1
|
Zhuang W, Mun SY, Park WS. Direct effects of antipsychotics on potassium channels. Biochem Biophys Res Commun 2025; 749:151344. [PMID: 39842331 DOI: 10.1016/j.bbrc.2025.151344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Schizophrenia (SCZ) and bipolar disorder (BD) and are severe psychiatric conditions that contribute to disability and increased healthcare costs globally. Although first-, second-, and third-generation antipsychotics are available for treating BD and SCZ, most have various side effects unrelated to their unique functions. Many antipsychotics affect K+ channels (Kv, KCa, Kir, K2P, and other channels), which change the functions of various organs. This review summarizes the biological actions of antipsychotics, including off-target side effects involving K+ channels.
Collapse
Affiliation(s)
- Wenwen Zhuang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Seo-Yeong Mun
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| |
Collapse
|
2
|
Miyashita Y, Moriya T, Kato T, Kawasaki M, Yasuda S, Adachi N, Suzuki K, Ogasawara S, Saito T, Senda T, Murata T. Improved higher resolution cryo-EM structures reveal the binding modes of hERG channel inhibitors. Structure 2024; 32:1926-1935.e3. [PMID: 39321803 DOI: 10.1016/j.str.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
During drug discovery, it is crucial to exclude compounds with toxic effects. The human ether-à-go-go-related gene (hERG) channel is essential for maintaining cardiac repolarization and is a critical target in drug safety evaluation due to its role in drug-induced arrhythmias. Inhibition of the hERG channel can lead to severe cardiac issues, including Torsades de Pointes tachycardia. Understanding hERG inhibition mechanisms is essential to avoid these toxicities. Several structural studies have elucidated the interactions between inhibitors and hERG. However, orientation and resolution issues have so far limited detailed insights. Here, we used digitonin to analyze the apo state of hERG, which resolved orientation issues and improved the resolution. We determined the structure of hERG bound to astemizole, showing a clear map in the pore pathway. Using this strategy, we also analyzed the binding modes of E-4031 and pimozide. These insights into inhibitor interactions with hERG may aid safer drug design and enhance cardiac safety.
Collapse
Affiliation(s)
- Yasuomi Miyashita
- Department of Developmental Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8670, Japan; Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Toshio Moriya
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801, Japan
| | - Takafumi Kato
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX13QC, UK
| | - Masato Kawasaki
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801, Japan
| | - Satoshi Yasuda
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan; Membrane Protein Research Center, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Naruhiko Adachi
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801, Japan; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kano Suzuki
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan; Membrane Protein Research Center, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Satoshi Ogasawara
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan; Membrane Protein Research Center, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Tetsuichiro Saito
- Department of Developmental Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8670, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan; Membrane Protein Research Center, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan.
| |
Collapse
|
3
|
Tan Q, Wu D, Lin Y, Ai H, Xu J, Zhou H, Gu Q. Identifying eleven new ferroptosis inhibitors as neuroprotective agents from FDA-approved drugs. Bioorg Chem 2024; 146:107261. [PMID: 38460336 DOI: 10.1016/j.bioorg.2024.107261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
With increasing evidence that ferroptosis is associated with diverse neurological disorders, targeting ferroptosis offers a promising avenue for developing effective pharmaceutical agents for neuroprotection. In this study, we identified ferroptosis inhibitors as neuroprotective agents from US Food and Drug Administration (FDA)-approved drugs. 1176 drugs have been screened against erastin-induced ferroptosis in HT22 cells, resulting in 89 ferroptosis inhibitors. Among them, 26 drugs showed significant activity with EC50 below10 μM. The most active ferroptosis inhibitor is lumateperone tosylate at nanomolar level. 11 drugs as ferroptosis inhibitors were not reported previously. Further mechanistic studies revealed that their mechanisms of actions involve free radical scavenging, Fe2+ chelation, and 15-lipoxygenase inhibition. Notably, the active properties of some drugs were firstly revealed here. These ferroptosis inhibitors increase the chemical diversity of ferroptosis inhibitors, and offer new therapeutic possibilities for the treatments of related neurological diseases.
Collapse
Affiliation(s)
- Qingyun Tan
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Deyin Wu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yating Lin
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Haopeng Ai
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Huihao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Barbosa WG, Santos-Jr CV, Andrade RB, Lucena JR, Moura RT. Bond analysis in meta- and para-substituted thiophenols: overlap descriptors, local mode analysis, and QTAIM. J Mol Model 2024; 30:139. [PMID: 38639900 DOI: 10.1007/s00894-024-05932-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
CONTEXT This study delves into the chemical nuances of thiophenols and their derivatives through a comprehensive computational analysis, moving beyond traditional energetic perspectives such as bond dissociation enthalpy and S-H dissociation dynamics. By employing the overlap model along with its topological descriptors (OP/TOP), quantum theory of atoms in molecules (QTAIM), and local vibrational mode (LVM) theories, the research provides a deeper understanding of the S-H and C-S bonding scenarios in substituted thiophenols. The investigation follows the electron-donating capacity of S-H substituent variation with the nature and positioning of other ring substituents. Energy profile analyses indicate distinct stability differences in the cis and trans conformations of meta- and para-PhSH systems, influenced by the electron-donating strength of these substituents. The study also uncovers significant variations in S-H bond distances and descriptor values, particularly in para-substituted PhSH, reflecting the influence of electron-donating or withdrawing substituents. In contrast, alterations at the meta-position show minimal effects on C-S bond descriptors, while para-substitutions markedly influence C-S bond characteristics, demonstrating a clear correlation with the electron-donating or withdrawing capabilities of the substituents. This research sheds light on the intricate bond dynamics in aromatic systems with diverse substituents, highlighting the complex interaction between electronic effects and molecular conformation. METHODS The study employs the ω B97X-D/Def2TZVP level of theory for molecular geometries, ensuring accurate characterization of structures as true minima via analytical harmonic frequency determination. The electronic properties of S-H and C-S bonds in variously substituted thiophenols were analyzed using OP/TOP, QTAIM, and LVM methodologies. Computational processes, including conformational scans, geometry optimizations, and vibrational frequency calculations, were conducted using Gaussian 09, with ultra-fine integration grids and tight convergence criteria for the SCF procedure. Bond descriptors were computed utilizing ChemBOS, Multiwfn, and LModeA software, providing a robust and detailed examination of bond properties.
Collapse
Affiliation(s)
- Willis G Barbosa
- Department of Chemistry, State University of Paraiba, Campina Grande, 58429-500, PB, Brazil
| | - Carlos V Santos-Jr
- Department of Chemistry, Federal University of Paraiba, João Pessoa, 58051-970, PB, Brazil
| | - Railton B Andrade
- Department of Chemistry, State University of Paraiba, Campina Grande, 58429-500, PB, Brazil
| | - Juracy R Lucena
- Department of Chemistry, State University of Paraiba, Campina Grande, 58429-500, PB, Brazil
| | - Renaldo T Moura
- Department of Chemistry and Physics, Center of Agrarian Sciences, Federal University of Paraiba, Areia, 58397-000, PB, Brazil.
