1
|
Pinki F, McKeever L, Costello DA, Stewart G. Aging increases UT-B urea transporter protein abundance in brains of male mice. Physiol Rep 2025; 13:e70175. [PMID: 39967278 PMCID: PMC11835958 DOI: 10.14814/phy2.70175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 02/20/2025] Open
Abstract
Facilitative UT-B urea transporters in the brain play an important role in regulating levels of urea in various cell types, including astrocytes. Numerous studies have reported increased UT-B RNA expression with aging and in neurological disorders, such as Alzheimer's Disease. However, much less is known about the effects of these conditions on UT-B transporter protein abundance. This current study compared the levels of UT-B RNA and protein in young and aged male C57BL/6 mice. Endpoint RT-PCR experiments showed UT-B RNA expression increased in both aged cortex and aged hippocampus. Importantly, these changes were coupled with an increase in protein abundance, as western blotting revealed that 30-35 kDa UT-B1 protein was significantly increased in aged mouse brain tissues compared with tissue from young animals. An increased UT-B1 protein abundance was observed in the hippocampus, cerebellum, frontal cortex, and occipital cortex. In contrast, no such changes were observed in the abundance of MCT1 short-chain fatty acid transporters in these aged tissues. These data therefore confirmed that specific increases in UT-B1 protein abundance occur in multiple regions of the aged male mouse brain. Further studies are now needed to determine cell-specific changes and the functional consequence of increased UT-B1 protein in aged brain tissues.
Collapse
Affiliation(s)
- Farhana Pinki
- UCD School of Biology and Environmental ScienceUniversity College DublinDublin 4Ireland
| | - Lauren McKeever
- UCD School of Biology and Environmental ScienceUniversity College DublinDublin 4Ireland
| | - Derek A. Costello
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
- UCD Conway InstituteUniversity College DublinDublin 4Ireland
| | - Gavin Stewart
- UCD School of Biology and Environmental ScienceUniversity College DublinDublin 4Ireland
| |
Collapse
|
2
|
Al-Thani NA, Zinck D, Stewart GS, Costello DA. Modulation of Urea Transport Attenuates TLR2-Mediated Microglial Activation and Upregulates Microglial Metabolism In Vitro. Metabolites 2024; 14:634. [PMID: 39590870 PMCID: PMC11596256 DOI: 10.3390/metabo14110634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Alzheimer's disease (AD) is a neurodegenerative disorder traditionally characterised by the presence of amyloid beta (Aβ) plaques and neurofibrillary tau tangles in the brain. However, emerging research has highlighted additional metabolic hallmarks of AD pathology. These include the metabolic reprogramming of microglia in favour of glycolysis over oxidative phosphorylation. This shift is attributed to an 'M1'-like pro-inflammatory phenotype, which exacerbates neuroinflammation and contributes to neuronal damage. The urea cycle also presents as an altered metabolic pathway in AD, due to elevated urea levels and altered expression of urea cycle enzymes, metabolites, and transporters in the brain. However, to date, these changes remain largely unexplored. Methods: This study focuses on understanding the effects of extracellular urea and urea transporter-B (UT-B) inhibition on inflammatory changes in lipoteichoic acid (LTA)-stimulated BV2 microglia and on the viability of SH-SY5Y neuronal cells under oxidative stress and neurotoxic conditions. Results: In BV2 microglia, UT-B inhibition demonstrated a notable anti-inflammatory effect by reducing the formation of nitric oxide (NO) and the expression of tumour necrosis factor α (TNFα) and CCL2 in response to stimulation with the toll-like receptor (TLR)2 agonist, lipoteichoic acid (LTA). This was accompanied by a reduction in extracellular urea and upregulation of UT-B expression. The application of exogenous urea was also shown to mediate the inflammatory profile of BV2 cells in a similar manner but had only a modest impact on UT-B expression. While exposure to LTA alone did not alter the microglial metabolic profile, inhibition of UT-B upregulated the expression of genes associated with both glycolysis and fatty acid oxidation. Conversely, neither increased extracellular urea nor UT-B inhibition had a significant impact on cell viability or cytotoxicity in SH-SY5Y neurones exposed to oxidative stressors tert-butyl hydroperoxide (t-BHP) and 6-hydroxydopamine (6-OHDA). Conclusions: This study further highlights the involvement of urea transport in regulating the neuroinflammation associated with AD. Moreover, we reveal a novel role for UT-B in maintaining microglial metabolic homeostasis. Taken together, these findings contribute supporting evidence to the regulation of UT-B as a therapeutic target for intervention into neuroinflammatory and neurodegenerative disease.
