1
|
Volkova Y, Scherbakov A, Dzichenka Y, Komkov A, Bogdanov F, Salnikova D, Dmitrenok A, Sachanka A, Sorokin D, Zavarzin I. Design and synthesis of phosphoryl-substituted steroidal pyridazines (Pho-STPYRs) as potent estrogen receptor alpha inhibitors: targeted treatment of hormone-dependent breast cancer cells. RSC Med Chem 2024; 15:2380-2399. [PMID: 39026643 PMCID: PMC11253874 DOI: 10.1039/d4md00153b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/30/2024] [Indexed: 07/20/2024] Open
Abstract
Estrogen receptor alpha (ERα) is an important target for the discovery of new therapeutic drugs against hormone-dependent breast cancer. A series of phosphoryl-substituted steroidal pyridazines (Pho-STPYRs) were synthesized and biologically evaluated as potent ERα inhibitors. Pho-STPYRs showed cytotoxicity against breast cancer cells with IC50 values of 5.9 μM and higher. Pho-STPYRs 33 and 34 [IC50 (MCF7) = 6.5 and 5.9 μM, respectively] were found to block the expression of ERα, the main driver of breast cancer growth, and modulate the ERK, cyclin D1, and CDK4 pathways. Compound 34 showed selectivity, anti-estrogenic potency and high antiproliferative efficacy in combination with the AKT inhibitor. Molecular docking was used to more accurately define the binding mode of lead compounds 33 and 34 to ERα. The selectivity analysis showed that lead compounds 33 and 34 produce no effects on cytochromes P450, including CYP7A1, CYP7B1, CYP17A1, CYP19A1, and CYP21A2. In a word, Pho-STPYRs 33 and 34 are promising ERα inhibitors for the treatment of hormone-dependent breast cancer.
Collapse
Affiliation(s)
- Yulia Volkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp 119991 Moscow Russia
| | - Alexander Scherbakov
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology 24 Kashirskoe shosse 115522 Moscow Russia
- Gause Institute of New Antibiotics 11 Bol'shaya Pirogovskaya ulitsa 119021 Moscow Russia
| | - Yaraslau Dzichenka
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus 5/2 Kuprevich Str 220141 Minsk Belarus
| | - Alexander Komkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp 119991 Moscow Russia
| | - Fedor Bogdanov
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology 24 Kashirskoe shosse 115522 Moscow Russia
- Faculty of Medicine, Moscow State University 27-1 Lomonosovsky prosp 119192 Moscow Russia
| | - Diana Salnikova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp 119991 Moscow Russia
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology 24 Kashirskoe shosse 115522 Moscow Russia
| | - Andrey Dmitrenok
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp 119991 Moscow Russia
| | - Antos Sachanka
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus 5/2 Kuprevich Str 220141 Minsk Belarus
| | - Danila Sorokin
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology 24 Kashirskoe shosse 115522 Moscow Russia
| | - Igor Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp 119991 Moscow Russia
| |
Collapse
|
2
|
Malakhova V, Scherbakov A, Sorokin D, Leanavets H, Dzichenka Y, Zavarzin I, Volkova Y. Exploration and biological evaluation of 20-vinyl pregnenes: A step forward toward selective modulators of the estrogen receptor α signaling for breast cancer treatment. Arch Pharm (Weinheim) 2024; 357:e2300651. [PMID: 38570819 DOI: 10.1002/ardp.202300651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
A series of D-ring modified steroids bearing a vinyl ketone pendant were synthesized and evaluated for antiproliferative activity against breast cancer cell line and cytochromes P450. The lead compound, 21-vinyl 20-keto-pregnene (2f) (IC50 = 2.4 µM), was shown to be a promising candidate for future anticancer drug design, particularly against estrogen receptor α (ERα)-positive breast cancer. The lead compound was found to have a significant effect on the signaling pathways in parental and 4-hydroxytamoxifen-resistant cells. Compound 2f modulated the ERK, cyclin D1, and CDK4 pathways and blocked the expression of ERα, the main driver of breast cancer growth. Compound 2f significantly reduced 17β-estradiol-induced progesterone receptor expression. Accumulation of cleaved poly(ADP-ribose) polymerase in cells treated with compound 2f indicated induction of apoptosis. The selectivity analysis showed that lead compound 2f produces no significant effects on cytochromes P450, CYP19A1, CYP21A2, and CYP7B1.
Collapse
Affiliation(s)
- Victoria Malakhova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Scherbakov
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
- Gause Institute of New Antibiotics, Moscow, Russia
| | - Danila Sorokin
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Hanna Leanavets
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Yaraslau Dzichenka
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Igor Zavarzin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yulia Volkova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Nemeikaitė-Čėnienė A, Misevičienė L, Marozienė A, Jonušienė V, Čėnas N. Enzymatic Redox Properties and Cytotoxicity of Irreversible Nitroaromatic Thioredoxin Reductase Inhibitors in Mammalian Cells. Int J Mol Sci 2023; 24:12460. [PMID: 37569833 PMCID: PMC10419047 DOI: 10.3390/ijms241512460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
NADPH:thioredoxin reductase (TrxR) is considered a potential target for anticancer agents. Several nitroheterocyclic sulfones, such as Stattic and Tri-1, irreversibly inhibit TrxR, which presumably accounts for their antitumor activity. However, it is necessary to distinguish the roles of enzymatic redox cycling, an inherent property of nitroaromatics (ArNO2), and the inhibition of TrxR in their cytotoxicity. In this study, we calculated the previously unavailable values of single-electron reduction potentials of known inhibitors of TrxR (Stattic, Tri-1, and 1-chloro-2,4-dinitrobenzene (CDNB)) and inhibitors identified (nitrofuran NSC697923 and nitrobenzene BTB06584). These calculations were according to the rates of their enzymatic single-electron reduction (PMID: 34098820). This enabled us to compare their cytotoxicity with that of model redox cycling ArNO2. In MH22a and HCT-116 cells, Tri-1, Stattic, CDNB, and NSC697023 possessed at least 10-fold greater cytotoxicity than can be expected from their redox cycling activity. This may be related to TrxR inhibition. The absence of enhanced cytotoxicity in BTB06548 may be attributed to its instability. Another known inhibitor of TrxR, tetryl, also did not possess enhanced cytotoxicity, probably because of its detoxification by DT-diaphorase (NQO1). Apart from the reactions with NQO1, the additional mechanisms influencing the cytotoxicity of the examined inhibitors of TrxR are their reactions with cytochromes P-450. Furthermore, some inhibitors, such as Stattic and NSC697923, may also inhibit glutathione reductase. We suggest that these data may be instrumental in the search for TrxR inhibitors with enhanced cytotoxic/anticancer activity.