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, 75275, USA.
| |
Collapse
|
5
|
Emigh Cortez AM, DeMarco KR, Furutani K, Bekker S, Sack JT, Wulff H, Clancy CE, Vorobyov I, Yarov-Yarovoy V. Structural modeling of hERG channel-drug interactions using Rosetta. Front Pharmacol 2023; 14:1244166. [PMID: 38035013 PMCID: PMC10682396 DOI: 10.3389/fphar.2023.1244166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
The human ether-a-go-go-related gene (hERG) not only encodes a potassium-selective voltage-gated ion channel essential for normal electrical activity in the heart but is also a major drug anti-target. Genetic hERG mutations and blockage of the channel pore by drugs can cause long QT syndrome, which predisposes individuals to potentially deadly arrhythmias. However, not all hERG-blocking drugs are proarrhythmic, and their differential affinities to discrete channel conformational states have been suggested to contribute to arrhythmogenicity. We used Rosetta electron density refinement and homology modeling to build structural models of open-state hERG channel wild-type and mutant variants (Y652A, F656A, and Y652A/F656 A) and a closed-state wild-type channel based on cryo-electron microscopy structures of hERG and EAG1 channels. These models were used as protein targets for molecular docking of charged and neutral forms of amiodarone, nifekalant, dofetilide, d/l-sotalol, flecainide, and moxifloxacin. We selected these drugs based on their different arrhythmogenic potentials and abilities to facilitate hERG current. Our docking studies and clustering provided atomistic structural insights into state-dependent drug-channel interactions that play a key role in differentiating safe and harmful hERG blockers and can explain hERG channel facilitation through drug interactions with its open-state hydrophobic pockets.
Collapse
Affiliation(s)
- Aiyana M. Emigh Cortez
- Biophysics Graduate Group, University of California, Davis, Davis, CA, United States
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Kevin R. DeMarco
- Biophysics Graduate Group, University of California, Davis, Davis, CA, United States
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Kazuharu Furutani
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- Department of Pharmacology, Tokushima Bunri University, Tokushima, Japan
| | - Slava Bekker
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- American River College, Sacramento, CA, United States
| | - Jon T. Sack
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA, United States
| | - Heike Wulff
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Colleen E. Clancy
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
- Center for Precision Medicine and Data Sciences, University of California, Davis, Davis, CA, United States
| | - Igor Vorobyov
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
6
|
Furutani K. Facilitation of hERG Activation by Its Blocker: A Mechanism to Reduce Drug-Induced Proarrhythmic Risk. Int J Mol Sci 2023; 24:16261. [PMID: 38003453 PMCID: PMC10671758 DOI: 10.3390/ijms242216261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Modulation of the human Ether-à-go-go-Related Gene (hERG) channel, a crucial voltage-gated potassium channel in the repolarization of action potentials in ventricular myocytes of the heart, has significant implications on cardiac electrophysiology and can be either antiarrhythmic or proarrhythmic. For example, hERG channel blockade is a leading cause of long QT syndrome and potentially life-threatening arrhythmias, such as torsades de pointes. Conversely, hERG channel blockade is the mechanism of action of Class III antiarrhythmic agents in terminating ventricular tachycardia and fibrillation. In recent years, it has been recognized that less proarrhythmic hERG blockers with clinical potential or Class III antiarrhythmic agents exhibit, in addition to their hERG-blocking activity, a second action that facilitates the voltage-dependent activation of the hERG channel. This facilitation is believed to reduce the proarrhythmic potential by supporting the final repolarizing of action potentials. This review covers the pharmacological characteristics of hERG blockers/facilitators, the molecular mechanisms underlying facilitation, and their clinical significance, as well as unresolved issues and requirements for research in the fields of ion channel pharmacology and drug-induced arrhythmias.
Collapse
Affiliation(s)
- Kazuharu Furutani
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihama-Boji, Yamashiro-cho, Tokushima 770-8514, Japan
| |
Collapse
|
7
|
Nemati M, Hosseinzadeh Z, Nemati F, Ebrahimi B. Impact of antipsychotics and antidepressants drugs on long QT syndrome induction related to hERG channel dysfunction: A systematic review. Biochem Biophys Res Commun 2023; 681:90-96. [PMID: 37774574 DOI: 10.1016/j.bbrc.2023.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
PURPOSE QT prolongation is one of the main unwanted cardiac effects caused by drugs, such as anti-psychotics and anti-depressants, inducing mainly via hERG channel dysfunction. The precise and underlying mechanism of adverse effects on hERG channel are still indecisive, but these effects limit their use in patients with cardiac risk factors. The aim of this review was studying mechanism of Long-term QT syndrome induction via hERG channel dysfunction by these Drugs. METHOD Search was performed in PubMed, and Scopus. All human, animals, and cell lines studies, English and full text publications were included. Among 1280 papers, 23 studies were eligible for more assessments. Quality of studies cheeked by two researchers independently. KEY FINDING most of studies were done on anti-psychotic drugs, especially typical class. Most used investigated method to long-term QT induction was patch clamp. SIGNIFICANCE results suggests in susceptible cases with heart risk factors, these drugs should be taken with caution and monitored.
Collapse
Affiliation(s)
- Marzieh Nemati
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Hosseinzadeh
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Nemati
- School of Dentistry, Shiraz University of Medical Science, Shiraz, Iran
| | - Bahareh Ebrahimi
- Geriatric Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
El Harchi A, Hancox JC. hERG agonists pose challenges to web-based machine learning methods for prediction of drug-hERG channel interaction. J Pharmacol Toxicol Methods 2023; 123:107293. [PMID: 37468081 DOI: 10.1016/j.vascn.2023.107293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Pharmacological blockade of the IKr channel (hERG) by diverse drugs in clinical use is associated with the Long QT Syndrome that can lead to life threatening arrhythmia. Various computational tools including machine learning models (MLM) for the prediction of hERG inhibition have been developed to facilitate the throughput screening of drugs in development and optimise thus the prediction of hERG liabilities. The use of MLM relies on large libraries of training compounds for the quantitative structure-activity relationship (QSAR) modelling of hERG inhibition. The focus on inhibition omits potential effects of hERG channel agonist molecules and their associated QT shortening risk. It is instructive, therefore, to consider how known hERG agonists are handled by MLM. Here, two highly developed online computational tools for the prediction of hERG liability, Pred-hERG and HergSPred were probed for their ability to detect hERG activator drug molecules as hERG interactors. In total, 73 hERG blockers were tested with both computational tools giving overall good predictions for hERG blockers with reported IC50s below Pred-hERG and HergSPred cut-off threshold for hERG inhibition. However, for compounds with reported IC50s above this threshold such as disopyramide or sotalol discrepancies were observed. HergSPred identified all 20 hERG agonists selected as interacting with the hERG channel. Further studies are warranted to improve online MLM prediction of hERG related cardiotoxicity, by explicitly taking into account channel agonism as well as inhibition.
Collapse
Affiliation(s)
- Aziza El Harchi
- School of Physiology and Pharmacology and Neuroscience, Biomedical Sciences Building, The University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | - Jules C Hancox
- School of Physiology and Pharmacology and Neuroscience, Biomedical Sciences Building, The University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
9
|
Vaiman EE, Shnayder NA, Zhuravlev NM, Petrova MM, Asadullin AR, Al-Zamil M, Garganeeva NP, Shipulin GA, Cumming P, Nasyrova RF. Genetic Biomarkers of Antipsychotic-Induced Prolongation of the QT Interval in Patients with Schizophrenia. Int J Mol Sci 2022; 23:ijms232415786. [PMID: 36555428 PMCID: PMC9785058 DOI: 10.3390/ijms232415786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Antipsychotics (AP) induced prolongation of the QT interval in patients with schizophrenia (Sch) is an actual interdisciplinary problem as it increases the risk of sudden death syndrome. Long QT syndrome (LQTS) as a cardiac adverse drug reaction is a multifactorial symptomatic disorder, the development of which is influenced by modifying factors (APs' dose, duration of APs therapy, APs polytherapy, and monotherapy, etc.) and non-modifying factors (genetic predisposition, gender, age, etc.). The genetic predisposition to AP-induced LQTS may be due to several causes, including causal mutations in the genes responsible for monoheme forms of LQTS, single nucleotide variants (SNVs) of the candidate genes encoding voltage-dependent ion channels expressed both in the brain and in the heart, and SNVs of candidate genes encoding key enzymes of APs metabolism. This narrative review summarizes the results of genetic studies on AP-induced LQTS and proposes a new personalized approach to assessing the risk of its development (low, moderate, high). We recommend implementation in protocols of primary diagnosis of AP-induced LQTS and medication dispensary additional observations of the risk category of patients receiving APs, deoxyribonucleic acid profiling, regular electrocardiogram monitoring, and regular therapeutic drug monitoring of the blood APs levels.
