albomyces laccase crystals were soaked with 2,6-dimethoxyphenol, a common laccase substrate. Three complex structures from different soaking times were solved. Crystal structures revealed the binding of the original substrate and adducts formed by enzymatic oxidation of the substrate. The dimeric oxidation products were identified by mass spectrometry. In the crystals, a 2,6-dimethoxy-p-benzoquinone and a C-O dimer were observed, whereas a C-C dimer was the main product identified by mass spectrometry. Crystal structures demonstrated that the substrate and/or its oxidation products were bound in the pocket formed by residues Ala191, Pro192, Glu235, Leu363, Phe371, Trp373, Phe427, Leu429, Trp507 and His508. Substrate and adducts were hydrogen-bonded to His508, one of the ligands of type 1 copper. Therefore, this surface-exposed histidine most likely has a role in electron transfer by laccases. Based on our mutagenesis studies, the carboxylic acid residue Glu235 at the bottom of the binding site pocket is also crucial in the oxidation of phenolics. Glu235 may be responsible for the abstraction of a proton from the OH group of the substrate and His508 may extract an electron. In addition, crystal structures revealed a secondary binding site formed through weak dimerization in M. albomyces laccase molecules. This binding site most likely exists only in crystals, when the Phe427 residues are packed against each other.
Collapse
Affiliation(s)
- J P Kallio
- Department of Chemistry, University of Joensuu, P.O. Box 111, FIN-80101 Joensuu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kataoka K, Sugiyama R, Hirota S, Inoue M, Urata K, Minagawa Y, Seo D, Sakurai T. Four-electron reduction of dioxygen by a multicopper oxidase, CueO, and roles of Asp112 and Glu506 located adjacent to the trinuclear copper center. J Biol Chem 2009; 284:14405-13. [PMID: 19297322 DOI: 10.1074/jbc.m808468200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of the four-electron reduction of dioxygen by a multicopper oxidase, CueO, was studied based on reactions of single and double mutants with Cys(500), a type I copper ligand, and the noncoordinating Asp(112) and Glu(506), which form hydrogen bonds with the trinuclear copper center directly and indirectly via a water molecule. The reaction of C500S containing a vacant type I copper center produced intermediate I in an EPR-silent peroxide-bound form. The formation of intermediate I from C500S/D112N was restricted due to a reduction in the affinity of the trinuclear copper center for dioxygen. The state of intermediate I was realized to be the resting form of C500S/E506Q and C500S of the truncated mutant Deltaalpha5-7CueO, in which the 50 amino acids covering the substrate-binding site were removed. Reactions of the recombinant CueO and E506Q afforded intermediate II, a fully oxidized form different from the resting one, with a very broad EPR signal, g < 2, detectable only at cryogenic temperatures and unsaturated with high power microwaves. The lifetime of intermediate II was prolonged by the mutation at Glu(506) involved in the donation of protons. The structure of intermediates I and II and the mechanism of the four-electron reduction of dioxygen driven by Asp(112) and Glu(506) are discussed.
Collapse
Affiliation(s)
- Kunishige Kataoka
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kallio JM, Hakulinen N, Kallio JP, Niemi MH, Kärkkäinen S, Rouvinen J. The contribution of polystyrene nanospheres towards the crystallization of proteins. PLoS One 2009; 4:e4198. [PMID: 19145241 PMCID: PMC2615210 DOI: 10.1371/journal.pone.0004198] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 12/04/2008] [Indexed: 11/23/2022] Open
Abstract
Background Protein crystallization is a slow process of trial and error and limits the amount of solved protein structures. Search of a universal heterogeneous nucleant is an effort to facilitate crystallizability of proteins. Methodology The effect of polystyrene nanospheres on protein crystallization were tested with three commercial proteins: lysozyme, xylanase, xylose isomerase, and with five research target proteins: hydrophobins HFBI and HFBII, laccase, sarcosine dimethylglycine N-methyltransferase (SDMT), and anti-testosterone Fab fragment 5F2. The use of nanospheres both in screening and as an additive for known crystallization conditions was studied. In screening, the addition of an aqueous solution of nanosphere to the crystallization drop had a significant positive effect on crystallization success in comparison to the control screen. As an additive in hydrophobin crystallization, the nanospheres altered the crystal packing, most likely due to the amphiphilic nature of hydrophobins. In the case of laccase, nanospheres could be used as an alternative for streak-seeding, which insofar had remained the only technique to produce high-diffracting crystals. With methyltransferase SDMT the nanospheres, used also as an additive, produced fewer, larger crystals in less time. Nanospheres, combined with the streak-seeding method, produced single 5F2 Fab crystals in shorter equilibration times. Conclusions All in all, the use of nanospheres in protein crystallization proved to be beneficial, both when screening new crystallization conditions to promote nucleation and when used as an additive to produce better quality crystals, faster. The polystyrene nanospheres are easy to use, commercially available and close to being inert, as even with amphiphilic proteins only the crystal packing is altered and the nanospheres do not interfere with the structure and function of the protein.
Collapse
Affiliation(s)
| | - Nina Hakulinen
- Department of Chemistry, University of Joensuu, Joensuu, Finland
| | - Juha P. Kallio
- Department of Chemistry, University of Joensuu, Joensuu, Finland
| | - Merja H. Niemi
- Department of Chemistry, University of Joensuu, Joensuu, Finland
| | | | - Juha Rouvinen
- Department of Chemistry, University of Joensuu, Joensuu, Finland
- * E-mail:
| |
Collapse
|
32
|
Chernykh A, Myasoedova N, Kolomytseva M, Ferraroni M, Briganti F, Scozzafava A, Golovleva L. Laccase isoforms with unusual properties from the basidiomyceteSteccherinum ochraceumstrain 1833. J Appl Microbiol 2008; 105:2065-75. [DOI: 10.1111/j.1365-2672.2008.03924.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Crystal structure of the blue multicopper oxidase from the white-rot fungus Trametes trogii complexed with p-toluate. Inorganica Chim Acta 2008. [DOI: 10.1016/j.ica.2008.03.091] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Hakulinen N, Andberg M, Kallio J, Koivula A, Kruus K, Rouvinen J. A near atomic resolution structure of a Melanocarpus albomyces laccase. J Struct Biol 2008; 162:29-39. [PMID: 18249560 DOI: 10.1016/j.jsb.2007.12.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 11/28/2007] [Accepted: 12/12/2007] [Indexed: 11/17/2022]
Affiliation(s)
- N Hakulinen
- Department of Chemistry, University of Joensuu, Yliopistonkatu 7, P.O. Box 111, FIN-80101 Joensuu, Finland.
| | | | | | | | | | | |
Collapse
|
35
|
Morozova OV, Shumakovich GP, Gorbacheva MA, Shleev SV, Yaropolov AI. "Blue" laccases. BIOCHEMISTRY (MOSCOW) 2008; 72:1136-50. [PMID: 18021071 DOI: 10.1134/s0006297907100112] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review concerns copper-containing oxidases--laccases. Principal biochemical and electrochemical properties of laccases isolated from different sources are described, as well as their structure and mechanism of catalysis. Possible applications of laccases in different fields of biotechnology are discussed.
Collapse
Affiliation(s)
- O V Morozova
- Bach Institute of Biochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | | | | | | | | |
Collapse
|