Collapse
Affiliation(s)
- Aušra Nemeikaitė-Čėnienė
- Department of Immunology of State Research Institute Center for Innovative Medicine, Santariškiu˛ St. 5, LT-08406 Vilnius, Lithuania;
| | - Lina Misevičienė
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania; (L.M.); (A.M.)
| | - Audronė Marozienė
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania; (L.M.); (A.M.)
| | - Violeta Jonušienė
- Department of Biochemistry and Molecular Biology, Institute of Biosciences of Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania;
| | - Narimantas Čėnas
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania; (L.M.); (A.M.)
| |
Collapse
|
4
|
Shumyantseva VV, Bulko TV, Gnedenko OV, Yablokov EO, Usanov SA, Ivanov AS. [Adrenodoxins and their role in the cytochrome P450 systems]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:47-54. [PMID: 35221296 DOI: 10.18097/pbmc20226801047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The role of partner proteins in the formation of functional complexes in cytochrome P450 systems was investigated by means of optical biosensor technique. Kinetic constants and equilibrium dissociation constants of complexes of cytochrome CYP11A1 (P450scc) with wild-type adrenodoxin (Adx WT) and mutant forms of adrenodoxin R106D and D109R were determined using an optical biosensor. Wild-type adrenodoxin (Kd = (1.23±0.09)⋅10⁻⁶ M) and mutant D109R (Kd = (2.37±0.09)⋅10⁻⁸ M) formed complexes with cytochrome P450scc. For the R106D mutant, no complex formation was detected. To investigate the possibility of the participation of adrenodoxins and their mutant variants in the process of electron transfer as electron donors in mitochondrial cytochrome P450 systems, the electrochemical properties of these iron-sulfur proteins Adx WT and mutant forms of adrenodoxins were studied. Adx WT, mutant forms R106D and D109R have redox potentials E1/2 significantly more negative than cytochromes P450 (-579±10 mV, -590±15 mV, and -528±10 mV, respectively). These results suggest that Adx WT and mutant forms may be electron donors in the cytochrome P450 systems.
Collapse
Affiliation(s)
- V V Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - T V Bulko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - O V Gnedenko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - E O Yablokov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - S A Usanov
- Institute of Bioorganic Chemistry, Minsk, Belarus
| | - A S Ivanov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
5
|
Nemeikaitė-Čėnienė A, Marozienė A, Misevičienė L, Tamulienė J, Yantsevich AV, Čėnas N. 5Flavoenzyme-catalyzed single-electron reduction of nitroaromatic antiandrogens: implications for their cytotoxicity. Free Radic Res 2021; 55:246-254. [PMID: 34098820 DOI: 10.1080/10715762.2021.1919304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The therapeutic action of nitroaromatic antiandrogens nilutamide and flutamide may be complicated by their cytotoxicity, whose mechanisms are still incomprehensively understood. In particular this concerns the enzymatic redox cycling of flutamide and its metabolites, and its impact on their cytotoxicity. In this work, we examined the single-electron reduction of nilutamide, flutamide, its metabolites 2-hydroxyflutamide and 4-nitro-3-trifluorormethyl-phenylamine, and a topical antiandrogen (3-amino-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl)-phenyl) propanamide by NADPH:cytochrome P-450 reductase and adrenodoxin reductase/adrenodoxin. The obtained steady-state bimolecular rate constants of oxidant reduction (kcat/Km) enabled to establish single-electron reduction midpoint potentials (E17) of compounds, -0.377 - -0.413 V, which were in line with enthalpies of formation of their free radicals, obtained by quantum mechanical calculations. Using murine hepatoma MH22a cells, the obtained cytotoxicity vs. E17 correlation based on the data of model nitroaromatic compounds shows that redox cycling and oxidative stress could be the main factor of cytotoxicity of nitroaromatic antiandrogens. Other minor cytotoxicity factors could be their redox metabolism involving NAD(P)H:quinone oxidoreductase (NQO1) and cytochromes P-450.
Collapse
Affiliation(s)
| | | | - Lina Misevičienė
- Institute of Biochemistry of Vilnius University, Vilnius, Lithuania
| | - Jelena Tamulienė
- Institute of Theoretical Physics and Astronomy of Vilnius University, Vilnius, Lithuania
| | | | - Narimantas Čėnas
- Institute of Biochemistry of Vilnius University, Vilnius, Lithuania
| |
Collapse
|
6
|
Baranovsky A, Ladyko A, Shkel T, Sokolov S, Strushkevich N, Gilep A. Transformations, NMR studies and biological testing of some 17β-isoxazolyl steroids and their heterocyclic ring cleavage derivatives. Steroids 2021; 166:108768. [PMID: 33232722 DOI: 10.1016/j.steroids.2020.108768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/22/2020] [Accepted: 11/09/2020] [Indexed: 11/19/2022]
Abstract
The synthesis and NMR structure analysis of a group of oxygenated steroids containing isoxazole, dihydrofuran, tetrahydrofuran rings or enamino carbonyl fragment in the side chain have been fulfilled. The prepared compounds were tested toward several enzymes (human cytochrome P450s CYP17, CYP19, CYP51 and CYP51 of pathogenic fungus Candida glabrata) as their potential inhibitors. A number steroids show a high level affinity (micro- and submicromole) for the enzyme-ligand complexes of the tested compounds with human CYP51, CYP19 and CYP51 of C. glabrata.
Collapse
Affiliation(s)
- Alexander Baranovsky
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Kuprevich Str. 5/2, 220143 Minsk, Belarus.