Collapse
Affiliation(s)
- Elena E. Vaiman
- Institute of Personalized Psychiatry and Neurology, V. M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, V. M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities “Molecular and Cell Technologies”, V. F. Voyno-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-670-02-20 (N.A.S. & R.F.N.)
| | - Nikita M. Zhuravlev
- Institute of Personalized Psychiatry and Neurology, V. M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V. F. Voyno-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Azat R. Asadullin
- Department of Psychiatry and Addiction, Bashkir State Medical University, 450008 Ufa, Russia
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Natalia P. Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia
| | - German A. Shipulin
- Centre for Strategic Planning and Management of Biomedical Health Risks Management, 119121 Moscow, Russia
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, 3010 Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane 4000, Australia
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, V. M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-670-02-20 (N.A.S. & R.F.N.)
| |
Collapse
|
10
|
Su S, Sun J, Wang Y, Xu Y. Cardiac hERG K + Channel as Safety and Pharmacological Target. Handb Exp Pharmacol 2021; 267:139-166. [PMID: 33829343 DOI: 10.1007/164_2021_455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The human ether-á-go-go related gene (hERG, KCNH2) encodes the pore-forming subunit of the potassium channel responsible for a fast component of the cardiac delayed rectifier potassium current (IKr). Outward IKr is an important determinant of cardiac action potential (AP) repolarization and effectively controls the duration of the QT interval in humans. Dysfunction of hERG channel can cause severe ventricular arrhythmias and thus modulators of the channel, including hERG inhibitors and activators, continue to attract intense pharmacological interest. Certain inhibitors of hERG channel prolong the action potential duration (APD) and effective refractory period (ERP) to suppress premature ventricular contraction and are used as class III antiarrhythmic agents. However, a reduction of the hERG/IKr current has been recognized as a predominant mechanism responsible for the drug-induced delayed repolarization known as acquired long QT syndromes (LQTS), which is linked to an increased risk for "torsades de pointes" (TdP) ventricular arrhythmias and sudden cardiac death. Many drugs of different classes and structures have been identified to carry TdP risk. Hence, assessing hERG/IKr blockade of new drug candidates is mandatory in the drug development process according to the regulatory agencies. In contrast, several hERG channel activators have been shown to enhance IKr and shorten the APD and thus might have potential antiarrhythmic effects against pathological LQTS. However, these activators may also be proarrhythmic due to excessive shortening of APD and the ERP.
Collapse
Affiliation(s)
- Shi Su
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China
| | - Jinglei Sun
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China
| | - Yi Wang
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China
| | - Yanfang Xu
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China.
| |
Collapse
|
11
|
Porta LC, Campeiro JD, Papa GB, Oliveira EB, Godinho RO, Rodrigues T, Hayashi MAF. In vivo effects of the association of the psychoactive phenotiazine thioridazine on antitumor activity and hind limb paralysis induced by the native polypeptide crotamine. Toxicon 2020; 185:64-71. [PMID: 32621838 DOI: 10.1016/j.toxicon.2020.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/28/2020] [Accepted: 06/21/2020] [Indexed: 11/18/2022]
Abstract
Crotamine is a cationic polypeptide composed by 42 amino acid residues with several pharmacological and biological properties, including the selective ability to enter and kill actively proliferating tumour cells, which led us to propose its use as a theranostic agent for cancer therapy. At the moment, the improvement of crotamine antitumoral efficacy by association with chemotherapeutic adjuvants is envisioned. In the present work, we evaluated the association of crotamine with the antitumoral adjuvant phenotiazine thioridazine (THD). In spite of the clear efficacy of these both compounds as anticancer agents in long-term in vivo treatment of animal model bearing implanted xenograph melanoma tumor, the expected mutual potentiation of the antitumor effects was not observed here. Moreover, this association revealed for the first time the influence of THD on crotamine ability to trigger the hind limb paralysis in mice, and this discovery may represent the first report suggesting the potential involvement of the CNS in the action of this snake polypeptide on the skeletal muscle paralysis, which was classically believed to be essentially limited to a direct action in peripheral tissues as the skeletal muscle. This is also supported by the observed ability of crotamine to potentiate the sedative effects of THD which action was consistently demonstrated to be based on its central action. The better characterization of crotamine properties in CNS may certainly bring important insights for the knowledge needed to pave the way toward the use of this molecule as a theranostic compound in human diseases as cancer.
Collapse
Affiliation(s)
- Lucas C Porta
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil
| | - Joana D Campeiro
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil
| | - Giovanna B Papa
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil
| | - Eduardo B Oliveira
- Departamento de Bioquímica e Imunologia, Universidade de São Paulo (USP-RP), Ribeirão Preto, Brazil
| | - Rosely O Godinho
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil
| | | | - Mirian A F Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil.
| |
Collapse
|
12
|
Kudaibergenova M, Guo J, Khan HM, Zahid F, Lees-Miller J, Noskov SY, Duff HJ. Allosteric Coupling Between Drug Binding and the Aromatic Cassette in the Pore Domain of the hERG1 Channel: Implications for a State-Dependent Blockade. Front Pharmacol 2020; 11:914. [PMID: 32694995 PMCID: PMC7338687 DOI: 10.3389/fphar.2020.00914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/04/2020] [Indexed: 12/18/2022] Open
Abstract
Human-ether-a-go-go-related channel (hERG1) is the pore-forming domain of the delayed rectifier K+ channel in the heart which underlies the IKr current. The channel has been extensively studied due to its propensity to bind chemically diverse group of drugs. The subsequent hERG1 block can lead to a prolongation of the QT interval potentially leading to an abnormal cardiac electrical activity. The recently solved cryo-EM structure featured a striking non-swapped topology of the Voltage-Sensor Domain (VSD) which is packed against the pore-domain as well as a small and hydrophobic intra-cavity space. The small size and hydrophobicity of the cavity was unexpected and challenges the already-established hypothesis of drugs binding to the wide cavity. Recently, we showed that an amphipathic drug, ivabradine, may favorably bind the channel from the lipid-facing surface and we discovered a mutant (M651T) on the lipid facing domain between the VSD and the PD which inhibited the blocking capacity of the drug. Using multi-microseconds Molecular Dynamics (MD) simulations of wild-type and M651T mutant hERG1, we suggested the block of the channel through the lipid mediated pathway, the opening of which is facilitated by the flexible phenylalanine ring (F656). In this study, we characterize the dynamic interaction of the methionine-aromatic cassette in the S5-S6 helices by combining data from electrophysiological experiments with MD simulations and molecular docking to elucidate the complex allosteric coupling between drug binding to lipid-facing and intra-cavity sites and aromatic cassette dynamics. We investigated two well-established hERG1 blockers (ivabradine and dofetilide) for M651 sensitivity through electrophysiology and mutagenesis techniques. Our electrophysiology data reveal insensitivity of dofetilide to the mutations at site M651 on the lipid facing side of the channel, mirroring our results obtained from docking experiments. Moreover, we show that the dofetilide-induced block of hERG1 occurs through the intracellular space, whereas little to no block of ivabradine is observed during the intracellular application of the drug. The dynamic conformational rearrangement of the F656 appears to regulate the translocation of ivabradine into the central cavity. M651T mutation appears to disrupt this entry pathway by altering the molecular conformation of F656.