Collapse
Affiliation(s)
- Najlaa A. Al-Thani
- School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8 Dublin, Ireland; (N.A.A.-T.); (D.Z.)
- UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Dylan Zinck
- School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8 Dublin, Ireland; (N.A.A.-T.); (D.Z.)
- UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Gavin S. Stewart
- School of Biology and Environmental Science, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Derek A. Costello
- School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8 Dublin, Ireland; (N.A.A.-T.); (D.Z.)
- UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
3
|
Feng D, Xiao M, Yang P. A Sensitive Electrochemiluminescence Urea Sensor for Dynamic Monitoring of Urea Transport in Living Cells. Anal Chem 2023; 95:766-773. [PMID: 36525268 DOI: 10.1021/acs.analchem.2c02897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A multiple signal-amplified electrochemiluminescence (ECL) urea sensor was designed based on a self-enhanced probe and SiO2 photonic crystals for dynamic tracking of urea transmembrane transport. The self-enhanced probe (AuNR@Ru-LA) prepared by loading polyethyleneimine (PEI), lactobionic acid (LA), and Ru(dcbpy)32+ on gold nanorods (AuNRs) generated an initial ECL signal, and then the intensity was multiple-amplified by the enhanced light-scattering effect of SiO2 photonic crystals and the co-reaction with urea. The as-prepared sensor exhibited excellent performance for the detection of urea in the range of 1.0 × 10-10 to 1.0 × 10-4 M with a detection limit of 8.8 × 10-11 M at (3σ)/S. The AuNR@Ru-LA probes were labeled on HepG2 cells to construct a cytosensor with a detection range of 1.0 × 103 to 2.0 × 106 cells mL-1. In addition, the dynamic changes of the extracellular urea concentration were tracked by monitoring the ECL signal of the cytosensor to study urea transmembrane transport. The developed strategy realized the amplification of multiple ECL signals and the tracking of urea transmembrane transport, which provided a novel dynamic detection method for small biomolecules.
Collapse
Affiliation(s)
- Defen Feng
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong511443, China
| | - Mingxing Xiao
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong511443, China
| | - Peihui Yang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong511443, China
| |
Collapse
|
4
|
Huang B, Wang H, Yang B. Non-Aquaporin Water Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:331-342. [PMID: 36717505 DOI: 10.1007/978-981-19-7415-1_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Water transport through membrane is so intricate that there are still some debates. AQPs are entirely accepted to allow water transmembrane movement depending on osmotic gradient. Cotransporters and uniporters, however, are also concerned in water homeostasis. UT-B has a single-channel water permeability that is similar to AQP1. CFTR was initially thought as a water channel but now not believed to transport water directly. By cotransporters, such as KCC4, NKCC1, SGLT1, GAT1, EAAT1, and MCT1, water is transported by water osmosis coupling with substrates, which explains how water is transported across the isolated small intestine. This chapter provides information about water transport mediated by other membrane proteins except AQPs.
Collapse
Affiliation(s)
- Boyue Huang
- Laboratory of Neuroscience and Tissue Engineering, Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Hongkai Wang
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA
- Laboratory of Regenerative Rehabilitation and Department of Physical Medicine and Rehabilitation, Shirley Ryan AbilityLab and Northwestern University Feinberg School of Medicine and Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
5
|
Jones AC, Pinki F, Stewart GS, Costello DA. Inhibition of Urea Transporter (UT)-B Modulates LPS-Induced Inflammatory Responses in BV2 Microglia and N2a Neuroblastoma Cells. Neurochem Res 2021; 46:1322-1329. [PMID: 33675462 DOI: 10.1007/s11064-021-03283-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/20/2021] [Accepted: 02/23/2021] [Indexed: 11/29/2022]
Abstract
Urea is the major nitrogen-containing product of protein metabolism, and the urea cycle is intrinsically linked to nitric oxide (NO) production via the common substrate L-arginine. Urea accumulates in the brain in neurodegenerative states, including Alzheimer's and Huntington's disease. Urea transporter B (UT-B, SLC14A1) is the primary transport protein for urea in the CNS, identified most abundantly in astrocytes. Moreover, enhanced expression of the Slc14a1 gene has been reported under neurodegenerative conditions. While the role of UT-B in disease pathology remains unclear, UT-B-deficient mice display behavioural impairment coupled with urea accumulation, NO disruption and neuronal loss. Recognising the role of inflammation in neurodegenerative disease pathology, the current short study evaluates the role of UT-B in regulating inflammatory responses. Using the specific inhibitor UTBinh-14, we investigated the impact of UT-B inhibition on LPS-induced changes in BV2 microglia and N2a neuroblastoma cells. We found that UTBinh-14 significantly attenuated LPS-induced production of TNFα and IL-6 from BV2 cells, accompanied by reduced release of NO. While we observed a similar reduction in supernatant concentration of IL-6 from N2a cells, the LPS-stimulated NO release was further augmented by UTBinh-14. These changes were accompanied by a small, but significant downregulation in UT-B expression in both cell types following incubation with LPS, which was not restored by UTBinh-14. Taken together, the current evidence implicates UT-B in regulation of inflammatory responses in microglia and neuronal-like cells. Moreover, our findings offer support for the further investigation of UT-B as a novel therapeutic target for neuroinflammatory conditions.