| | - Alesya Ladyko
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Kuprevich Str. 5/2, 220143 Minsk, Belarus
| | - Tatsiana Shkel
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Kuprevich Str. 5/2, 220143 Minsk, Belarus
| | - Sergey Sokolov
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Kuprevich Str. 5/2, 220143 Minsk, Belarus
| | - Natallia Strushkevich
- Skolkovo Institute of Science and Technology, Bol'shoy Bul'var, 30, 143026 Moscow, Russia
| | - Andrey Gilep
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Kuprevich Str. 5/2, 220143 Minsk, Belarus
| |
Collapse
|
7
|
Nemeikaitė-Čėnienė A, Šarlauskas J, Misevičienė L, Marozienė A, Jonušienė V, Lesanavičius M, Čėnas N. Aerobic Cytotoxicity of Aromatic N-Oxides: The Role of NAD(P)H:Quinone Oxidoreductase (NQO1). Int J Mol Sci 2020; 21:ijms21228754. [PMID: 33228195 PMCID: PMC7699506 DOI: 10.3390/ijms21228754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022] Open
Abstract
Derivatives of tirapazamine and other heteroaromatic N-oxides (ArN→O) exhibit tumoricidal, antibacterial, and antiprotozoal activities, which are typically attributed to bioreductive activation and free radical generation. In this work, we aimed to clarify the role of NAD(P)H:quinone oxidoreductase (NQO1) in ArN→O aerobic cytotoxicity. We synthesized 9 representatives of ArN→O with uncharacterized redox properties and examined their single-electron reduction by rat NADPH:cytochrome P-450 reductase (P-450R) and Plasmodium falciparum ferredoxin:NADP+ oxidoreductase (PfFNR), and by rat NQO1. NQO1 catalyzed both redox cycling and the formation of stable reduction products of ArN→O. The reactivity of ArN→O in NQO1-catalyzed reactions did not correlate with the geometric average of their activity towards P-450R- and PfFNR, which was taken for the parameter of their redox cycling efficacy. The cytotoxicity of compounds in murine hepatoma MH22a cells was decreased by antioxidants and the inhibitor of NQO1, dicoumarol. The multiparameter regression analysis of the data of this and a previous study (DOI: 10.3390/ijms20184602) shows that the cytotoxicity of ArN→O (n = 18) in MH22a and human colon carcinoma HCT-116 cells increases with the geometric average of their reactivity towards P-450R and PfFNR, and with their reactivity towards NQO1. These data demonstrate that NQO1 is a potentially important target of action of heteroaromatic N-oxides.
Collapse
Affiliation(s)
- Aušra Nemeikaitė-Čėnienė
- State Research Institute Center for Innovative Medicine, Santariškių St. 5, LT-08406 Vilnius, Lithuania;
| | - Jonas Šarlauskas
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (J.Š.); (L.M.); (A.M.); (M.L.)
| | - Lina Misevičienė
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (J.Š.); (L.M.); (A.M.); (M.L.)
| | - Audronė Marozienė
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (J.Š.); (L.M.); (A.M.); (M.L.)
| | - Violeta Jonušienė
- Institute of Biosciences of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
| | - Mindaugas Lesanavičius
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (J.Š.); (L.M.); (A.M.); (M.L.)
| | - Narimantas Čėnas
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (J.Š.); (L.M.); (A.M.); (M.L.)
- Correspondence: ; Tel.: +370-5-223-4392
| |
Collapse
|
8
|
Masamrekh RA, Filippova TA, Sherbakov KA, Veselovsky AV, Shumyantseva VV, Kuzikov AV. Interactions of galeterone and its 3-keto-Δ4 metabolite (D4G) with one of the key enzymes of corticosteroid biosynthesis - steroid 21-monooxygenase (CYP21A2). Fundam Clin Pharmacol 2020; 35:423-431. [PMID: 33012006 DOI: 10.1111/fcp.12607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/28/2020] [Indexed: 11/30/2022]
Abstract
We have investigated interactions of galeterone and its pharmacologically active metabolite - 3-keto-Δ4-galeterone (D4G) - with one of the key enzymes of corticosteroid biosynthesis - steroid 21-monooxygenase (CYP21A2). It was shown by absorption spectroscopy that both compounds induce type I spectral changes of CYP21A2. Spectral dissociation constants (KS ) of complexes of CYP21A2 with galeterone or D4G were calculated as 3.1 ± 0.7 μm and 4.6 ± 0.4 μm, respectively. It was predicted by molecular docking that both ligands similarly bind to the active site of CYP21A2. We have revealed using reconstituted monooxygenase system that galeterone is a competitive inhibitor of CYP21A2 with the inhibition constant (Ki ) value of 12 ± 3 μm, while D4G at the concentrations of 10 and 25 μm does not inhibit the enzyme. Summarizing, based on the in vitro analyses we detected inhibition of CYP21A2 by galeterone and lack of the influence of D4G on this enzyme.
Collapse
Affiliation(s)
- Rami A Masamrekh
- Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow, 117997, Russia.,Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow, 119121, Russia
| | - Tatiana A Filippova
- Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow, 117997, Russia.,Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow, 119121, Russia
| | - Kirill A Sherbakov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow, 119121, Russia
| | - Alexander V Veselovsky
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow, 119121, Russia
| | - Victoria V Shumyantseva
- Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow, 117997, Russia.,Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow, 119121, Russia
| | - Alexey V Kuzikov
- Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow, 117997, Russia.,Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow, 119121, Russia
| |
Collapse
|
9
|
Kuzikov AV, Masamrekh RA, Filippova TA, Haurychenka YI, Gilep AA, Shkel TV, Strushkevich NV, Usanov SA, Shumyantseva VV. Electrochemical oxidation of estrogens as a method for CYP19A1 (aromatase) electrocatalytic activity determination. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Masamrekh R, Filippova T, Haurychenka Y, Shcherbakov K, Veselovsky A, Strushkevich N, Shkel T, Gilep A, Usanov S, Shumyantseva V, Kuzikov A. Estimation of the inhibiting impact of abiraterone D4A metabolite on human steroid 21-monooxygenase (CYP21A2). Steroids 2020; 154:108528. [PMID: 31678135 DOI: 10.1016/j.steroids.2019.108528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/08/2019] [Accepted: 10/22/2019] [Indexed: 10/25/2022]
Abstract
Abiraterone D4A metabolite, the product of 3β-hydroxysteroid dehydrogenase activity toward abiraterone, may serve as a potential antitumor agent for the treatment of prostate cancer. The main adverse effect of abiraterone is the disruption of corticosteroid biosynthesis, and the more pharmacologically active abiraterone D4A metabolite may have the same issues. We therefore estimated the inhibiting impact of the abiraterone D4A metabolite on one of the key corticosteroidogenic enzymes - human steroid 21-monooxygenase (CYP21A2). Molecular docking of D4A into the active site of CYP21A2 has been predicted to be similar to abiraterone binding with the enzyme. Abiraterone D4A metabolite, similar to abiraterone, induces type II spectral changes of CYP21A2. The spectral dissociation constant for the abiraterone D4A metabolite-CYP21A2 complex was calculated as 3.4 ± 0.5 μM. Abiraterone D4A metabolite demonstrates competitive/mixed type CYP21A2 inhibition with an inhibitory constant of 1.8 ± 0.8 μM, as obtained by Dixon plot. These results make it possible to predict the adverse effects of the new perspective candidate compound for antitumor therapy.
