1
|
Watanabe C, Okiyama Y, Tanaka S, Fukuzawa K, Honma T. Molecular recognition of SARS-CoV-2 spike glycoprotein: quantum chemical hot spot and epitope analyses. Chem Sci 2021; 12:4722-4739. [PMID: 35355624 PMCID: PMC8892577 DOI: 10.1039/d0sc06528e] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/21/2021] [Indexed: 12/18/2022] Open
Abstract
Due to the COVID-19 pandemic, researchers have attempted to identify complex structures of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (S-protein) with angiotensin-converting enzyme 2 (ACE2) or a blocking antibody. However, the molecular recognition mechanism-critical information for drug and antibody design-has not been fully clarified at the amino acid residue level. Elucidating such a microscopic mechanism in detail requires a more accurate molecular interpretation that includes quantum mechanics to quantitatively evaluate hydrogen bonds, XH/π interactions (X = N, O, and C), and salt bridges. In this study, we applied the fragment molecular orbital (FMO) method to characterize the SARS-CoV-2 S-protein binding interactions with not only ACE2 but also the B38 Fab antibody involved in ACE2-inhibitory binding. By analyzing FMO-based interaction energies along a wide range of binding interfaces carefully, we identified amino acid residues critical for molecular recognition between S-protein and ACE2 or B38 Fab antibody. Importantly, hydrophobic residues that are involved in weak interactions such as CH-O hydrogen bond and XH/π interactions, as well as polar residues that construct conspicuous hydrogen bonds, play important roles in molecular recognition and binding ability. Moreover, through these FMO-based analyses, we also clarified novel hot spots and epitopes that had been overlooked in previous studies by structural and molecular mechanical approaches. Altogether, these hot spots/epitopes identified between S-protein and ACE2/B38 Fab antibody may provide useful information for future antibody design, evaluation of the binding property of the SARS-CoV-2 variants including its N501Y, and small or medium drug design against the SARS-CoV-2.
Collapse
Affiliation(s)
- Chiduru Watanabe
- Center for Biosystems Dynamics Research, RIKEN 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama Kanagawa 230-0045 Japan +81-45-503-9432 +81-45-503-9551
- JST, PRESTO 4-1-8, Honcho Kawaguchi Saitama 332-0012 Japan
| | - Yoshio Okiyama
- Division of Medicinal Safety Science, National Institute of Health Sciences 3-25-26 Tonomachi, Kawasaki-ku Kawasaki Kanagawa 210-9501 Japan
| | - Shigenori Tanaka
- Department of Computational Science, Graduate School of System Informatics, Kobe University 1-1 Rokkodai, Nada-ku Kobe Hyogo 657-8501 Japan
| | - Kaori Fukuzawa
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University 2-4-41 Ebara, Shinagawa-ku Tokyo 142-8501 Japan
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University 6-6-11 Aoba, Aramaki, Aoba-ku Sendai Miyagi 980-8579 Japan
| | - Teruki Honma
- Center for Biosystems Dynamics Research, RIKEN 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama Kanagawa 230-0045 Japan +81-45-503-9432 +81-45-503-9551
| |
Collapse
|
2
|
Ye M, Lin L, Yang W, Gopinath SCB. Enhancing erythrocyte-influenza virus specificity by glycan-conjugated gold nanoparticle: Validation of hemagglutination by aptamer and neuraminidases. Biotechnol Appl Biochem 2021; 69:798-807. [PMID: 33769582 DOI: 10.1002/bab.2152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/18/2021] [Indexed: 11/11/2022]
Abstract
This study demonstrated the terminated sialo-sugar chains (Neu5Acα2,6Gal and Neu5Acα2,3Gal)-mediated specificity enhancement of influenza virus and chicken red blood cell (RBC) by hemagglutination assay. These glycan chains were immobilized on the gold nanoparticle (GNP) to withhold the higher numbers. With the preliminary optimization, a clear button formation with 0.5% RBC was visualized. On the other hand, intact B/Tokio/53/99 with 750 nM hemagglutinin (HA) displayed a nice hemagglutination. The interference on the specificity of RBC and influenza virus was observed by anti-influenza aptamer at the concentration 31 nM; however, there is no hemagglutination prevention was noticed in the presence of complementary aptamer sequences. Spiking GNP-conjugated Neu5Acα2,6Gal or Neu5Acα2,3Gal or a mixture of these two to the reaction promoted the hemagglutination to 63-folds higher with 12 nM virus, whereas under the same condition the heat-inactivated viruses were lost the hemagglutination. Neuraminidases from Clostridium perfringens and Arthrobacter ureafaciens at 0.0025 neuraminidase units are able to abolish the hemagglutination. Other enzymes, Glycopeptidase F (Elizabethkingia meningoseptica) and Endoglycosidase H (Streptomyces plicatus) did not show the changes with agglutination. Obviously, sialyl-Gal-terminated glycan-conjugated GNP amendment has enhanced the specificity of erythrocyte-influenza virus and able to be controlled by aptamer or neuraminidases.