Collapse
Affiliation(s)
- Aimée C Jones
- UCD School of Biomolecular & Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Farhana Pinki
- UCD School of Biology & Environmental Science, University College Dublin, Dublin 4, Ireland
| | - Gavin S Stewart
- UCD School of Biology & Environmental Science, University College Dublin, Dublin 4, Ireland
| | - Derek A Costello
- UCD School of Biomolecular & Biomedical Science, University College Dublin, Dublin 4, Ireland.
- UCD Conway Institute, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
6
|
Schilling F, Ros S, Hu DE, D'Santos P, McGuire S, Mair R, Wright AJ, Mannion E, Franklin RJM, Neves AA, Brindle KM. MRI measurements of reporter-mediated increases in transmembrane water exchange enable detection of a gene reporter. Nat Biotechnol 2017; 35:75-80. [PMID: 27918546 PMCID: PMC5230773 DOI: 10.1038/nbt.3714] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 09/29/2016] [Indexed: 12/17/2022]
Abstract
Non-invasive imaging of gene expression can be used to track implanted cells in vivo but often requires the addition of an exogenous contrast agent that may have limited tissue access. We show that the urea transporter (UT-B) can be used as a gene reporter, where reporter expression is detected using 1H MRI measurements of UT-B-mediated increases in plasma membrane water exchange. HEK cells transfected with the reporter showed an increased apparent water exchange rate (AXR), which increased in line with UT-B expression. AXR values measured in vivo, in UT-B-expressing HEK cell xenografts, were significantly higher (about twofold, P < 0.0001), compared with non-expressing controls. Fluorescence imaging of a red fluorescent protein (mStrawberry), co-expressed with UT-B showed that UT-B expression correlated in a linear fashion with AXR. Transduction of rat brain cells in situ with a lentiviral vector expressing UT-B resulted in about a twofold increase in AXR at the site of virus injection.
Collapse
Affiliation(s)
- Franz Schilling
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Susana Ros
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - De-En Hu
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Paula D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Sarah McGuire
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Richard Mair
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Alan J. Wright
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Elizabeth Mannion
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Robin J. M. Franklin
- Wellcome Trust–Medical Research Council Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, United Kingdom
| | - André A. Neves
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Kevin M. Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Huang B, Wang H, Yang B. Water Transport Mediated by Other Membrane Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 969:251-261. [PMID: 28258579 DOI: 10.1007/978-94-024-1057-0_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Water transport through membrane is so intricate that there are still some debates. (Aquaporins) AQPs are entirely accepted to allow water transmembrane movement depending on osmotic gradient. Cotransporters and uniporters , however, are also concerned in water homeotatsis. Urea transporter B (UT-B) has a single-channel water permeability that is similar to AQP1. Cystic fibrosis transmembrane conductance regulator (CFTR ) was initially thought as a water channel but now not believed to transport water directly. By cotranporters, water is transported by water osmosis coupling with substrates, which explains how water is transported across the isolated small intestine. This chapter provides information about water transport mediated by other membrane proteins except AQPs .