Collapse
Affiliation(s)
- Rami Masamrekh
- Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow 117997, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia
| | - Tatiana Filippova
- Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow 117997, Russia
| | - Yaraslau Haurychenka
- Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow 117997, Russia
| | - Kirill Shcherbakov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia
| | - Alexander Veselovsky
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia
| | - Natallia Strushkevich
- Institute of Bioorganic Chemistry NASB, 5 Academician V.F. Kuprevich Street, Build 2, Minsk BY-220141, Belarus
| | - Tatsiana Shkel
- Institute of Bioorganic Chemistry NASB, 5 Academician V.F. Kuprevich Street, Build 2, Minsk BY-220141, Belarus
| | - Andrei Gilep
- Institute of Bioorganic Chemistry NASB, 5 Academician V.F. Kuprevich Street, Build 2, Minsk BY-220141, Belarus
| | - Sergey Usanov
- Institute of Bioorganic Chemistry NASB, 5 Academician V.F. Kuprevich Street, Build 2, Minsk BY-220141, Belarus
| | - Victoria Shumyantseva
- Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow 117997, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia
| | - Alexey Kuzikov
- Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow 117997, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia.
| |
Collapse
|
11
|
Wright WC, Chenge J, Chen T. Structural Perspectives of the CYP3A Family and Their Small Molecule Modulators in Drug Metabolism. LIVER RESEARCH 2019; 3:132-142. [PMID: 32789028 PMCID: PMC7418881 DOI: 10.1016/j.livres.2019.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cytochrome P450 enzymes function to catalyze a wide range of reactions, many of which are critically important for drug response. Members of the human cytochrome P450 3A (CYP3A) family are particularly important in drug clearance, and they collectively metabolize more than half of all currently prescribed medications. The ability of these enzymes to bind a large and structurally diverse set of compounds increases the chances of their modulating or facilitating drug metabolism in unfavorable ways. Emerging evidence suggests that individual enzymes in the CYP3A family play discrete and important roles in catalysis and disease progression. Here we review the similarities and differences among CYP3A enzymes with regard to substrate recognition, metabolism, modulation by small molecules, and biological consequence, highlighting some of those with clinical significance. We also present structural perspectives to further characterize the basis of these comparisons.
Collapse
Affiliation(s)
- William C. Wright
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Jude Chenge
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
- Corresponding author: Taosheng Chen, Department of Chemical Biology and Therapeutics, MS 1000, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA. Tel: (901) 595-5937; Fax: (901) 595-5715;
| |
Collapse
|
12
|
Nemeikaitė-Čėnienė A, Šarlauskas J, Jonušienė V, Marozienė A, Misevičienė L, Yantsevich AV, Čėnas N. Kinetics of Flavoenzyme-Catalyzed Reduction of Tirapazamine Derivatives: Implications for Their Prooxidant Cytotoxicity. Int J Mol Sci 2019; 20:ijms20184602. [PMID: 31533349 PMCID: PMC6769651 DOI: 10.3390/ijms20184602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 12/23/2022] Open
Abstract
Derivatives of tirapazamine and other heteroaromatic N-oxides (ArN→O) exhibit promising antibacterial, antiprotozoal, and tumoricidal activities. Their action is typically attributed to bioreductive activation and free radical generation. In this work, we aimed to clarify the mechanism(s) of aerobic mammalian cell cytotoxicity of ArN→O performing the parallel studies of their reactions with NADPH:cytochrome P-450 reductase (P-450R), adrenodoxin reductase/adrenodoxin (ADR/ADX), and NAD(P)H:quinone oxidoreductase (NQO1); we found that in P-450R and ADR/ADX-catalyzed single-electron reduction, the reactivity of ArN→O (n = 9) increased with their single-electron reduction midpoint potential (E17), and correlated with the reactivity of quinones. NQO1 reduced ArN→O at low rates with concomitant superoxide production. The cytotoxicity of ArN→O in murine hepatoma MH22a and human colon adenocarcinoma HCT-116 cells increased with their E17, being systematically higher than that of quinones. The cytotoxicity of both groups of compounds was prooxidant. Inhibitor of NQO1, dicoumarol, and inhibitors of cytochromes P-450 α-naphthoflavone, isoniazid and miconazole statistically significantly (p < 0.02) decreased the toxicity of ArN→O, and potentiated the cytotoxicity of quinones. One may conclude that in spite of similar enzymatic redox cycling rates, the cytotoxicity of ArN→O is higher than that of quinones. This is partly attributed to ArN→O activation by NQO1 and cytochromes P-450. A possible additional factor in the aerobic cytotoxicity of ArN→O is their reductive activation in oxygen-poor cell compartments, leading to the formation of DNA-damaging species similar to those forming under hypoxia.
Collapse
Affiliation(s)
- Aušra Nemeikaitė-Čėnienė
- State Research Institute Center for Innovative Medicine, Santariškių St. 5, LT-08406 Vilnius, Lithuania.
| | - Jonas Šarlauskas
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania.
| | - Violeta Jonušienė
- Department of Biochemistry and Molecular Biology, Institute of Biosciences of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania.
| | - Audronė Marozienė
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania.
| | - Lina Misevičienė
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania.
| | - Aliaksei V Yantsevich
- Institute of Bioorganic Chemistry, NAS of Belarus, Kuprevicha 5/2, BY-220072 Minsk, Belarus.
| | - Narimantas Čėnas
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
13
|
A large-scale comparative analysis of affinity, thermodynamics and functional characteristics of interactions of twelve cytochrome P450 isoforms and their redox partners. Biochimie 2019; 162:156-166. [DOI: 10.1016/j.biochi.2019.04.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022]
|
14
|
Ershov PV, Yablokov ЕO, Florinskaya AV, Mezentsev YV, Kaluzhskiy LА, Tumilovich AM, Gilep АА, Usanov SA, Ivanov АS. SPR-Based study of affinity of cytochrome P450s / redox partners interactions modulated by steroidal substrates. J Steroid Biochem Mol Biol 2019; 187:124-129. [PMID: 30468857 DOI: 10.1016/j.jsbmb.2018.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/26/2018] [Accepted: 11/19/2018] [Indexed: 11/29/2022]
Abstract
The goal of this work was to test the hypothesis that the affinity of protein-protein interactions in the cytochrome P450-dependent monooxygenase system is modulated by the low-molecular-weight compounds (substrates or inhibitors). The surface plasmon resonance (SPR) based study was carried out using the recombinant protein preparations of three microsomal cytochromes P450 (CYP17A1, CYP21A2, and CYP2C19) and their redox partners: cytochrome b5 (CYB5A), NADPH - cytochrome P450 reductase (CPR), and also iron-sulfur protein adrenodoxin (Adx). As a result, we have revealed some specificity of the influence of the steroid substrates on the binding affinity of CYPs with their redox partners, namely: the lack of effect on CPR/CYPs and Adx/CYP complex formation, and a significant effect on interactions between CYB5A and steroidogenic CYPs. The equilibrium dissociation constant (Kd) value of the CYB5A/CYP17A1 complex decreased by 5 times in the presence of progesterone (P4), which was due to a 10 times increase in the association rate constant (kon). In this case, a twofold increase in the dissociation rate constant (koff) value of CYB5A/CYP17A1 complex formation was observed. It was also demonstrated that the affinity of CYB5A/CYP17A1 interaction increased in the presence of two other steroidal substrates 17α-hydroxyprogesterone and pregnenolone and that effect was comparable with P4. In contrast, only the twofold decrease in the affinity of CYB5A/CYP21A2 interaction in the presence of P4 was caused by a slight increase in the koff value (the kon value of the complex did not change). This indicates a different format of the steroidal substrates effects expressed in a change in the stability of the CYB5A/CYPs complexes. Thus, it was found that P4 modulated the both kinetic and equilibrium constants of CYB5A/CYP17A1 and CYB5/CYP21A2 complex formation and complexes, while not affecting the CYB5A/CYP2C19 interaction (2C19 is the cytochrome P450 isoenzyme possessing broad substrate specificity), thereby indicating a specific influence of steroidal substrates on interactions involving steroidogenic CYPs. Our results are consistent with current understanding of the role of CYB5A as a regulator of cytochrome P450 activity in P450-dependent monooxygenase system.