Collapse
Affiliation(s)
- Meruyert Kudaibergenova
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.,Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Jiqing Guo
- Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Hanif M Khan
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Farhan Zahid
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - James Lees-Miller
- Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Sergei Yu Noskov
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Henry J Duff
- Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
13
|
El Harchi A, Butler AS, Zhang Y, Dempsey CE, Hancox JC. The macrolide drug erythromycin does not protect the hERG channel from inhibition by thioridazine and terfenadine. Physiol Rep 2020; 8:e14385. [PMID: 32147975 PMCID: PMC7061092 DOI: 10.14814/phy2.14385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/25/2022] Open
Abstract
The macrolide antibiotic erythromycin has been associated with QT interval prolongation and inhibition of the hERG-encoded channels responsible for the rapid delayed rectifier K+ current I(Kr ). It has been suggested that low concentrations of erythromycin may have a protective effect against hERG block and associated drug-induced arrhythmia by reducing the affinity of the pore-binding site for high potency hERG inhibitors. This study aimed to explore further the notion of a potentially protective effect of erythromycin. Whole-cell patch-clamp experiments were performed in which hERG-expressing mammalian (Human Embryonic Kidney; HEK) cells were preincubated with low to moderate concentrations of erythromycin (3 or 30 µM) prior to whole-cell patch clamp recordings of hERG current (IhERG ) at 37°C. In contrast to a previous report, exposure to low concentrations of erythromycin did not reduce pharmacological sensitivity of hERG to the antipsychotic thioridazine and antihistamine terfenadine. The IC50 value for IhERG tail inhibition by terfenadine was decreased by ~32-fold in the presence of 3 µM erythromycin (p < .05 vs. no preincubation). Sensitivity to thioridazine remained unchanged (p > .05 vs. no preincubation). The effects of low concentrations of erythromycin were investigated for a series of pore blocking drugs, and the results obtained were consistent with additive and/or synergistic effects. Experiments with the externally acting blocker BeKm-1 on WT hERG and a pore mutant (F656V) were used to explore the location of the binding site for erythromycin. Our data are inconsistent with the use of erythromycin for the management of drug-induced QT prolongation.
Collapse
Affiliation(s)
- Aziza El Harchi
- School of Physiology and Pharmacology and Neuroscience, Biomedical Sciences Building, The University of Bristol, University Walk, Bristol, UK
| | - Andrew S Butler
- School of Physiology and Pharmacology and Neuroscience, Biomedical Sciences Building, The University of Bristol, University Walk, Bristol, UK
| | - Yihong Zhang
- School of Physiology and Pharmacology and Neuroscience, Biomedical Sciences Building, The University of Bristol, University Walk, Bristol, UK
| | - Christopher E Dempsey
- School of Biochemistry, Biomedical Sciences Building, The University of Bristol, University Walk, Bristol, UK
| | - Jules C Hancox
- School of Physiology and Pharmacology and Neuroscience, Biomedical Sciences Building, The University of Bristol, University Walk, Bristol, UK
| |
Collapse
|
14
|
Thioridazine Induces Cardiotoxicity via Reactive Oxygen Species-Mediated hERG Channel Deficiency and L-Type Calcium Channel Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3690123. [PMID: 32064022 PMCID: PMC6998749 DOI: 10.1155/2020/3690123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/01/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Thioridazine (THIO) is a phenothiazine derivative that is mainly used for the treatment of psychotic disorders. However, cardiac arrhythmias especially QT interval prolongation associated with the application of this compound have received serious attention after its introduction into clinical practice, and the mechanisms underlying the cardiotoxicity induced by THIO have not been well defined. The present study was aimed at exploring the long-term effects of THIO on the hERG and L-type calcium channels, both of which are relevant to the development of QT prolongation. The hERG current (I hERG) and the calcium current (I Ca-L) were measured by patch clamp techniques. Protein levels were analyzed by Western blot, and channel-chaperone interactions were determined by coimmunoprecipitation. Reactive oxygen species (ROS) were determined by flow cytometry and laser scanning confocal microscopy. Our results demonstrated that THIO induced hERG channel deficiency but did not alter channel kinetics. THIO promoted ROS production and stimulated endoplasmic reticulum (ER) stress and the related proteins. The ROS scavenger N-acetyl cysteine (NAC) significantly attenuated hERG reduction induced by THIO and abolished the upregulation of ER stress marker proteins. Meanwhile, THIO increased the degradation of hERG channels via disrupting hERG-Hsp70 interactions. The disordered hERG proteins were degraded in proteasomes after ubiquitin modification. On the other hand, THIO increased I Ca-L density and intracellular Ca2+ ([Ca2+]i) in neonatal rat ventricular cardiomyocytes (NRVMs). The specific CaMKII inhibitor KN-93 attenuated the intracellular Ca2+ overload, indicating that ROS-mediated CaMKII activation promoted calcium channel activation induced by THIO. Optical mapping analysis demonstrated the slowing effects of THIO on cardiac repolarization in mouse hearts. THIO significantly prolonged APD50 and APD90 and increased the incidence of early afterdepolarizations (EADs). In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), THIO also resulted in APD prolongation. In conclusion, dysfunction of hERG channel proteins and activation of L-type calcium channels via ROS production might be the ionic mechanisms for QT prolongation induced by THIO.
Collapse
|
15
|
Seo SU, Kim TH, Kim DE, Min KJ, Kwon TK. NOX4-mediated ROS production induces apoptotic cell death via down-regulation of c-FLIP and Mcl-1 expression in combined treatment with thioridazine and curcumin. Redox Biol 2017; 13:608-622. [PMID: 28806703 PMCID: PMC5554966 DOI: 10.1016/j.redox.2017.07.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/25/2017] [Accepted: 07/30/2017] [Indexed: 10/24/2022] Open
Abstract
Thioridazine is known to have anti-tumor effects by inhibiting PI3K/Akt signaling, which is an important signaling pathway in cell survival. However, thioridazine alone does not induce apoptosis in head and neck squamous cell carcinoma (AMC-HN4), human breast carcinoma (MDA-MB231), and human glioma (U87MG) cells. Therefore, we investigated whether combined treatment with thioridazine and curcumin induces apoptosis. Combined treatment with thioridazine and curcumin markedly induced apoptosis in cancer cells without inducing apoptosis in human normal mesangial cells and human normal umbilical vein cells (EA.hy926). We found that combined treatment with thioridazine and curcumin had synergistic effects in AMC-HN4 cells. Among apoptosis-related proteins, thioridazine plus curcumin induced down-regulation of c-FLIP and Mcl-1 expression at the post-translational levels in a proteasome-dependent manner. Augmentation of proteasome activity was related to the up-regulation of proteasome subunit alpha 5 (PSMA5) expression in curcumin plus thioridazine-treated cells. Combined treatment with curcumin and thioridazine produced intracellular ROS in a NOX4-dependent manner, and ROS-mediated activation of Nrf2/ARE signaling played a critical role in the up-regulation of PSMA5 expression. Furthermore, ectopic expression of c-FLIP and Mcl-1 inhibited apoptosis in thioridazine and curcumin-treated cells. Therefore, we demonstrated that thioridazine plus curcumin induces proteasome activity by up-regulating PSMA5 expression via NOX4-mediated ROS production and that down-regulation of c-FLIP and Mcl-1 expression post-translationally is involved in apoptosis.