Collapse
Affiliation(s)
- Meiyi Ye
- Department of Medical Laboratory, Dayi County People's Hospital, Chengdu, Sichuan Province, China
| | - Lei Lin
- Department of Medical Laboratory, Dayi County People's Hospital, Chengdu, Sichuan Province, China
| | - Wei Yang
- Department of Medical Laboratory, Dayi County People's Hospital, Chengdu, Sichuan Province, China
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| |
Collapse
|
3
|
Phipps MJS, Fox T, Tautermann CS, Skylaris CK. Energy decomposition analysis approaches and their evaluation on prototypical protein–drug interaction patterns. Chem Soc Rev 2015; 44:3177-211. [DOI: 10.1039/c4cs00375f] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The partitioning of the interaction energy into chemical components such as electrostatics, polarization, and charge transfer is possible with energy decomposition analysis approaches. We review and evaluate these for biomolecular applications.
Collapse
Affiliation(s)
| | - Thomas Fox
- Lead Identification and Optimization Support
- Boehringer Ingelheim Pharma GmbH & Co. KG
- 88397 Biberach
- Germany
| | - Christofer S. Tautermann
- Lead Identification and Optimization Support
- Boehringer Ingelheim Pharma GmbH & Co. KG
- 88397 Biberach
- Germany
| | | |
Collapse
|
4
|
Fedorov DG, Nagata T, Kitaura K. Exploring chemistry with the fragment molecular orbital method. Phys Chem Chem Phys 2012; 14:7562-77. [DOI: 10.1039/c2cp23784a] [Citation(s) in RCA: 290] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Gordon MS, Fedorov DG, Pruitt SR, Slipchenko LV. Fragmentation Methods: A Route to Accurate Calculations on Large Systems. Chem Rev 2011; 112:632-72. [DOI: 10.1021/cr200093j] [Citation(s) in RCA: 788] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Mark S. Gordon
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames Iowa 50011, United States
| | - Dmitri G. Fedorov
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Spencer R. Pruitt
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames Iowa 50011, United States
| | - Lyudmila V. Slipchenko
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Okiyama Y, Fukuzawa K, Yamada H, Mochizuki Y, Nakano T, Tanaka S. Counterpoise-corrected interaction energy analysis based on the fragment molecular orbital scheme. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.04.070] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Cao Y, Koh X, Dong L, Du X, Wu A, Ding X, Deng H, Shu Y, Chen J, Jiang T. Rapid estimation of binding activity of influenza virus hemagglutinin to human and avian receptors. PLoS One 2011; 6:e18664. [PMID: 21533248 PMCID: PMC3076431 DOI: 10.1371/journal.pone.0018664] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 03/09/2011] [Indexed: 11/19/2022] Open
Abstract
A critical step for avian influenza viruses to infect human hosts and cause epidemics or pandemics is acquisition of the ability of the viral hemagglutinin (HA) to bind to human receptors. However, current global influenza surveillance does not monitor HA binding specificity due to a lack of rapid and reliable assays. Here we report a computational method that uses an effective scoring function to quantify HA-receptor binding activities with high accuracy and speed. Application of this method reveals receptor specificity changes and its temporal relationship with antigenicity changes during the evolution of human H3N2 viruses. The method predicts that two amino acid differences at 222 and 225 between HAs of A/Fujian/411/02 and A/Panama/2007/99 viruses account for their differences in binding to both avian and human receptors; this prediction was verified experimentally. The new computational method could provide an urgently needed tool for rapid and large-scale analysis of HA receptor specificities for global influenza surveillance.