Collapse
Affiliation(s)
- Boyue Huang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Hongkai Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, 100191, China.
| |
Collapse
|
8
|
Patrick PS, Kettunen MI, Tee SS, Rodrigues TB, Serrao E, Timm KN, McGuire S, Brindle KM. Detection of transgene expression using hyperpolarized 13C urea and diffusion-weighted magnetic resonance spectroscopy. Magn Reson Med 2015; 73:1401-6. [PMID: 24733406 DOI: 10.1002/mrm.25254] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/01/2014] [Accepted: 03/25/2014] [Indexed: 01/30/2023]
Abstract
PURPOSE To assess the potential of a gene reporter system, based on a urea transporter (UTB) and hyperpolarized [(13) C]urea. METHODS Mice were implanted subcutaneously with either unmodified control cells or otherwise identical cells expressing UTB. After injection of hyperpolarized [(13) C]urea, a spin echo sequence was used to measure urea concentration, T1 , and diffusion in control and UTB-expressing tissue. RESULTS The apparent diffusion coefficient of hyperpolarized urea was 21% lower in tissue expressing UTB, in comparison with control tissue (P < 0.05, 1-tailed t-test, n = 6 in each group). No difference in water apparent diffusion coefficient or cellularity between these tissues was found, indicating that they were otherwise similar in composition. CONCLUSION Expression of UTB, by mediating cell uptake of urea, lowers the apparent diffusion coefficient of hyperpolarized (13) C urea in tissue and thus the transporter has the potential to be used as a magnetic resonance-based gene reporter in vivo. Magn Reson Med 73:1401-1406, 2015. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- P Stephen Patrick
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK; Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
A urea transporter protein in the kidney was first proposed in 1987. The first urea transporter cDNA was cloned in 1993. The SLC14a urea transporter family contains two major subgroups: SLC14a1, the UT-B urea transporter originally isolated from erythrocytes; and SLC14a2, the UT-A group originally isolated from kidney inner medulla. Slc14a1, the human UT-B gene, arises from a single locus located on chromosome 18q12.1-q21.1, which is located close to Slc14a2. Slc14a1 includes 11 exons, with the coding region extending from exon 4 to exon 11, and is approximately 30 kb in length. The Slc14a2 gene is a very large gene with 24 exons, is approximately 300 kb in length, and encodes 6 different isoforms. Slc14a2 contains two promoter elements: promoter I is located in the typical position, upstream of exon 1, and drives the transcription of UT-A1, UT-A1b, UT-A3, UT-A3b, and UT-A4; while promoter II is located within intron 12 and drives the transcription of UT-A2 and UT-A2b. UT-A1 and UT-A3 are located in the inner medullary collecting duct, UT-A2 in the thin descending limb and liver, UT-A5 in testis, UT-A6 in colon, UT-B1 primarily in descending vasa recta and erythrocytes, and UT-B2 in rumen.
Collapse
Affiliation(s)
- Jeff M Sands
- Renal Division, Department of Medicine and Department of Physiology, Emory University School of Medicine, WMB Room 338, 1639 Pierce Drive, NE, Atlanta, GA, 30322, USA,
| | | |
Collapse
|
10
|
Mice lacking urea transporter UT-B display depression-like behavior. J Mol Neurosci 2011; 46:362-72. [PMID: 21750947 DOI: 10.1007/s12031-011-9594-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/01/2011] [Indexed: 12/25/2022]
Abstract
Urea transporter B is one of urea transporters that selectively transport urea driven by urea gradient across membrane and expressed abundantly in brain. To determine the physiological role of UT-B in brain, UT-B localization, urea concentration, tissue morphology of brain, and behavioral phenotypes were studied in UT-B heterozygous mice via UT-B null mice. UT-B mRNA was expressed in olfactory bulb, cortex, caudate nucleus, hippocampus and hypothalamus of UT-B heterozygous mice. UT-B null mice exhibited depression-like behavior, with urea accumulation, nitric oxide reduction, and selective neuronal nitric oxide synthase level increase in hippocampus. After acute urea loading, the urea level increased, NO production decreased in hippocampus from both types of mice. Moreover, urea level was higher, and NO concentration was lower consistently in UT-B null hippocampus than that in heterozygous hippocampus. In vitro, 25 mM urea inhibited NO production too. Furthermore, UT-B knockout induced a long-lasting notable decrease in regional cerebral blood flow and altered morphology, such as loss of neurons in CA3 region, swelling, and membranous myelin-like structure formation within myelinated and unmyelinated fibers in hippocampus. These results suggest that urea accumulation in the hippocampus induced by UT-B deletion can cause depression-like behavior, which possibly attribute to disturbance in NOS/NO system.