Collapse
Affiliation(s)
- Seung Un Seo
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea
| | - Tae Hwan Kim
- Department of Otolaryngology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea
| | - Dong Eun Kim
- Department of Otolaryngology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea
| | - Kyoung-Jin Min
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea.
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea.
| |
Collapse
|
16
|
Hazell L, Raschi E, De Ponti F, Thomas SHL, Salvo F, Ahlberg Helgee E, Boyer S, Sturkenboom M, Shakir S. Evidence for the hERG Liability of Antihistamines, Antipsychotics, and Anti-Infective Agents: A Systematic Literature Review From the ARITMO Project. J Clin Pharmacol 2017; 57:558-572. [PMID: 28019033 DOI: 10.1002/jcph.838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/08/2016] [Indexed: 04/21/2025]
Abstract
A systematic review was performed to categorize the hERG (human ether-a-go-go-related gene) liability of antihistamines, antipsychotics, and anti-infectives and to compare it with current clinical risk of torsade de pointes (TdP). Eligible studies were hERG assays reporting half-minimal inhibitory concentrations (IC50). A "hERG safety margin" was calculated from the IC50 divided by the peak human plasma concentration (free Cmax ). A margin below 30 defined hERG liability. Each drug was assigned an "uncertainty score" based on volume, consistency, precision, and internal and external validity of evidence. The hERG liability was compared to existing knowledge on TdP risk (www.credibledrugs.org). Of 1828 studies, 82 were eligible, allowing calculation of safety margins for 61 drugs. Thirty-one drugs (51%) had evidence of hERG liability including 6 with no previous mention of TdP risk (eg, desloratadine, lopinavir). Conversely, 16 drugs (26%) had no evidence of hERG liability including 6 with known, or at least conditional or possible, TdP risk (eg, chlorpromazine, sulpiride). The main sources of uncertainty were the validity of the experimental conditions used (antihistamines and antipsychotics) and nonuse of reference compounds (anti-infectives). In summary, hERG liability was categorized for 3 widely used drug classes, incorporating a qualitative assessment of the strength of available evidence. Some concordance with TdP risk was observed, although several drugs had hERG liability without evidence of clinical risk and vice versa. This may be due to gaps in clinical evidence, limitations of hERG/Cmax data, or other patient/drug-specific factors that contribute to real-life TdP risk.
Collapse
Affiliation(s)
- Lorna Hazell
- Drug Safety Research Unit, Southampton, United Kingdom
| | - Emanuel Raschi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Fabrizio De Ponti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Simon H L Thomas
- Institute of Cellular Medicine, Faculty of Medicine, Newcastle University, Newcastle, United Kingdom
| | - Francesco Salvo
- University of Bordeaux U657, CHU de Bordeaux, Bordeaux, France
| | - Ernst Ahlberg Helgee
- Drug Safety and Metabolism, AstraZeneca Innovative Medicines and Early Development, Mölndal, Sweden
| | - Scott Boyer
- Computational Toxicology, Swedish Toxicology Sciences Research Center, Södertälje, Sweden
| | | | - Saad Shakir
- Drug Safety Research Unit, Southampton, United Kingdom
| |
Collapse
|
17
|
Binding of phenothiazines into allosteric hydrophobic pocket of human thioredoxin 1. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:279-86. [PMID: 26820562 DOI: 10.1007/s00249-016-1113-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/25/2015] [Accepted: 01/10/2016] [Indexed: 10/22/2022]
Abstract
Thioredoxins are multifunctional oxidoreductase proteins implicated in the antioxidant cellular apparatus and oxidative stress. They are involved in several pathologies and are promising anticancer targets. Identification of noncatalytic binding sites is of great interest for designing new allosteric inhibitors of thioredoxin. In a recent work, we predicted normal mode motions of human thioredoxin 1 and identified two major putative hydrophobic binding sites. In this work we investigated noncovalent interactions of human thioredoxin 1 with three phenotiazinic drugs acting as prooxidant compounds by using molecular docking and circular dichroism spectrometry to probe ligand binding into the previously predicted allosteric hydrophobic pockets. Our in silico and CD spectrometry experiments suggested one preferred allosteric binding site involving helix 3 and adopting the best druggable conformation identified by NMA. The CD spectra showed binding of thioridazine into thioredoxin 1 and suggested partial helix unfolding, which most probably concerns helix 3. Taken together, these data support the strategy to design thioredoxin inhibitors targeting a druggable allosteric binding site.
Collapse
|
18
|
Salvo F, Pariente A, Shakir S, Robinson P, Arnaud M, Thomas SHL, Raschi E, Fourrier-Réglat A, Moore N, Sturkenboom M, Hazell on behalf of Investigators o L. Sudden cardiac and sudden unexpected death related to antipsychotics: A meta-analysis of observational studies. Clin Pharmacol Ther 2015; 99:306-14. [DOI: 10.1002/cpt.250] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/09/2015] [Indexed: 01/11/2023]
Affiliation(s)
- F Salvo
- University of Bordeaux, INSERM U657; Bordeaux France
- CHU Bordeaux; Bordeaux France
| | - A Pariente
- University of Bordeaux, INSERM U657; Bordeaux France
- CHU Bordeaux; Bordeaux France
- CIC Bordeaux CIC1401; Bordeaux France
| | - S Shakir
- Drug Safety Research Unit; Southampton Hampshire UK
| | - P Robinson
- CIC Bordeaux CIC1401; Bordeaux France
- ADERA; Pessac France
| | - M Arnaud
- University of Bordeaux, INSERM U657; Bordeaux France
| | - SHL Thomas
- Medical Toxicology Centre, Institute of Cellular Medicine; Newcastle University; Newcastle UK
| | - E Raschi
- Department of Medical and Surgical Sciences; University of Bologna; Bologna Italy
| | - A Fourrier-Réglat
- University of Bordeaux, INSERM U657; Bordeaux France
- CHU Bordeaux; Bordeaux France
| | - N Moore
- University of Bordeaux, INSERM U657; Bordeaux France
- CHU Bordeaux; Bordeaux France
- CIC Bordeaux CIC1401; Bordeaux France
| | - M Sturkenboom
- Department of Medical Informatics; Erasmus University Medical Centre; Rotterdam Netherlands
| | | | | |
Collapse
|
19
|
Jensen AS, Pennisi CP, Sevcencu C, Christensen JB, Kristiansen JE, Struijk JJ. Differential effects of thioridazine enantiomers on action potential duration in rabbit papillary muscle. Eur J Pharmacol 2014; 747:7-12. [PMID: 25449032 DOI: 10.1016/j.ejphar.2014.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 11/07/2014] [Accepted: 11/11/2014] [Indexed: 01/08/2023]
Abstract
The antipsychotic drug thioridazine has potential for treatment of multidrug-resistant microbes including tuberculosis but also causes cardiotoxic QT interval prolongation. Both thioridazine enantiomers have potent antimicrobial effects, but the neuroleptic effect primarily resides with (+)-thioridazine. In this study we for the first time investigate the cardiotoxicity of the isolated thioridazine enantiomers and show their effects on ventricular repolarization. The effects of (+)-thioridazine, (-)-thioridazine, and racemate on the rabbit ventricular action potential duration (APD) were investigated in a randomized controlled blinded experiment. Action potentials were measured in papillary muscles isolated from 21 female rabbits, and the drug effect on 90% APD in comparison with control (ΔΔ-APD90) was evaluated. Increasing concentrations of (+)-thioridazine and the racemate caused significant dose-dependent ΔΔ-APD90 prolongation, while (-)-thioridazine did not. At 0.5 and 2Hz pacing, (+)-thioridazine caused 19.5% and 20.1% ΔΔ-APD90 prolongation, the racemate caused 8.0% and 12.9%, and (-)-thioridazine caused 1.5% and 1.1%. The effect of (-)-thioridazine on APD90 was significantly less than that of the other drugs at both pacing rates (P<0.01 in all cases), and there was no significant difference between (-)-thioridazine and control. The results of this study indicate that the APD prolonging effect of thioridazine is primarily due to the (+)-thioridazine enantiomer. If these results are valid in humans, (-)-thioridazine may be a safer drug for treatment of multidrug-resistant tuberculosis and other microbes.