Collapse
Affiliation(s)
- Yang Cao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoying Koh
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Libo Dong
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Infectious Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiangjun Du
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Aiping Wu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Xilai Ding
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hongyu Deng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yuelong Shu
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Infectious Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail: (TJ); (JC); (YS)
| | - Jianzhu Chen
- Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (TJ); (JC); (YS)
| | - Taijiao Jiang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (TJ); (JC); (YS)
| |
Collapse
|
8
|
Sawada T, Fedorov DG, Kitaura K. Binding of Influenza A Virus Hemagglutinin to the Sialoside Receptor Is Not Controlled by the Homotropic Allosteric Effect. J Phys Chem B 2010; 114:15700-5. [DOI: 10.1021/jp1068895] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Toshihiko Sawada
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan, and Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Dmitri G. Fedorov
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan, and Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuo Kitaura
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan, and Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Ab initio fragment molecular orbital studies of influenza virus hemagglutinin–sialosaccharide complexes toward chemical clarification about the virus host range determination. Glycoconj J 2008; 25:805-15. [DOI: 10.1007/s10719-008-9141-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 04/28/2008] [Accepted: 04/29/2008] [Indexed: 10/21/2022]
|
10
|
Iwata T, Fukuzawa K, Nakajima K, Aida-Hyugaji S, Mochizuki Y, Watanabe H, Tanaka S. Theoretical analysis of binding specificity of influenza viral hemagglutinin to avian and human receptors based on the fragment molecular orbital method. Comput Biol Chem 2008; 32:198-211. [DOI: 10.1016/j.compbiolchem.2008.03.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 03/19/2008] [Accepted: 03/19/2008] [Indexed: 11/26/2022]
|
11
|
Gribov LA. Fragment method for calculating the characteristics of the electronic states of very complex molecules. J STRUCT CHEM+ 2008. [DOI: 10.1007/s10947-008-0001-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Fedorov DG, Kitaura K. Extending the Power of Quantum Chemistry to Large Systems with the Fragment Molecular Orbital Method. J Phys Chem A 2007; 111:6904-14. [PMID: 17511437 DOI: 10.1021/jp0716740] [Citation(s) in RCA: 449] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Following the brief review of the modern fragment-based methods and other approaches to perform quantum-mechanical calculations of large systems, the theoretical development of the fragment molecular orbital method (FMO) is covered in detail, with the emphasis on the physical properties, which can be computed with FMO. The FMO-based polarizable continuum model (PCM) for treating the solvent effects in large systems and the pair interaction energy decomposition analysis (PIEDA) are described in some detail, and a range of applications of FMO to biological studies is introduced. The factors determining the relative stability of polypeptide conformers (alpha-helix, beta-turn, and extended form) are elucidated using FMO/PCM and PIEDA, and the interactions in the Trp-cage miniprotein construct (PDB: 1L2Y) are analyzed using PIEDA.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Institute for Computational Sciences (RICS), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, Japan 305-8568.
| | | |
Collapse
|
13
|
Fedorov DG, Ishida T, Uebayasi M, Kitaura K. The Fragment Molecular Orbital Method for Geometry Optimizations of Polypeptides and Proteins. J Phys Chem A 2007; 111:2722-32. [PMID: 17388363 DOI: 10.1021/jp0671042] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fragment molecular orbital method (FMO) has been used with a large number of wave functions for single-point calculations, and its high accuracy in comparison to ab initio methods has been well established. We have developed the analytic derivative of the electrostatic interaction between far separated fragments and performed a number of restricted Hartree-Fock (RHF) geometry optimizations using FMO and ab initio methods. In particular, the alpha-helix, beta-turn, and extended conformers of a 10-residue polyalanine were studied and the good FMO accuracy was established (the rms deviations for the former two forms were about 0.2 A and for the latter structure about 0.001 A). Met-enkephalin dimer was used as a model for the polypeptide binding and computed at the 3-21G and 6-31G* levels with a similar accuracy achieved; the error in the binding energy predictions (FMO vs ab initio) was 1-3 kcal/mol. Chignolin (PDB: 1uao) and an agonist polypeptide of the erythropoietin receptor protein (emp1) were optimized at the 3-21(+)G level, with the rms deviation from ab initio of about 0.2 A, or 0.5 degrees in terms of bond angles. The effect of solvation on the structure optimization was studied in chignolin and the Trp-cage miniprotein construct (PDB:1l2y), by describing water with TIP3P. The computed structures in gas phase and solution are compared to each other and experiment.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| | | | | | | |
Collapse
|
14
|
Sawada T, Hashimoto T, Nakano H, Suzuki T, Suzuki Y, Kawaoka Y, Ishida H, Kiso M. Influenza viral hemagglutinin complicated shape is advantageous to its binding affinity for sialosaccharide receptor. Biochem Biophys Res Commun 2007; 355:6-9. [PMID: 17292854 DOI: 10.1016/j.bbrc.2006.12.239] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 12/09/2006] [Indexed: 10/23/2022]
Abstract
Do the complexity and the bulkiness of a protein affect the affinity between protein and ligand? We attempted to investigate this problem by using ab initio fragment molecular orbital (FMO) method to calculate the binding energy between human influenza viral hemagglutinin (HA) and human oligo-saccharide receptor. We compared the binding energies of 4 different sizes of human A virus HA H3 subtype complexed with human receptor Neu5Ac(alpha2-6)Gal as a model. The full shape receptor binding domain complexed with Neu5Ac(alpha2-6)Gal had the highest binding energy 170.3kcal/mol at the FMO-HF/STO-3G level, which was 52.3kcal/mol higher than that of the smallest domain-receptor complex. These data provide the consideration of the backyard bulkiness beyond the binding site of protein to the protein-ligand stability.
Collapse
Affiliation(s)
- Toshihiko Sawada
- Department of Applied Bioorganic Chemistry, The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
FUKUZAWA K, NAKANO T, KATO A, MOCHIZUKI Y, TANAKA S. Applications of the Fragment Molecular Orbital Method for Bio-Macromolecules. ACTA ACUST UNITED AC 2007. [DOI: 10.2477/jccj.6.185] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|