1
|
Tao HY, Zhao CY, Wang Y, Sheng WJ, Zhen YS. Targeting Telomere Dynamics as an Effective Approach for the Development of Cancer Therapeutics. Int J Nanomedicine 2024; 19:3805-3825. [PMID: 38708177 PMCID: PMC11069074 DOI: 10.2147/ijn.s448556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/14/2024] [Indexed: 05/07/2024] Open
Abstract
Telomere is a protective structure located at the end of chromosomes of eukaryotes, involved in maintaining the integrity and stability of the genome. Telomeres play an essential role in cancer progression; accordingly, targeting telomere dynamics emerges as an effective approach for the development of cancer therapeutics. Targeting telomere dynamics may work through multifaceted molecular mechanisms; those include the activation of anti-telomerase immune responses, shortening of telomere lengths, induction of telomere dysfunction and constitution of telomerase-responsive drug release systems. In this review, we summarize a wide variety of telomere dynamics-targeted agents in preclinical studies and clinical trials, and reveal their promising therapeutic potential in cancer therapy. As shown, telomere dynamics-active agents are effective as anti-cancer chemotherapeutics and immunotherapeutics. Notably, these agents may display efficacy against cancer stem cells, reducing cancer stem levels. Furthermore, these agents can be integrated with the capability of tumor-specific drug delivery by the constitution of related nanoparticles, antibody drug conjugates and HSA-based drugs.
Collapse
Affiliation(s)
- Hong-yu Tao
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Chun-yan Zhao
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ying Wang
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wei-jin Sheng
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yong-su Zhen
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Cafri G, Sharbi-Yunger A, Tzehoval E, Alteber Z, Gross T, Vadai E, Margalit A, Gross G, Eisenbach L. mRNA-transfected Dendritic Cells Expressing Polypeptides That Link MHC-I Presentation to Constitutive TLR4 Activation Confer Tumor Immunity. Mol Ther 2015; 23:1391-1400. [PMID: 25997427 DOI: 10.1038/mt.2015.90] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 04/19/2015] [Indexed: 12/20/2022] Open
Abstract
Recently, we have developed a novel genetic platform for improving dendritic cell (DC) induction of peptide-specific CD8 T cells, based on membrane-anchored β2-microglobulin (β2m) linked to a selected antigenic peptide at its N-terminus and to the cytosolic domain of toll-like receptor (TLR)4 C-terminally. In vitro transcribed mRNA transfection of antigen presenting cells resulted in polypeptides that efficiently coupled peptide presentation to cellular activation. In the present study, we evaluated the immunogenicity of such constructs in mRNA-transfected immature murine bone marrow-derived DCs. We show that the encoded peptide β2m-TLR4 products were expressed at the cell surface up to 72 hours and stimulated the maturation of DCs. In vivo, these DCs prompted efficient peptide-specific T-cell activation and target cell killing which were superior to those induced by peptide-loaded, LPS-stimulated DCs. This superiority was also evident in the ability to protect mice from tumor progression following the administration of B16F10.9 melanoma cells and to inhibit the development of pre-established B16F10.9 tumors. Our results provide evidence that the products of two recombinant genes encoding for peptide-hβ2m-TLR4 and peptide-hβ2m-K(b) expressed from exogenous mRNA can cooperate to couple Major Histocompatibility Complex (MHC-I) peptide presentation to TLR-mediated signaling, offering a safe, economical and highly versatile genetic platform for a novel category of CTL-inducing vaccines.