Collapse
Affiliation(s)
- P V Ershov
- Federal State Budgetary Institution "V.N. Orekhovich Research Institute of Biomedical Chemistry", 119121, Moscow, Pogodinskaya str. 10, building 8, Russia.
| | - Е O Yablokov
- Federal State Budgetary Institution "V.N. Orekhovich Research Institute of Biomedical Chemistry", 119121, Moscow, Pogodinskaya str. 10, building 8, Russia
| | - A V Florinskaya
- Federal State Budgetary Institution "V.N. Orekhovich Research Institute of Biomedical Chemistry", 119121, Moscow, Pogodinskaya str. 10, building 8, Russia
| | - Yu V Mezentsev
- Federal State Budgetary Institution "V.N. Orekhovich Research Institute of Biomedical Chemistry", 119121, Moscow, Pogodinskaya str. 10, building 8, Russia
| | - L А Kaluzhskiy
- Federal State Budgetary Institution "V.N. Orekhovich Research Institute of Biomedical Chemistry", 119121, Moscow, Pogodinskaya str. 10, building 8, Russia
| | - A M Tumilovich
- Institute of Bioorganic Chemistry National Academy of Science of Belarus, 220141, Minsk, Kuprevicha str. 5/2, Belarus
| | - А А Gilep
- Federal State Budgetary Institution "V.N. Orekhovich Research Institute of Biomedical Chemistry", 119121, Moscow, Pogodinskaya str. 10, building 8, Russia; Institute of Bioorganic Chemistry National Academy of Science of Belarus, 220141, Minsk, Kuprevicha str. 5/2, Belarus
| | - S A Usanov
- Institute of Bioorganic Chemistry National Academy of Science of Belarus, 220141, Minsk, Kuprevicha str. 5/2, Belarus
| | - А S Ivanov
- Federal State Budgetary Institution "V.N. Orekhovich Research Institute of Biomedical Chemistry", 119121, Moscow, Pogodinskaya str. 10, building 8, Russia
| |
Collapse
|
15
|
Roles of Cytochrome P450 in Metabolism of Ethanol and Carcinogens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1032:15-35. [PMID: 30362088 DOI: 10.1007/978-3-319-98788-0_2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytochrome P450 (P450) enzymes are involved in the metabolism of carcinogens, as well as drugs, steroids, vitamins, and other classes of chemicals. P450s also oxidize ethanol, in particular P450 2E1. P450 2E1 oxidizes ethanol to acetaldehyde and then to acetic acid, roles also played by alcohol and aldehyde dehydrogenases. The role of P450 2E1 in cancer is complex in that P450 2E1 is also induced by ethanol, P450 2E1 is involved in the bioactivation and detoxication of a number of chemical carcinogens, and ethanol is an inhibitor of P450 2E1. Contrary to some literature, P450 2E1 expression and induction itself does not cause global oxidative stress in vivo, as demonstrated in studies using isoniazid treatment and gene deletion studies with rats and mice. However, a major fraction of P450 2E1 is localized in liver mitochondria instead of the endoplasmic reticulum, and studies with site-directed rat P450 2E1 mutants and natural human P450 2E1 N-terminal variants have shown that P450 2E1 localized in mitochondria is catalytically active and more proficient in producing reactive oxygen species and damage. The role of the mitochondrial oxidative stress in ethanol toxicity is still under investigation, as is the mechanism of altered electron transport to P450s that localize inside mitochondria instead of their typical endoplasmic reticulum environment.
Collapse
|
16
|
Peciukaityte-Alksne M, Šarlauskas J, Miseviciene L, Maroziene A, Cenas N, Krikštopaitis K, Staniulyte Z, Anusevicius Ž. Flavoenzyme-mediated reduction reactions and antitumor activity of nitrogen-containing tetracyclic ortho-quinone compounds and their nitrated derivatives. EXCLI JOURNAL 2017; 16:663-678. [PMID: 28694766 PMCID: PMC5491926 DOI: 10.17179/excli2017-273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/29/2017] [Indexed: 11/10/2022]
Abstract
Nitrogen-based tetracyclic ortho-quinones (naphtho[1'2':4.5]imidazo[1,2-a]pyridine-5,6-diones, NPDOs) and their nitro-substituted derivatives (nitro-(P)NPDOs) were obtained by condensation of substituted 2,3-dichloro-1,4-naphthoquinones with 2-amino-pyridine and -pyrimidine and nitration at an elevated temperature. The structural features of the compounds as well as their global and regional electrophilic potency were characterized by means of DFT computation. The compounds were highly reactive substrates of single- and two-electron (hydride) - transferring P-450R (CPR; EC 1.6.2.4) and NQO-1 (DTD; EC 1.6.99.2), respectively, concomitantly producing reactive oxygen species. Their catalytic efficiency defined in terms of the apparent second-order rate constant (kcat/KM (Q)) values in P-450R- and NQO-1-mediated reactions varied in the range of 3-6 × 107 M-1 s-1 and 1.6-7.4 × 108 M-1 s-1, respectively. The cytotoxic activities of the compounds on tumor cell lines followed the concentration-dependent manner exhibiting relatively high cytotoxic potency against breast cancer MCF-7, with CL50 values of 0.08-2.02 µM L-1 and lower potency against lung cancer A-549 (CL50 = 0.28-7.66 µM L-1). 3-nitro-pyrimidino-NPDO quinone was the most active compound against MCF-7 with CL50 of 0.08 ± 0.01 µM L-1 (0.02 µg mL-1)) which was followed by 3-nitro-NPDO with CL50 of 0.12 ± 0.03 µM L-1 (0.035 µg mL-1)) and 0.28 ± 0.08 µM L-1 (0.08 µg mL-1) on A-549 and MCF-7 cells, respectively, while 1- and 4-nitro-quinoidals produced the least cytotoxic effects. Tumor cells quantified by AO/EB staining showed that the cell death induced by the compounds occurs primarily through apoptosis.