Collapse
Affiliation(s)
- Ask Schou Jensen
- Aalborg University, Fredrik Bajers Vej 5, 9220 Aalborg, Denmark.
| | | | | | | | | | | |
Collapse
|
20
|
Mitcheson J, Arcangeli A. The Therapeutic Potential of hERG1 K+ Channels for Treating Cancer and Cardiac Arrhythmias. ION CHANNEL DRUG DISCOVERY 2014. [DOI: 10.1039/9781849735087-00258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
hERG potassium channels present pharmacologists and medicinal chemists with a dilemma. On the one hand hERG is a major reason for drugs being withdrawn from the market because of drug induced long QT syndrome and the associated risk of inducing sudden cardiac death, and yet hERG blockers are still widely used in the clinic to treat cardiac arrhythmias. Moreover, in the last decade overwhelming evidence has been provided that hERG channels are aberrantly expressed in cancer cells and that they contribute to tumour cell proliferation, resistance to apoptosis, and neoangiogenesis. Here we provide an overview of the properties of hERG channels and their role in excitable cells of the heart and nervous system as well as in cancer. We consider the therapeutic potential of hERG, not only with regard to the negative impact due to drug induced long QT syndrome, but also its future potential as a treatment in the fight against cancer.
Collapse
Affiliation(s)
- John Mitcheson
- University of Leicester, Department of Cell Physiology and Pharmacology, Medical Sciences Building University Road Leicester LE1 9HN UK
| | - Annarosa Arcangeli
- Department of Experimental Pathology and Oncology, University of Florence Viale GB Morgagni, 50 50134 Firenze Italy
| |
Collapse
|
21
|
Crumb WJ. Allosteric effects of erythromycin pretreatment on thioridazine block of hERG potassium channels. Br J Pharmacol 2014; 171:1668-75. [PMID: 24417241 PMCID: PMC3966747 DOI: 10.1111/bph.12575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/03/2013] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE The prevalence of concurrent use of two or more drugs that block human ether-a-go-go-related gene product (hERG) K(+) channels is not uncommon, but is not well characterized. This study defined the effects of concurrent exposure of two hERG-blocking drugs on hERG current amplitude. Experiments were conducted to determine if concomitant exposure to two potent pore hERG blockers, thioridazine and terfenadine and a weak hERG blocker, erythromycin, would result in an additive, synergistic or inhibitory effect. EXPERIMENTAL APPROACH hERG currents from stably transfected HEK cells were measured using the whole-cell variant of the patch-clamp method at physiological temperatures. Concentration-response relationships for thioridazine or terfenadine were obtained with cells pre-exposed to erythromycin. KEY RESULTS Pre-exposure of cells to erythromycin resulted in an approximately 14-22-fold rightward shift in the hERG concentration-response curve for thioridazine and terfenadine respectively. This reduction in affinity was not the result of a change in the voltage-dependent characteristics of the channel. Results suggest an external binding site for erythromycin. CONCLUSIONS AND IMPLICATIONS Pretreatment with erythromycin induced an approximately 14-22-fold reduction in hERG affinity for pore-binding drugs at concentrations of erythromycin, which by themselves only block hERG by 10% or less. These results suggest distinct, allosterically linked binding sites on opposite sides of the hERG channel. Occupancy of the external site by erythromycin reduces the affinity of the pore binding site. Furthermore, these results suggest that co-administration of erythromycin may provide some reduction in cardiac liability of potent hERG-blocking drugs.
Collapse
Affiliation(s)
- W J Crumb
- Zenas Technologies LLCNew Orleans, LA, USA
| |
Collapse
|
22
|
Thurner P, Stary-Weinzinger A, Gafar H, Gawali VS, Kudlacek O, Zezula J, Hilber K, Boehm S, Sandtner W, Koenig X. Mechanism of hERG channel block by the psychoactive indole alkaloid ibogaine. J Pharmacol Exp Ther 2014; 348:346-58. [PMID: 24307198 DOI: 10.1124/jpet.113.209643] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ibogaine is a psychoactive indole alkaloid. Its use as an antiaddictive agent has been accompanied by QT prolongation and cardiac arrhythmias, which are most likely caused by human ether a go-go-related gene (hERG) potassium channel inhibition. Therefore, we studied in detail the interaction of ibogaine with hERG channels heterologously expressed in mammalian kidney tsA-201 cells. Currents through hERG channels were blocked regardless of whether ibogaine was applied via the extracellular or intracellular solution. The extent of inhibition was determined by the relative pH values. Block occurred during activation of the channels and was not observed for resting channels. With increasing depolarizations, ibogaine block grew and developed faster. Steady-state activation and inactivation of the channel were shifted to more negative potentials. Deactivation was slowed, whereas inactivation was accelerated. Mutations in the binding site reported for other hERG channel blockers (Y652A and F656A) reduced the potency of ibogaine, whereas an inactivation-deficient double mutant (G628C/S631C) was as sensitive as wild-type channels. Molecular drug docking indicated binding within the inner cavity of the channel independently of the protonation of ibogaine. Experimental current traces were fit to a kinetic model of hERG channel gating, revealing preferential binding of ibogaine to the open and inactivated state. Taken together, these findings show that ibogaine blocks hERG channels from the cytosolic side either in its charged form alone or in company with its uncharged form and alters the currents by changing the relative contribution of channel states over time.
Collapse
Affiliation(s)
- Patrick Thurner
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria (H.G., V.S.G., K.H., S.B., X.K.), Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria (P.T., O.K., J.Z., W.S.), Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (A.S.-W.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
|
25
|
He FZ, McLeod HL, Zhang W. Current pharmacogenomic studies on hERG potassium channels. Trends Mol Med 2013; 19:227-38. [PMID: 23369369 DOI: 10.1016/j.molmed.2012.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/18/2012] [Accepted: 12/27/2012] [Indexed: 11/25/2022]
Abstract
Genetic polymorphisms in human ether-a-go-go-related gene (hERG) potassium channels are associated with many complex diseases and sensitivity to channel-related drugs. Genotypes may underlie different sensitivities to the same drug, and different drugs selectively repair the functional deficits caused by individual mutations. In fact, not all drugs that block hERG function have adverse effects as previously thought. This suggests that the severe adverse reactions observed clinically may only occur in subjects with a particular genotype, but to others may be safe. Similarly, a drug that is ineffective in one population may be both safe and effective in another. Therefore, detecting polymorphisms in KCNH2 encoding hERG1 is of great significance in guiding the prevention and treatment of related diseases, re-evaluating drug safety, and individualizing treatment. This article reviews current pharmacogenomic studies on hERG potassium channels to provide a reference for developing individualized treatments and evaluating their safety.