Collapse
Affiliation(s)
- Gal Cafri
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel; Laboratory of Immunology, MIGAL, Kiryat Shmona, Israel
| | - Adi Sharbi-Yunger
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Esther Tzehoval
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Zoya Alteber
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Gross
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ezra Vadai
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Margalit
- Laboratory of Immunology, MIGAL, Kiryat Shmona, Israel; Department of Biotechnology, Tel-Hai College, Upper Galilee, Israel
| | - Gideon Gross
- Laboratory of Immunology, MIGAL, Kiryat Shmona, Israel; Department of Biotechnology, Tel-Hai College, Upper Galilee, Israel
| | - Lea Eisenbach
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Chen L, Lü MH, Zhang D, Hao NB, Fan YH, Wu YY, Wang SM, Xie R, Fang DC, Zhang H, Hu CJ, Yang SM. miR-1207-5p and miR-1266 suppress gastric cancer growth and invasion by targeting telomerase reverse transcriptase. Cell Death Dis 2014; 5:e1034. [PMID: 24481448 PMCID: PMC4040688 DOI: 10.1038/cddis.2013.553] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/25/2013] [Accepted: 12/12/2013] [Indexed: 12/31/2022]
Abstract
hTERT is the catalytic subunit of the telomerase complex. Elevated expression of hTERT is associated with the expansion and metastasis of gastric tumor. In this study, we aimed to identify novel tumor suppressor miRNAs that restrain hTERT expression. We began our screen for hTERT-targeting miRNAs with a miRNA microarray. miRNA candidates were further filtered by bioinformatic analysis, general expression pattern in different cell lines, gain-of-function effects on hTERT protein and the potential of these effects to suppress hTERT 3′ untranslated region (3′UTR) luciferase activity. The clinical relevance of two miRNAs (miR-1207-5p and miR-1266) was evaluated by real-time RT-PCR. The effects of these miRNAs on cell growth, cell cycle and invasion of gastric cancer cells were measured with CCK-8, flow cytometry and transwell assays. Finally, the ability of these miRNAs to suppress the transplanted tumors was also investigated. Fourteen miRNAs were identified using a combination of bioinformatics and miRNA microarray analysis. Of these fourteen miRNAs, nine were expressed at significantly lower levels in hTERT-positive cell lines compared with hTERT-negative cell lines and five could downregulate hTERT protein expression. Only miR-1207-5p and miR-1266 interacted with the 3′ UTR of hTERT and the expression levels of these two miRNAs were significantly decreased in gastric cancer tissues. These two miRNAs also inhibited gastric tumor growth in vitro and in vivo. Altogether, miR-1207-5p and miR-1266 were determined to be hTERT suppressors in gastric cancer, and the delivery of these two miRNAs represents a novel therapeutic strategy for gastric cancer treatment.
Collapse
Affiliation(s)
- L Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - M-H Lü
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - D Zhang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - N-B Hao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Y-H Fan
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Y-Y Wu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - S-M Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - R Xie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - D-C Fang
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400037, China
| | - H Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400037, China
| | - C-J Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - S-M Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| |
Collapse
|
4
|
Liao ZL, Luo G, Xie X, Tang XD, Bai JY, Guo H, Yang SM. Diepitope multiple antigen peptide of hTERT trigger stronger anti-tumor immune responses in vitro. Int Immunopharmacol 2013; 16:444-50. [PMID: 23714071 DOI: 10.1016/j.intimp.2013.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/26/2013] [Accepted: 05/07/2013] [Indexed: 01/06/2023]
Abstract
Rapid advances in immune system knowledge have led to the exploration of immunologic approaches for eliminating tumor cells. Human telomerase reverse transcriptase (hTERT) is considered to be an ideal universal target for novel immunotherapies against cancers. Thus far, studies of effective antitumor immunotherapies have focused on the quantity and quality of the effector function of the CD8 compartment. However, increasing evidence has demonstrated that CD4+ T cells play important roles in generating and maintaining antitumor immune responses in animal models. The aim of this work was to verify whether diepitope multiple antigen peptides (MAPs) that were composed of the cytotoxic T lymphocyte (CTL) epitope of hTERT and the T-helper epitope of hTERT could improve upon the immunogenicity of a monoepitope MAP of hTERT. Dendritic cells (DCs) pulsed with diepitope MAPs composed of the CTL epitope hTERT-540 and the T-helper epitope hTERT-766 were used to evaluate immune responses against various tumor cells. A standard in vitro 4-h ⁵¹Cr-release assay was employed in this study. The results demonstrated that CTLs activated by the diepitope MAP that consisted of hTERT-540 and hTERT-766 could cause 8.56% more lysis than CTLs activated by the monoepitope MAP containing hTERT-540. Moreover, the activated CTLs could kill neither hTERT-negative tumor cells, such as U2OS cells, nor HLA-A2 negative cells, such as HepG2 cells. Our results indicate that diepitope MAPs that are generated from hTERT can be exploited for cancer immunotherapy.