Collapse
|
11
|
Abstract
Urea transport proteins were initially proposed to exist in the kidney in the late 1980s when studies of urea permeability revealed values in excess of those predicted by simple lipid-phase diffusion and paracellular transport. Less than a decade later, the first urea transporter was cloned. Currently, the SLC14A family of urea transporters contains two major subgroups: SLC14A1, the UT-B urea transporter originally isolated from erythrocytes; and SLC14A2, the UT-A group with six distinct isoforms described to date. In the kidney, UT-A1 and UT-A3 are found in the inner medullary collecting duct; UT-A2 is located in the thin descending limb, and UT-B is located primarily in the descending vasa recta; all are glycoproteins. These transporters are crucial to the kidney's ability to concentrate urine. UT-A1 and UT-A3 are acutely regulated by vasopressin. UT-A1 has also been shown to be regulated by hypertonicity, angiotensin II, and oxytocin. Acute regulation of these transporters is through phosphorylation. Both UT-A1 and UT-A3 rapidly accumulate in the plasma membrane in response to stimulation by vasopressin or hypertonicity. Long-term regulation involves altering protein abundance in response to changes in hydration status, low protein diets, adrenal steroids, sustained diuresis, or antidiuresis. Urea transporters have been studied using animal models of disease including diabetes mellitus, lithium intoxication, hypertension, and nephrotoxic drug responses. Exciting new animal models are being developed to study these transporters and search for active urea transporters. Here we introduce urea and describe the current knowledge of the urea transporter proteins, their regulation, and their role in the kidney.
Collapse
Affiliation(s)
- Janet D Klein
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
12
|
Rodela TM, Gilmour KM, Walsh PJ, McDonald MD. Cortisol-sensitive urea transport across the gill basolateral membrane of the gulf toadfish (Opsanus beta). Am J Physiol Regul Integr Comp Physiol 2009; 297:R313-22. [DOI: 10.1152/ajpregu.90894.2008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gulf toadfish ( Opsanus beta) use a unique pulsatile urea excretion mechanism that allows urea to be voided in large pulses via the periodic insertion or activation of a branchial urea transporter. The precise cellular and subcellular location of the facilitated diffusion mechanism(s) remains unclear. An in vitro basolateral membrane vesicle (BLMV) preparation was used to test the hypothesis that urea movement across the gill basolateral membrane occurs through a cortisol-sensitive carrier-mediated mechanism. Toadfish BLMVs demonstrated two components of urea uptake: a linear element at high external urea concentrations, and a phloretin-sensitive saturable constituent ( Km = 0.24 mmol/l; Vmax = 6.95 μmol·mg protein−1·h−1) at low urea concentrations (<1 mmol/l). BLMV urea transport in toadfish was unaffected by in vitro treatment with ouabain, N-ethylmaleimide, or the absence of sodium, conditions that are known to inhibit sodium-coupled and proton-coupled urea transport in vertebrates. Transport kinetics were temperature sensitive with a Q10 > 2, further suggestive of carrier-mediated processes. Our data provide evidence that a basolateral urea facilitated transporter accelerates the movement of urea between the plasma and gills to enable the pulsatile excretion of urea. Furthermore, in vivo infusion of cortisol caused a significant 4.3-fold reduction in BLMV urea transport capacity in lab-crowded fish, suggesting that cortisol inhibits the recruitment of urea transporters to the basolateral membrane, which may ultimately affect the size of the urea pulse event in gulf toadfish.
Collapse
|
13
|
Abstract
The human aquaporins,AQP3,AQP7, AQP8,AQP9, and possibly AQP10, are permeable to ammonia, and AQP7, AQP9, and possibly AQP3, are permeable to urea. In humans, these aquaporins supplement the ammonia transport of the Rhesus (Rh) proteins and the urea transporters (UTs). The mechanism by which ammonium is transported by aquaporins is not fully resolved. A comparison of transport equations, models, and experimental data shows that ammonia is transported in its neutral form, NH(3). In the presence of NH(3), the aquaporin stimulates H(+) transport. Consequently, this transport of H(+) is only significant at alkaline pH. It is debated whether the H(+) ion passes via the aquaporin or by some external route; the investigation of this problem requires the aquaporin-expressing cell to be voltage-clamped. The ammonia-permeable aquaporins differ from other aquaporins by having a less restrictive aromatic/arginine region, and an exclusively water-permeable aquaporin can be transformed into an ammonia-permeable aquaporin by single point mutations in this region. The ammonia-permeable aquaporins fall into two groups: those that are permeable (AQP3, 7, 9, 10) and those that are impermeable (AQP8) to glycerol. The two groups differ in the amino acid composition of their aromatic/arginine regions. The location of the ammonia-permeable aquaporins in the body parallels that of the Rh proteins. This applies to erythrocytes and to cells associated with nitrogen homeostasis and high rates of anabolism. In the liver, AQPs 8 and 9 are found together with Rh proteins in cells exposed to portal blood coming from the intestine. In the kidney, AQP3 might participate in the excretion of NH(4) (+) in the collecting duct. The interplay between the ammonia-permeable aquaporins and the other types of ammonia- and urea-permeable proteins is not well understood.