Collapse
Affiliation(s)
- Fa-Zhong He
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan 410078, PR China
| | | | | |
Collapse
|
26
|
Okada M, Watanabe S, Matada T, Asao Y, Hamatani R, Yamawaki H, Hara Y. Inhibitory effects of psychotropic drugs on the acetylcholine receptor-operated potassium current (IK.ACh) in guinea-pig atrial myocytes. J Vet Med Sci 2013; 75:743-7. [PMID: 23343658 DOI: 10.1292/jvms.12-0511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Influences of psychotropic drugs, six antipsychotics and three antidepressants, on acetylcholine receptor-operated potassium current (IK.ACh) were examined by a whole-cell patch clamp method in freshly isolated guinea-pig atrial myocyte. IK.ACh was induced by a superfusion of carbachol (CCh) or by an intracellular application of guanosine 5'-[thio] triphosphate (GTPγS). To elucidate mechanism for anticholinergic action, IC50 ratio, the ratio of IC50 for GTPγS-activated IK.ACh to CCh-induced IK.ACh, was calculated. Antipsychotics and antidepressants inhibited CCh-induced IK.ACh in a concentration-dependent manner. The IC50 values were as follows; chlorpromazine 0.53 μM, clozapine 0.06 μM, fluphenazine 2.69 μM, haloperidol 2.66 μM, sulpiride 42.3 μM, thioridazine 0.07 μM, amitriptyline 0.03 μM, imipramine 0.22 μM and maprotiline 1.81 μM. The drugs, except for sulpiride, inhibited GTPγS-activated IK.ACh with following IC50 values; chlorpromazine 1.71 μM, clozapine 14.9 μM, fluphenazine 3.55 μM, haloperidol 2.73 μM, thioridazine 1.90 μM, amitriptyline 7.55 μM, imipramine 7.09 μM and maprotiline 5.93 μM. The IC50 ratio for fluphenazine and haloperidol was close to unity. The IC50 ratio for chlorpromazine, clozapine, thioridazine, amitriptyline, imipramine and maprotiline was much higher than unity. The present findings suggest that the psychotropics studied suppress IK.ACh. Chlorpromazine, clozapine, thioridazine, amitriptyline, imipramine, maprotiline and sulpiride are preferentially acting on muscarinic receptor. Fluphenazine and haloperidol may act on G protein and/or potassium channel.
Collapse
Affiliation(s)
- Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, Kitasato University, Towada, Aomori 034-8628, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Jang JW, Song CM, Choi KH, Cho YS, Baek DJ, Shin KJ, Pae AN. In silico Analysis on hERG Channel Blocking Effect of a Series of T-type Calcium Channel Blockers. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.1.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Perry M, Sanguinetti M, Mitcheson J. Revealing the structural basis of action of hERG potassium channel activators and blockers. J Physiol 2010; 588:3157-67. [PMID: 20643767 PMCID: PMC2976011 DOI: 10.1113/jphysiol.2010.194670] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 07/19/2010] [Indexed: 11/08/2022] Open
Abstract
Human ether-á-go-go related gene (hERG) potassium (K(+)) channels play a critical role in cardiac action potential repolarization. This is due, in large part, to the unique gating properties of these channels, which are characterized by relatively slow activation and an unusually fast and voltage-dependent inactivation. A large number of structurally diverse compounds bind to hERG and carry an unacceptably high risk of causing arrhythmias. On the other hand, drugs that increase hERG current may, at least in principle, prove useful for treatment of long QT syndrome. A few blockers have been shown to increase hERG current at potentials close to the threshold for channel activation--a process referred to as facilitation. More recently, a novel group of hERG channel activators have been identified that slow deactivation and/or attenuate inactivation. Structural determinants for the action of two different types of activators have been identified. These compounds bind at sites that are distinct from each other and also separate from the binding site of high affinity blockers. They reveal not only novel ways of chemically manipulating hERG channel function, but also interactions between structural domains that are critical to normal activation and inactivation gating.
Collapse
Affiliation(s)
- Matthew Perry
- University of Utah, Department of Physiology, Nora Eccles Harrison Cardiovascular Research & Training Institute, 95 South 2000 East, Salt Lake City,UT 84112, USA
| | | | | |
Collapse
|
29
|
Li EC, Esterly JS, Pohl S, Scott SD, McBride BF. Drug-Induced QT-Interval Prolongation: Considerations for Clinicians. Pharmacotherapy 2010; 30:684-701. [DOI: 10.1592/phco.30.7.684] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
30
|
Testai L, Cecchetti V, Sabatini S, Martelli A, Breschi MC, Calderone V. Effects of KATPopeners on the QT prolongation induced by HERG-blocking drugs in guinea-pigs. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.62.07.0014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
31
|
Milnes JT, Witchel HJ, Leaney JL, Leishman DJ, Hancox JC. Investigating dynamic protocol-dependence of hERG potassium channel inhibition at 37°C: Cisapride versus dofetilide. J Pharmacol Toxicol Methods 2010; 61:178-91. [DOI: 10.1016/j.vascn.2010.02.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 02/03/2010] [Accepted: 02/11/2010] [Indexed: 01/08/2023]
|
32
|
Grunnet M. Repolarization of the cardiac action potential. Does an increase in repolarization capacity constitute a new anti-arrhythmic principle? Acta Physiol (Oxf) 2010; 198 Suppl 676:1-48. [PMID: 20132149 DOI: 10.1111/j.1748-1716.2009.02072.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The cardiac action potential can be divided into five distinct phases designated phases 0-4. The exact shape of the action potential comes about primarily as an orchestrated function of ion channels. The present review will give an overview of ion channels involved in generating the cardiac action potential with special emphasis on potassium channels involved in phase 3 repolarization. In humans, these channels are primarily K(v)11.1 (hERG1), K(v)7.1 (KCNQ1) and K(ir)2.1 (KCNJ2) being the responsible alpha-subunits for conducting I(Kr), I(Ks) and I(K1). An account will be given about molecular components, biophysical properties, regulation, interaction with other proteins and involvement in diseases. Both loss and gain of function of these currents are associated with different arrhythmogenic diseases. The second part of this review will therefore elucidate arrhythmias and subsequently focus on newly developed chemical entities having the ability to increase the activity of I(Kr), I(Ks) and I(K1). An evaluation will be given addressing the possibility that this novel class of compounds have the ability to constitute a new anti-arrhythmic principle. Experimental evidence from in vitro, ex vivo and in vivo settings will be included. Furthermore, conceptual differences between the short QT syndrome and I(Kr) activation will be accounted for.
Collapse
Affiliation(s)
- M Grunnet
- NeuroSearch A/S, Ballerup, and Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Denmark.
| |
Collapse
|
33
|
Polak S, Wiśniowska B, Brandys J. Collation, assessment and analysis of literature in vitro data on hERG receptor blocking potency for subsequent modeling of drugs' cardiotoxic properties. J Appl Toxicol 2009; 29:183-206. [PMID: 18988205 DOI: 10.1002/jat.1395] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The assessment of the torsadogenic potency of a new chemical entity is a crucial issue during lead optimization and the drug development process. It is required by the regulatory agencies during the registration process. In recent years, there has been a considerable interest in developing in silico models, which allow prediction of drug-hERG channel interaction at the early stage of a drug development process. The main mechanism underlying an acquired QT syndrome and a potentially fatal arrhythmia called torsades de pointes is the inhibition of potassium channel encoded by hERG (the human ether-a-go-go-related gene). The concentration producing half-maximal block of the hERG potassium current (IC(50)) is a surrogate marker for proarrhythmic properties of compounds and is considered a test for cardiac safety of drugs or drug candidates. The IC(50) values, obtained from data collected during electrophysiological studies, are highly dependent on experimental conditions (i.e. model, temperature, voltage protocol). For the in silico models' quality and performance, the data quality and consistency is a crucial issue. Therefore the main objective of our work was to collect and assess the hERG IC(50) data available in accessible scientific literature to provide a high-quality data set for further studies.