Collapse
Affiliation(s)
- Zhong-Li Liao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | | | | | | | | | | | | |
Collapse
|
5
|
Liao ZL, Tang XD, Lü MH, Wu YY, Cao YL, Fang DC, Yang SM, Guo H. Antitumor effect of new multiple antigen peptide based on HLA-A0201-restricted CTL epitopes of human telomerase reverse transcriptase (hTERT). Cancer Sci 2012; 103:1920-8. [PMID: 22909416 DOI: 10.1111/j.1349-7006.2012.02410.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/25/2012] [Accepted: 07/31/2012] [Indexed: 12/19/2022] Open
Abstract
The development of peptide vaccines aimed at enhancing immune responses against tumor cells is becoming a promising area of research. Human telomerase reverse transcriptase (hTERT) is an ideal universal target for novel immunotherapies against cancers. The aim of this work was to verify whether the multiple antigen peptides (MAP) based on HLA-A0201-restricted CTL epitopes of hTERT could trigger a better and more sustained CTL response and kill multiple types of hTERT-positive tumor cells in vitro and ex vivo. Dendritic cells (DC) pulsed with MAP based on HLA-A0201-restricted CTL epitopes of hTERT (hTERT-540, hTERT-865 and hTERT-572Y) were used to evaluate immune responses against various tumors and were compared to the immune responses resulting from the use of corresponding linear epitopes and a recombinant adenovirus-hTERT vector. A 4-h standard (51) Cr-release assay and an ELISPOT assay were used for both in vitro and ex vivo analyses. Results demonstrated that targeting hTERT with an adenovector was the most effective way to stimulate a CD8(+) T cell response. When compared with linear hTERT epitopes, MAP could trigger stronger hTERT-specific CTL responses against tumor cells expressing hTERT and HLA-A0201. In contrast, the activated CTL could neither kill the hTERT-negative tumor cells, such as U2OS cells, nor kill HLA-A0201 negative cells, such as HepG2 cells. We also found that these peptide-specific CTL could not kill autologous lymphocytes and DC with low telomerase activity. Our results indicate that MAP from hTERT can be exploited for cancer immunotherapy.
Collapse
Affiliation(s)
- Zhong-Li Liao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Lü MH, Liao ZL, Zhao XY, Fan YH, Lin XL, Fang DC, Guo H, Yang SM. hTERT-based therapy: a universal anticancer approach (Review). Oncol Rep 2012; 28:1945-52. [PMID: 22992764 DOI: 10.3892/or.2012.2036] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 08/22/2012] [Indexed: 11/05/2022] Open
Abstract
Human telomerase reverse transcriptase (hTERT) has been identified as a major protein involved in aberrant cell proliferation, immortalization, metastasis and stemness maintenance in a majority of tumors, yet it has little or no expression in normal somatic cells. During the past few years, the development of hTERT-based therapies such as immunotherapy, suicide gene therapy and small-molecule interfering therapy have become critical and specific for eradicating all types of cancer. Here, current knowledge regarding hTERT and its involvement in various cancers and its role as a target of cancer therapies are reviewed. Additionally, hurdles to new cancer therapy development and new therapeutic opportunities are described, along with areas that require further investigation.