Collapse
Affiliation(s)
- Milda Peciukaityte-Alksne
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, Vilnius, LT-10257, Lithuania
| | - Jonas Šarlauskas
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, Vilnius, LT-10257, Lithuania
| | - Lina Miseviciene
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, Vilnius, LT-10257, Lithuania
| | - Audrone Maroziene
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, Vilnius, LT-10257, Lithuania
| | - Narimantas Cenas
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, Vilnius, LT-10257, Lithuania
| | - Kastis Krikštopaitis
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, Vilnius, LT-10257, Lithuania
| | - Zita Staniulyte
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, Vilnius, LT-10257, Lithuania
| | - Žilvinas Anusevicius
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, Vilnius, LT-10257, Lithuania
| |
Collapse
|
17
|
Vasilevskaya AV, Yantsevich AV, Sergeev GV, Lemish AP, Usanov SA, Gilep AA. Identification of Mycobacterium tuberculosis enzyme involved in vitamin D and 7-dehydrocholesterol metabolism. J Steroid Biochem Mol Biol 2017; 169:202-209. [PMID: 27289046 DOI: 10.1016/j.jsbmb.2016.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/18/2016] [Accepted: 05/21/2016] [Indexed: 11/27/2022]
Abstract
Problems arising during treatment of tuberculosis are well known, therefore studies of Mycobacterium drug molecular targets are an area of particular importance. Members of the cytochrome P450 family (CYP) may belong to potential candidates for drug targets being involved in metabolism of biologically important molecules in the host organism. CYP124 of Mycobacterium tuberculosis (MTCYP124) catalyzes ω-hydroxylation of methyl-branched lipids. The data obtained in the present study indicate that this enzyme can also oxidize provitamin D3 (7-dehydrocholesterol) and vitamin D3. We found that the final product is different from 1α- and 25-hydroxyvitamin D3, so we propose that MTCYP124 is involved in alternative pathway for metabolism of vitamin D3.
Collapse
Affiliation(s)
- A V Vasilevskaya
- Institute of Bioorganic Chemistry, National Academy of Sciences, 220141, Minsk, Kuprevicha 5/2, Belarus
| | - A V Yantsevich
- Institute of Bioorganic Chemistry, National Academy of Sciences, 220141, Minsk, Kuprevicha 5/2, Belarus
| | - G V Sergeev
- Institute of Bioorganic Chemistry, National Academy of Sciences, 220141, Minsk, Kuprevicha 5/2, Belarus
| | - A P Lemish
- Institute of an Experimental Veterinary Science n. S.N. Wyshelesski, 220003, Minsk, Briketa 28, Belarus
| | - S A Usanov
- Institute of Bioorganic Chemistry, National Academy of Sciences, 220141, Minsk, Kuprevicha 5/2, Belarus
| | - A A Gilep
- Institute of Bioorganic Chemistry, National Academy of Sciences, 220141, Minsk, Kuprevicha 5/2, Belarus.
| |
Collapse
|
18
|
Brixius-Anderko S, Hannemann F, Ringle M, Khatri Y, Bernhardt R. An indole-deficient Escherichia coli strain improves screening of cytochromes P450 for biotechnological applications. Biotechnol Appl Biochem 2017; 64:315-326. [PMID: 26913738 DOI: 10.1002/bab.1488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/18/2016] [Indexed: 11/09/2022]
Abstract
Escherichia coli has developed into an attractive organism for heterologous cytochrome P450 production, but, in some cases, was restricted as a host in view of a screening of orphan cytochromes P450 or mutant libraries in the context of molecular evolution due to the formation of the cytochrome P450 inhibitor indole by the enzyme tryptophanase (TnaA). To overcome this effect, we disrupted the tnaA gene locus of E. coli C43(DE3) and evaluated the new strain for whole-cell substrate conversions with three indole-sensitive cytochromes P450, myxobacterial CYP264A1, and CYP109D1 as well as bovine steroidogenic CYP21A2. For purified CYP264A1 and CYP21A2, the half maximal inhibitory indole concentration was determined to be 140 and 500 μM, which is within the physiological concentration range occurring during cultivation of E. coli in complex medium. Biotransformations with C43(DE3)_∆tnaA achieved a 30% higher product formation in the case of CYP21A2 and an even fourfold increase with CYP264A1 compared with C43(DE3) cells. In whole-cell conversion based on CYP109D1, which converts indole to indigo, we could successfully avoid this reaction. Results in microplate format indicate that our newly designed strain is a suitable host for a fast and efficient screening of indole-influenced cytochromes P450 in complex medium.
Collapse
Affiliation(s)
| | - Frank Hannemann
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Michael Ringle
- Department of Biochemistry, Saarland University, Saarbrücken, Germany.,Lonza AG, Visp, Switzerland
| | - Yogan Khatri
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Rita Bernhardt
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|
19
|
Omura T, Gotoh O. Evolutionary origin of mitochondrial cytochrome P450. J Biochem 2017; 161:399-407. [DOI: 10.1093/jb/mvx011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 01/03/2017] [Indexed: 12/17/2022] Open
|
20
|
Johnson EO, Wong LL. Partial fusion of a cytochrome P450 system by carboxy-terminal attachment of putidaredoxin reductase to P450cam (CYP101A1). Catal Sci Technol 2016; 6:7549-7560. [PMID: 28944003 PMCID: PMC5609660 DOI: 10.1039/c6cy01042c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytochrome P450 (CYP) enzymes catalyze the insertion of oxygen into carbon-hydrogen bonds and have great potential for enzymatic synthesis. Application development of class I CYPs is hampered by their dependence on two redox partners (a ferredoxin and ferredoxin reductase), slowing catalysis compared to self-sufficient CYPs such as CYP102A1 (P450BM3). Previous attempts to address this have fused all three components in several permutations and geometries, with much reduced activity compared to the native system. We report here the new approach of fusing putidaredoxin reductase (PdR) to the carboxy-terminus of CYP101A1 (P450cam) via a linker peptide and reconstituting camphor hydroxylase activity with free putidaredoxin (Pdx). Initial purification of a P450cam-PdR fusion yielded 2.0% heme incorporation. Co-expression of E. coli ferrochelatase, lengthening the linker from 5 to 20 residues, and altering culture conditions for enzyme production furnished 85% heme content. Fusion co-expression with Pdx gave a functional system with comparable in vivo camphor oxidation activity as the native system. In vitro, the fused system's steady state NADH oxidation rate was two-fold faster than that of the native system. In contrast to the native system, NADH oxidation rates for the fusion enzyme showed non-hyperbolic dependence on Pdx concentration, suggesting a role for the PdR domain; these data were consistent with a kinetic model based on two-site binding of Pdx by P450cam-PdR and inactive dimer formation of the fusion. P450cam-PdR is the first example of a class I P450 fusion that exhibits significantly more favorable behavior than that of the native system.