Collapse
Affiliation(s)
- Sebastian Polak
- Toxicology Department, Faculty of Pharmacy, Medical Collage, Jagiellonian University, Poland.
| | | | | |
Collapse
|
34
|
Imai YN, Ryu S, Oiki S. Docking Model of Drug Binding to the Human Ether-à-go-go Potassium Channel Guided by Tandem Dimer Mutant Patch-Clamp Data: A Synergic Approach. J Med Chem 2009; 52:1630-8. [DOI: 10.1021/jm801236n] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yumi N. Imai
- Discovery Research Center, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Osaka 532-8686, Japan, and Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Sunghi Ryu
- Discovery Research Center, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Osaka 532-8686, Japan, and Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Shigetoshi Oiki
- Discovery Research Center, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Osaka 532-8686, Japan, and Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
35
|
Zemrak WR, Kenna GA. Association of antipsychotic and antidepressant drugs with Q-T interval prolongation. Am J Health Syst Pharm 2008; 65:1029-38. [DOI: 10.2146/ajhp070279] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
| | - George A. Kenna
- Brown Medical School, Brown University, Providence, RI, and Clinical Pharmacist, The Westerly Hospital, Westerly, RI
| |
Collapse
|
36
|
Dalibalta S, Mitcheson JS. hERG Channel Physiology and Drug‐Binding Structure–Activity Relationships. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/9783527621460.ch4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Mitcheson JS. hERG potassium channels and the structural basis of drug-induced arrhythmias. Chem Res Toxicol 2008; 21:1005-10. [PMID: 18447395 DOI: 10.1021/tx800035b] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
hERG potassium channels have a critical role in the normal electrical activity of the heart. The block of hERG channels can cause the drug-induced form of long QT syndrome, a cardiac disorder that carries an increased risk of cardiac arrhythmias and sudden death. hERG channels are extraordinarily sensitive to block by large numbers of structurally diverse drugs. In previous years, the risk of compounds causing this cardiotoxic side effect has been a common reason for the failure of compounds in preclinical safety trials. Pharmaceutical companies have successfully utilized and developed higher throughput techniques for the early detection of compounds that block hERG, and this has helped reduce the number of compounds that fail in the late stages of development. Nevertheless, this screening-based approach is expensive, consumes chemistry resources, and bypasses the problem rather than shedding light on it. Crystal structures of potassium channels have facilitated studies into the structural basis for the gating and block of hERG channels. Most drugs bind within the inner cavity, and the individual amino acids that form the drug binding site have been identified by site-directed mutagenesis approaches. Gating processes have an important influence on the drug-binding site. Recent advances in our understanding of channel activation and inactivation are providing insight into why hERG channels are more susceptible to block than other K (+) channels. Knowledge of the structure of the drug-binding site and precise nature of interactions with drug molecules should assist efforts to develop drugs without the propensity to cause cardiac arrhythmias.
Collapse
Affiliation(s)
- John S Mitcheson
- Department of Cell Physiology and Pharmacology, University of Leicester, Medical Sciences Building, University Road, Leicester, LE1 9HN, United Kingdom.
| |
Collapse
|
38
|
Zhao XL, Qi ZP, Fang C, Chen MH, Lv YJ, Li BX, Yang BF. HERG K+ Channel Blockade by the Novel Antiviral Drug Sophocarpine. Biol Pharm Bull 2008; 31:627-32. [DOI: 10.1248/bpb.31.627] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xue-Ling Zhao
- Department of Pharmacology, Harbin Medical University
| | - Zhi-Ping Qi
- Department of Pharmacology, Harbin Medical University
| | - Cheng Fang
- Department of Pharmacology, Harbin Medical University
| | | | - Yan-Jie Lv
- Department of Pharmacology, Harbin Medical University
| | - Bao-Xin Li
- Department of Pharmacology, Harbin Medical University
| | - Bao-Feng Yang
- Department of Pharmacology, Harbin Medical University
- State-Province Key Laboratory of Biopharmaceutical Engineering
| |
Collapse
|
39
|
Tang Q, Jin MW, Xiang JZ, Dong MQ, Sun HY, Lau CP, Li GR. The membrane permeable calcium chelator BAPTA-AM directly blocks human ether a-go-go-related gene potassium channels stably expressed in HEK 293 cells. Biochem Pharmacol 2007; 74:1596-1607. [PMID: 17826747 DOI: 10.1016/j.bcp.2007.07.042] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2007] [Revised: 07/14/2007] [Accepted: 07/30/2007] [Indexed: 11/29/2022]
Abstract
BAPTA-AM is a well-known membrane permeable Ca(2+) chelator. The present study found that BAPTA-AM rapidly and reversibly suppressed human ether a-go-go-related gene (hERG or Kv11.1) K(+) current, human Kv1.3 and human Kv1.5 channel currents stably expressed in HEK 293 cells, and the effects were not related to Ca(2+) chelation. The externally applied BAPTA-AM inhibited hERG channels in a concentration-dependent manner (IC(50): 1.3 microM). Blockade of hERG channels was dependent on channel opening, and tonic block was minimal. Steady-state activation V(0.5) of hERG channels was negatively shifted by 8.5 mV (from -3.7+/-2.8 of control to -12.2+/-3.1 mV, P<0.01), while inactivation V(0.5) was negatively shifted by 6.1 mV (from -37.9+/-2.0 mV of control to -44.0+/-1.6 mV, P<0.05) with application of 3 microM BAPTA-AM. The S6 mutant Y652A and the pore helix mutant S631A significantly attenuated blockade by BAPTA-AM at 10 microM causing profound blockade of wild-type hERG channels. In addition, BAPTA-AM inhibited hKv1.3 and hKv1.5 channels in a concentration-dependent manner (IC(50): 1.45 and 1.23 microM, respectively), and the blockade of these two types of channels was also dependent on channel opening. Moreover, EGTA-AM was found to be an open channel blocker of hERG, hKv1.3, hKv1.5 channels, though its efficacy is weaker than that of BAPTA-AM. These results indicate that the membrane permeable Ca(2+) chelator BAPTA-AM (also EGTA-AM) exerts an open channel blocking effect on hERG, hKv1.3 and hKv1.5 channels.
Collapse
Affiliation(s)
- Qiang Tang
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The emergence of multiresistant bacterial strains and the continuing burden of infectious disease globally point to the urgent need for novel affordable antimicrobial drugs. Thioridazine is a phenothiazine antipsychotic drug with well-recognized antimicrobial activity, but this property has not been harnessed for clinical use as a result of its central nervous system and cardiac side-effects. The cardiotoxicity of thioridazine has recently been shown to be structurally specific at a molecular level, whereas its antimicrobial properties are shared by a number of phenothiazine analogues. This raises the possibility that its enantiomers or its inactive metabolite, the ring sulphoxide, may act as a lead compound in the future development of antimicrobial drugs to face the new challenges in infectious disease.
Collapse
|