Collapse
Affiliation(s)
- Mu-Han Lü
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Yu ST, Li C, Lü MH, Liang GP, Li N, Tang XD, Wu YY, Shi CM, Chen L, Li CZ, Cao YL, Fang DC, Yang SM. Noninvasive and real-time monitoring of the therapeutic response of tumors in vivo with an optimized hTERT promoter. Cancer 2011; 118:1884-93. [PMID: 22009660 DOI: 10.1002/cncr.26476] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/23/2011] [Accepted: 07/06/2011] [Indexed: 01/23/2023]
Abstract
BACKGROUND Telomerase is commonly recognized as an effective anticancer target. The human telomerase reverse transcriptase (hTERT), the rate-limiting component of telomerase, is expressed in most malignant tumors, but it is not found in most normal somatic cells. Here, we report a real-time and noninvasive method to monitor tumor response to a lentivirus-based hTERT-conditional suicidal gene therapy. METHODS In this study, we constructed a lentivirus system in which an optimized hTERT promoter was used to drive the expression of the cytosine deaminase (CD) gene, one of the suicide genes, and a green fluorescent protein (GFP) reporter gene (pLenti-CD/GFP). The lentivirus was used to infect telomerase-positive or telomerase-negative cell lines. In vitro and in vivo experiments were conducted to analyze the dynamic processes of exogenous gene expression noninvasively in cell culture and living animals in real time via optical imaging. RESULTS The lentivirus was able to express the CD gene and GFP in telomerase-positive tumor cells and significantly decrease cell proliferation after the use of prodrug 5-flucytosine. However, it could not express GFP and CD in telomerase-negative cell lines, nor could it induce any suicidal effect in those cells. The in vivo study showed that telomerase-positive tumors can be visualized after intratumor injection of the lentivirus in tumor-bearing nude mice via an optical imaging system. Significant tumor growth suppression was observed in telomerase-positive tumors. CONCLUSIONS Collectively, this technology provides a valuable, noninvasive method to evaluate the real-time therapeutic response of tumors in vivo.
Collapse
Affiliation(s)
- Song-Tao Yu
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chen L, Tang XD, Yu ST, Ai ZH, Fang DC, Cai YG, Luo YH, Liang GP, Yang SM. Induction of anti-tumour immunity by dendritic cells transduced with hTERT recombinant adenovirus in mice. J Pathol 2009; 217:685-92. [PMID: 19142972 DOI: 10.1002/path.2493] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dendritic cells (DCs) transfected with recombinant, replication-defective adenovirus (Ad) vectors encoding the human telomerase reverse transcriptase (hTERT) are potent inducers of cytotoxic T lymphocytes (CTLs) and anti-tumour immunity. However, previous studies have mostly been in vitro. In this study, we sought to determine whether DCs transfected with hTERT (DC/Ad-hTERT) could elicit a potent anti-tumour immunogenic response in vivo. We found that murine DCs transfected with recombinant adenovirus encoding the hTERT gene (DC/Ad-hTERT) induced hTERT-specific CTLs in vivo effectively, compared with Ad-LacZ-transduced DC (DC/Ad-LacZ) controls. These hTERT-specific CTLs lysed various tumour cell lines in an hTERT-specific and MHC-I molecule-restricted fashion. We also found that DC/Ad-hTERT could increase antigen-specific T-cell proliferation and augment the number of IFN-gamma secreting T-cells in mice. These data suggest that the DC/Ad-hTERT vaccine may induce anti-tumour immunity against tumour cells expressing hTERT in an MHC-I molecule-restricted fashion in vivo through the augmentation of the hTERT-specific CTL response. The DC/Ad-hTERT vaccine may thus be used as an efficient DC-based tumour vaccine in clinical applications.