Collapse
Affiliation(s)
| | - Luet-Lok Wong
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK
| |
Collapse
|
21
|
Brixius-Anderko S, Schiffer L, Hannemann F, Janocha B, Bernhardt R. A CYP21A2 based whole-cell system in Escherichia coli for the biotechnological production of premedrol. Microb Cell Fact 2015; 14:135. [PMID: 26374204 PMCID: PMC4572648 DOI: 10.1186/s12934-015-0333-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/31/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Synthetic glucocorticoids like methylprednisolone (medrol) are of high pharmaceutical interest and represent powerful drugs due to their anti-inflammatory and immunosuppressive effects. Since the chemical hydroxylation of carbon atom 21, a crucial step in the synthesis of the medrol precursor premedrol, exhibits a low overall yield because of a poor stereo- and regioselectivity, there is high interest in a more sustainable and efficient biocatalytic process. One promising candidate is the mammalian cytochrome P450 CYP21A2 which is involved in steroid hormone biosynthesis and performs a selective oxyfunctionalization of C21 to provide the precursors of aldosterone, the main mineralocorticoid, and cortisol, the most important glucocorticoid. In this work, we demonstrate the high potential of CYP21A2 for a biotechnological production of premedrol, an important precursor of medrol. RESULTS We successfully developed a CYP21A2-based whole-cell system in Escherichia coli by coexpressing the cDNAs of bovine CYP21A2 and its redox partner, the NADPH-dependent cytochrome P450 reductase (CPR), via a bicistronic vector. The synthetic substrate medrane was selectively 21-hydroxylated to premedrol with a max. yield of 90 mg L(-1) d(-1). To further improve the biocatalytic activity of the system by a more effective electron supply, we exchanged the CPR with constructs containing five alternative redox systems. A comparison of the constructs revealed that the redox system with the highest endpoint yield converted 70 % of the substrate within the first 2 h showing a doubled initial reaction rate compared with the other constructs. Using the best system we could increase the overall yield of premedrol to a maximum of 320 mg L(-1) d(-1) in shaking flasks. Optimization of the biotransformation in a bioreactor could further improve the premedrol gain to a maximum of 0.65 g L(-1) d(-1). CONCLUSIONS We successfully established a CYP21-based whole-cell system for the biotechnological production of premedrol, a pharmaceutically relevant glucocorticoid, in E. coli and could improve the system by optimizing the redox system concerning reaction velocity and endpoint yield. This is the first step for a sustainable replacement of a complicated chemical low-yield hydroxylation by a biocatalytic cytochrome P450-based whole-cell system.
Collapse
Affiliation(s)
| | - Lina Schiffer
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| | - Frank Hannemann
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| | - Bernd Janocha
- Sanofi-Aventis Deutschland GmbH, C&BD Frankfurt Biotechnology, 65926, Frankfurt-Höchst, Germany.
| | - Rita Bernhardt
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
22
|
Schiffer L, Anderko S, Hobler A, Hannemann F, Kagawa N, Bernhardt R. A recombinant CYP11B1 dependent Escherichia coli biocatalyst for selective cortisol production and optimization towards a preparative scale. Microb Cell Fact 2015; 14:25. [PMID: 25880059 PMCID: PMC4347555 DOI: 10.1186/s12934-015-0209-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/18/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human mitochondrial CYP11B1 catalyzes a one-step regio- and stereoselective 11β-hydroxylation of 11-deoxycortisol yielding cortisol which constitutes not only the major human stress hormone but also represents a commercially relevant therapeutic drug due to its anti-inflammatory and immunosuppressive properties. Moreover, it is an important intermediate in the industrial production of synthetic pharmaceutical glucocorticoids. CYP11B1 thus offers a great potential for biotechnological application in large-scale synthesis of cortisol. Because of its nature as external monooxygenase, CYP11B1-dependent steroid hydroxylation requires reducing equivalents which are provided from NADPH via a redox chain, consisting of adrenodoxin reductase (AdR) and adrenodoxin (Adx). RESULTS We established an Escherichia coli based whole-cell system for selective cortisol production from 11-deoxycortisol by recombinant co-expression of the demanded 3 proteins. For the subsequent optimization of the whole-cell activity 3 different approaches were pursued: Firstly, CYP11B1 expression was enhanced 3.3-fold to 257 nmol∗L(-1) by site-directed mutagenesis of position 23 from glycine to arginine, which was accompanied by a 2.6-fold increase in cortisol yield. Secondly, the electron transfer chain was engineered in a quantitative manner by introducing additional copies of the Adx cDNA in order to enhance Adx expression on transcriptional level. In the presence of 2 and 3 copies the initial linear conversion rate was greatly accelerated and the final product concentration was improved 1.4-fold. Thirdly, we developed a screening system for directed evolution of CYP11B1 towards higher hydroxylation activity. A culture down-scale to microtiter plates was performed and a robot-assisted, fluorescence-based conversion assay was applied for the selection of more efficient mutants from a random library. CONCLUSIONS Under optimized conditions a maximum productivity of 0.84 g cortisol∗L(-1)∗d(-1) was achieved, which clearly shows the potential of the developed system for application in the pharmaceutical industry.