Collapse
Affiliation(s)
- Thomas Litman
- Exiqon A/S, Department of Biomarker Discovery, Bygstubben 16, Vedbaek, 2950, Denmark
| | | | | |
Collapse
|
14
|
López-Domínguez A, Ramos-Mandujano G, Vázquez-Juárez E, Pasantes-Morales H. Regulatory volume decrease after swelling induced by urea in fibroblasts: prominent role of organic osmolytes. Mol Cell Biochem 2007; 306:95-104. [PMID: 17684706 DOI: 10.1007/s11010-007-9558-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 07/12/2007] [Indexed: 10/23/2022]
Abstract
Cell swelling, regulatory volume decrease (RVD), volume-sensitive Cl(-) (Cl(-) (swell)) current and taurine efflux after exposure to high concentrations of urea were characterized in fibroblasts Swiss 3T3, and results compared to those elicited by hyposmotic (30%) swelling. Urea 70, 100, and 150 mM linearly increased cell volume (8.25%, 10.6%, and 15.7%), by a phloretin-inhibitable process. This was followed by RVD by which cells exposed to 70, 100, or 150 mM urea recovered 27.6%, 38.95, and 74.1% of their original volume, respectively. Hyposmolarity (30%) led to a volume increase of 25.9% and recovered volume in 32.5%. (3)H-taurine efflux was increased by urea with a sigmoid pattern, as 9.5%, 18.9%, 71.5%, and 89% of the labeled taurine pool was released by 70, 100, 150, or 200 mM urea, respectively. Only about 11% of taurine was released by 30% hyposmolarity reduction in spite of the high increase in cell volume. Urea-induced taurine efflux was suppressed by NPPB (100 microM) and markedly reduced by the tyrosine kinase-general blocker AG18. The Cl(-) (swell) current was more rapidly activated and higher in amplitude in the hyposmotic than in the isosmotic/urea condition (urea 150 mM), but this was not sufficient to accomplish an efficient RVD. These results showed that at similar volume increase, cells swollen by urea showed higher taurine efflux, lower Cl(-) (swell) current and more efficient RVD, than in those swollen by hyposmolarity. The correlation found between RVD efficiency and taurine efflux suggest a prominent role for organic over ionic osmolytes for RVD evoked by urea in isosmotic conditions.
Collapse
Affiliation(s)
- Alejandra López-Domínguez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Mexico, DF 04510, Mexico
| | | | | | | |
Collapse
|
15
|
Nakajima KI, Miyazaki H, Niisato N, Marunaka Y. Essential role of NKCC1 in NGF-induced neurite outgrowth. Biochem Biophys Res Commun 2007; 359:604-10. [PMID: 17548052 DOI: 10.1016/j.bbrc.2007.05.133] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 05/22/2007] [Indexed: 11/30/2022]
Abstract
The Na(+)/K(+)/2Cl(-) cotransporter (NKCC) mediates electroneutral transport of 2Cl(-) coupled with Na(+) and K(+) across the plasma membrane, and plays crucial roles in Cl(-) uptake into the cells, homeostasis of cellular Cl(-), and cell volume regulation. However, we have very limited information on the roles of ion transporters in neurite outgrowth in neuronal cells. In the present study, we report the role of NKCC1 (an isoform of NKCC) in NGF-induced neurite outgrowth of rat pheochromocytoma PC12D cells. The expression level of NKCC1 protein was increased by NGF treatment. Knock-down of NKCC1 by RNA interference (RNAi) drastically diminished the NGF-induced neurite outgrowth. Transfection of enhanced green fluorescent protein (EGFP)-tagged rat NKCC1 into cells for clarification of intracellular localization of NKCC1 revealed that the EGFP-rNKCC1 was mainly localized in the plasma membrane at growth cone during neurite outgrowth. These observations suggest that NKCC1 plays a fundamental role in NGF-induced neurite outgrowth of PC12D cells.
Collapse
Affiliation(s)
- Ken-ichi Nakajima
- Department of Molecular Cell Physiology, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | | | | | | |
Collapse
|