Collapse
Affiliation(s)
- Ling Chen
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sharma A, Tandon M, Bangari DS, Mittal SK. Adenoviral vector-based strategies for cancer therapy. CURRENT DRUG THERAPY 2009; 4:117-138. [PMID: 20160875 DOI: 10.2174/157488509788185123] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Definitive treatment of cancer has eluded scientists for decades. Current therapeutic modalities like surgery, chemotherapy, radiotherapy and receptor-targeted antibodies have varied degree of success and generally have moderate to severe side effects. Gene therapy is one of the novel and promising approaches for therapeutic intervention of cancer. Viral vectors in general and adenoviral (Ad) vectors in particular are efficient natural gene delivery systems and are one of the obvious choices for cancer gene therapy. Clinical and preclinical findings with a wide variety of approaches like tumor suppressor and suicide gene therapy, oncolysis, immunotherapy, anti-angiogenesis and RNA interference using Ad vectors have been quite promising, but there are still many hurdles to overcome. Shortcomings like increased immunogenicity, prevalence of preexisting anti-Ad immunity in human population and lack of specific targeting limit the clinical usefulness of Ad vectors. In recent years, extensive research efforts have been made to overcome these limitations through a variety of approaches including the use of conditionally-replicating Ad and specific targeting of tumor cells. In this review, we discuss the potential strengths and limitations of Ad vectors for cancer therapy.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Comparative Pathobiology, and Bindley Bioscience Center, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
10
|
Xiang J, Munegowda MA, Deng Y. Transgene expression of alpha tumor necrosis factor with mutations D142N and A144R under control of human telomerase reverse transcriptase promoter eradicates well-established tumors and induces long-term antitumor immunity. Cancer Gene Ther 2008; 16:430-8. [PMID: 19096444 DOI: 10.1038/cgt.2008.94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recombinant adenoviral vectors (AdVTNF-alpha) expressing alpha tumor necrosis factor (TNF-alpha) under control of cytomegalovirus (CMV) promoter have been used in cancer gene therapy. To reduce its cytotoxicity, we constructed a recombinant AdV(TERT)mTNF-alpha expressing a mutant TNF-alpha (mTNF-alpha) with mutations at D142N and A144R under control of human telomerase reverse transcriptase (hTERT) promoter for treatment of well-established ovalbumin (OVA)-expressing murine B16 melanoma (BL6-10(OVA)) (6 mm in diameter). We demonstrated that the mTNF-alpha with mutations at D142N and A144R has less in vitro cytotoxicity, but maintains its functional effect in the stimulation of T-cell proliferation. The in vitro and in vivo transgene expressions under control of hTERT promoter are highly restricted in tumor cells compared with those under the control of the CMV promoter. AdV(TERT)mTNF-alpha gene therapy by intratumoral injection of AdV(TERT)mTNF-alpha vector (2 x 10(9) PFU) expressing the mutant mTNF-alpha under control of hTERT promoter reduces its in vivo toxicity, eradicates well-established BL6-10(OVA) tumors in 4/10 tumor-bearing mice, and induces OVA-specific CD8(+) T-cell-mediated long-term antitumor immunity. Therefore, AdV(TERT)mTNF-alpha gene therapy may be very useful in the immunotherapy of cancer.
Collapse
Affiliation(s)
- J Xiang
- Cancer Research Unit, Saskatchewan Cancer Agency, Departments of Oncology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | | | | |
Collapse
|
11
|
Chen T, Tang XD, Wan Y, Chen L, Yu ST, Xiong Z, Fang DC, Liang GP, Yang SM. HLA-A2-restricted cytotoxic T lymphocyte epitopes from human heparanase as novel targets for broad-spectrum tumor immunotherapy. Neoplasia 2008; 10:977-86. [PMID: 18714399 PMCID: PMC2517643 DOI: 10.1593/neo.08576] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 06/18/2008] [Accepted: 06/20/2008] [Indexed: 02/01/2023]
Abstract
Peptide vaccination for cancer immunotherapy requires identification of peptide epitopes derived from antigenic proteins associated with tumors. Heparanase (Hpa) is broadly expressed in various advanced tumors and seems to be an attractive new tumor-associated antigen. The present study was designed to predict and identify HLA-A2-restricted cytotoxic T lymphocyte (CTL) epitopes in the protein of human Hpa. For this purpose, HLA-A2-restricted CTL epitopes were identified using the following four-step procedure: 1) a computer-based epitope prediction from the amino acid sequence of human Hpa, 2) a peptide-binding assay to determine the affinity of the predicted protein with the HLA-A2 molecule, 3) stimulation of the primary T-cell response against the predicted peptides in vitro, and 4) testing of the induced CTLs toward different kinds of carcinoma cells expressing Hpa antigens and/or HLA-A2. The results demonstrated that, of the tested peptides, effectors induced by peptides of human Hpa containing residues 525-533 (PAFSYSFFV, Hpa525), 277-285 (KMLKSFLKA, Hpa277), and 405-413 (WLSLLFKKL, Hpa405) could effectively lyse various tumor cell lines that were Hpa-positive and HLA-A2-matched. We also found that these peptide-specific CTLs could not lyse autologous lymphocytes with low Hpa activity. Further study revealed that Hpa525, Hpa277, and Hpa405 peptides increased the frequency of IFN-gamma-producing T cells compared to a negative peptide. Our results suggest that Hpa525, Hpa277, and Hpa405 peptides are new HLA-A2-restricted CTL epitopes capable of inducing Hpa-specific CTLs in vitro. Because Hpa is expressed in most advanced malignant tumors, Hpa525, Hpa277, and Hpa405 peptide-based vaccines may be useful for the immunotherapy for patients with advanced tumors.
Collapse
Affiliation(s)
- Ting Chen
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Xu-Dong Tang
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Yin Wan
- Institute of Immunology of PLA, Medical College, Third Military Medical University, Chongqing 400038, PR China
| | - Ling Chen
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Song-Tao Yu
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Zhen Xiong
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Dian-Chun Fang
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Guang-Ping Liang
- Institute of Burn Research of PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Shi-Ming Yang
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| |
Collapse
|
12
|
Yu T, Yang JM. Progress in peptide vaccines for tumors. Shijie Huaren Xiaohua Zazhi 2008; 16:1597-1601. [DOI: 10.11569/wcjd.v16.i15.1597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy for tumor has been a hotspot in recent research. The peptide vaccines are now drawing extensive attention since it is chemically stable, easily prepared and devoid of oncogenic potential. Research showed that antitumor effect of peptide vaccines was closely related to its immunogenicity which can be enhanced by immunoadjuvant, multiple-antigen peptides, multiple-epitope peptides or combination with adjuvant, dendritic cells, Th epitopes or cell-penetrating peptides. Although peptide vaccines were somewhat effective for some malignant tumors, there existed such problems as unsatisfying immunogenicity, inconsistency between intensity of immune response and clinical results, and HLA type restriction, which require further investigation.
Collapse
|
13
|
Wei J, Gao W, Wu J, Meng K, Zhang J, Chen J, Miao Y. Dendritic cells expressing a combined PADRE/MUC4-derived polyepitope DNA vaccine induce multiple cytotoxic T-cell responses. Cancer Biother Radiopharm 2008; 23:121-8. [PMID: 18298336 DOI: 10.1089/cbr.2007.0427] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The tumor-associated antigen, mucin4 (MUC4), is overexpressed on various epithelial malignancies, making it a potentially broadly applicable candidate vaccine therapy. In this paper, we report on the creation of a dendritic cell (DC)-based vaccine, using cells transduced with the universal DR-restricted Th helper epitope (PADRE) combined with human leukocyte antigen (HLA)-A1- and HLA-A2-restricted epitopes from MUC4 (rAd-pE-DCs). We examined this vaccine's biologic characteristics and immune activity in vitro, finding that infection with the polyepitope adenovirus did not alter the typical morphology of mature DC and the typical markers of these cells (CD86, CD83, CD80, and HLA-DR) were highly expressed on rAd-pE-DCs. Lymphocytes primed with rAd-pE-DCs generated potent cytotoxic responses. By contrast, lymphocytes primed with a GFP-expressing adenovirus (rAd-GFP-DCs) or mock-transfected DCs were not cytotoxic. Transduction of DCs with an adenovirus encoding PADRE combined with HLA-A1- and HLA-A2-restricted epitopes may be a potential strategy for the immunotherapy of MUC4-associated tumors.
Collapse
Affiliation(s)
- Jishu Wei
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Prospects and challenges of building a cancer vaccine targeting telomerase. Biochimie 2007; 90:173-80. [PMID: 17716803 DOI: 10.1016/j.biochi.2007.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 07/10/2007] [Indexed: 12/30/2022]
Abstract
Despite their origin from self-tissue, tumor cells can be immunogenic and trigger immune responses that can profoundly influence tumor growth and development. Clinically, it may be possible to amplify or induce anti-tumor immune responses to achieve tumor rejection in patients. Increasing data over the last 8 years suggest that the human telomerase reverse transcriptase hTERT is immunogenic both in vitro and in vivo and may be a suitable target for novel cancer immunotherapy. Peptides derived from hTERT are naturally processed by tumors and presented on MHC molecules and trigger effector functions of specific T lymphocytes. Vaccination of cancer patients against hTERT epitopes induces anti-tumor T cells without clinical toxicity. If second-generation vaccines and other strategies are able to generate optimal cellular immunity against hTERT without toxicity in humans, the possibility of broad-spectrum immunotherapy or even immunoprevention therapy of cancer may be possible.
Collapse
|
16
|
Guo H, Hao J, Wu C, Shi Y, Zhao XY, Fang DC. A novel peptide-nucleotide dual vaccine of human telomerase reverse transcriptase induces a potent cytotoxic T-cell response in vivo. Biochem Biophys Res Commun 2007; 357:1090-5. [PMID: 17462602 DOI: 10.1016/j.bbrc.2007.04.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 04/06/2007] [Indexed: 01/30/2023]
Abstract
Human telomerase reverse transcriptase (hTERT) is highly expressed in over 85% of human cancers, which makes it a broadly applicable molecular target for cancer therapy. Several groups have demonstrated that hTERT can efficiently evoke specific cytotoxic T lymphocytes (CTL) responses for malignant tumors. In the present study, we developed a novel virus-like particulate peptide-nucleotide dual vaccine (PNDV) of hTERT, which was composed of a low-affinity epitope variant with encoding full-length gene in the same virus-size particulate. We verified the formation of PNDV by DNA retarding assay, DNase I protection assay and transmission electron microscopy, and confirmed its immunogenicity and transfection activities in mammalian cells. Furthermore, in vivo immunization of HLA-A2.1 transgenic mice generated efficient IFN-gamma secretion and hTERT-specific CTLs which are known to cause selective cell death of telomerase positive gastrointestinal cancer cells. To our knowledge, this represents the first report on collocating a low-affinity epitope variant with a full-length hTERT gene for anti-cancer vaccine design. This novel strategy for vaccine design not only enables enhanced immunity to a universal tumor antigen, but also has the potential to generate CTLs effective in telomerase-positive tumor cells of diverse tissue origins. Therefore, our findings bear significant implications for immunotherapy of human cancers.
Collapse
Affiliation(s)
- Hong Guo
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | | | | | | | | | | |
Collapse
|
17
|
Yang SM, Tang XD, Chen T, Xiong Z, Chen L, Cai YG, Fang DC. Heparanase: a new universal metastasis-associated antigen in the immunotherapy for the advanced cancers. Shijie Huaren Xiaohua Zazhi 2007; 15:849-854. [DOI: 10.11569/wcjd.v15.i8.849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Heparanase (Hpa) was an endo-β-D-glucuronidase that can cleave heparan sulfate proteoglycans (HSPGs) and has been implicated in tumor angiogenesis and metastasis. It has been reported that Hpa was expressed in almost all the advanced tumors, especially in metastatic tumors, and in contrast, down-regulation of Hpa could inhibit the metastasis of tumors. These results indicated that Hpa could serve as a new universal tumor-metastasis-associated antigen in the immunotherapy for the advanced tumors. Development of Hpa vaccine may establish a new method for the treatment of the advanced tumors. In this review, structure and functions of Hpa and its possibility as a new universal antigen in the immunotherapy of the advanced tumors were discussed.
Collapse
|