Collapse
Affiliation(s)
- Lina Schiffer
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| | - Simone Anderko
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| | - Anna Hobler
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| | - Frank Hannemann
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| | - Norio Kagawa
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| | - Rita Bernhardt
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
23
|
Hlavica P. Mechanistic basis of electron transfer to cytochromes p450 by natural redox partners and artificial donor constructs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:247-97. [PMID: 26002739 DOI: 10.1007/978-3-319-16009-2_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytochromes P450 (P450s) are hemoproteins catalyzing oxidative biotransformation of a vast array of natural and xenobiotic compounds. Reducing equivalents required for dioxygen cleavage and substrate hydroxylation originate from different redox partners including diflavin reductases, flavodoxins, ferredoxins and phthalate dioxygenase reductase (PDR)-type proteins. Accordingly, circumstantial analysis of structural and physicochemical features governing donor-acceptor recognition and electron transfer poses an intriguing challenge. Thus, conformational flexibility reflected by togging between closed and open states of solvent exposed patches on the redox components was shown to be instrumental to steered electron transmission. Here, the membrane-interactive tails of the P450 enzymes and donor proteins were recognized to be crucial to proper orientation toward each other of surface sites on the redox modules steering functional coupling. Also, mobile electron shuttling may come into play. While charge-pairing mechanisms are of primary importance in attraction and complexation of the redox partners, hydrophobic and van der Waals cohesion forces play a minor role in docking events. Due to catalytic plasticity of P450 enzymes, there is considerable promise in biotechnological applications. Here, deeper insight into the mechanistic basis of the redox machinery will permit optimization of redox processes via directed evolution and DNA shuffling. Thus, creation of hybrid systems by fusion of the modified heme domain of P450s with proteinaceous electron carriers helps obviate the tedious reconstitution procedure and induces novel activities. Also, P450-based amperometric biosensors may open new vistas in pharmaceutical and clinical implementation and environmental monitoring.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie der LMU, Goethestrasse 33, 80336, München, Germany,
| |
Collapse
|
24
|
The study of NADPH-dependent flavoenzyme-catalyzed reduction of benzo[1,2-c]1,2,5-oxadiazole N-oxides (benzofuroxans). Int J Mol Sci 2014; 15:23307-31. [PMID: 25517035 PMCID: PMC4284768 DOI: 10.3390/ijms151223307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 11/17/2022] Open
Abstract
UNLABELLED The enzymatic reactivity of a series of benzo[1,2-c]1,2,5-oxadiazole N-oxides (benzofuroxans; BFXs) towards mammalian single-electron transferring NADPH:cytochrome P-450 reductase (P-450R) and two-electron (hydride) transferring NAD(P)H quinone oxidoreductase (NQO1) was examined in this work. Since the =N+ (→O)O- moiety of furoxan fragments of BFXs bears some similarity to the aromatic nitro-group, the reactivity of BFXs was compared to that of nitro-aromatic compounds (NACs) whose reduction mechanisms by these and other related flavoenzymes have been extensively investigated. The reduction of BFXs by both P-450R and NQO1 was accompanied by O2 uptake, which was much lower than the NADPH oxidation rate; except for annelated BFXs, whose reduction was followed by the production of peroxide. In order to analyze the possible quantitative structure-activity relationships (QSARs) of the enzymatic reactivity of the compounds, their electron-accepting potency and other reactivity indices were assessed by quantum mechanical methods. In P-450R-catalyzed reactions, both BFXs and NACs showed the same reactivity dependence on their electron-accepting potency which might be consistent with an "outer sphere" electron transfer mechanism. In NQO1-catalyzed two-electron (hydride) transferring reactions, BFXs acted as more efficient substrates than NACs, and the reduction efficacy of BFXs by NQO1 was in general higher than by single-electron transferring P-450R. In NQO1-catalyzed reactions, QSARs obtained showed that the reduction efficacy of BFXs, as well as that of NACs, was determined by their electron-accepting potency and could be influenced by their binding mode in the active center of NQO1 and by their global softness as their electronic characteristic. The reductive conversion of benzofuroxan by both flavoenzymes yielded the same reduction product of benzofuroxan, 2,3-diaminophenazine, with the formation of o-benzoquinone dioxime as a putative primary reductive intermediate, which undergoes a further reduction process. Overall, the data obtained show that by contrast to NACs, the flavoenzyme-catalyzed reduction of BFXs is unlikely to initiate their redox-cycling, which may argue for a minor role of the redox-cycling-type action in the cytotoxicity of BFXs.
Collapse
|
25
|
Faletrov YV, Frolova NS, Hlushko HV, Rudaya EV, Edimecheva IP, Mauersberger S, Shkumatov VM. Evaluation of the fluorescent probes Nile Red and 25-NBD-cholesterol as substrates for steroid-converting oxidoreductases using pure enzymes and microorganisms. FEBS J 2013; 280:3109-19. [DOI: 10.1111/febs.12265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/21/2013] [Accepted: 03/21/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Yaroslav V. Faletrov
- Research Institute for Physical Chemical Problems; Belarusian State University; Minsk; Belarus
| | - Nina S. Frolova
- Research Institute for Physical Chemical Problems; Belarusian State University; Minsk; Belarus
| | - Hanna V. Hlushko
- Research Institute for Physical Chemical Problems; Belarusian State University; Minsk; Belarus
| | - Elena V. Rudaya
- Research Institute for Physical Chemical Problems; Belarusian State University; Minsk; Belarus
| | - Irina P. Edimecheva
- Research Institute for Physical Chemical Problems; Belarusian State University; Minsk; Belarus
| | | | | |
Collapse
|
26
|
Strushkevich N, Gilep AA, Shen L, Arrowsmith CH, Edwards AM, Usanov SA, Park HW. Structural insights into aldosterone synthase substrate specificity and targeted inhibition. Mol Endocrinol 2013; 27:315-24. [PMID: 23322723 PMCID: PMC5417327 DOI: 10.1210/me.2012-1287] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aldosterone is a major mineralocorticoid hormone that plays a key role in the regulation of electrolyte balance and blood pressure. Excess aldosterone levels can arise from dysregulation of the renin-angiotensin-aldosterone system and are implicated in the pathogenesis of hypertension and heart failure. Aldosterone synthase (cytochrome P450 11B2, CYP11B2) is the sole enzyme responsible for the production of aldosterone in humans. Blocking of aldosterone synthesis by mediating aldosterone synthase activity is thus a recently emerging pharmacological therapy for hypertension, yet a lack of structural information has limited this approach. Here, we present the crystal structures of human aldosterone synthase in complex with a substrate deoxycorticosterone and an inhibitor fadrozole. The structures reveal a hydrophobic cavity with specific features associated with corticosteroid recognition. The substrate binding mode, along with biochemical data, explains the high 11β-hydroxylase activity of aldosterone synthase toward both gluco- and mineralocorticoid formation. The low processivity of aldosterone synthase with a high extent of intermediates release might be one of the mechanisms of controlled aldosterone production from deoxycorticosterone. Although the active site pocket is lined by identical residues between CYP11B isoforms, most of the divergent residues that confer additional 18-oxidase activity of aldosterone synthase are located in the I-helix (vicinity of the O(2) activation path) and loops around the H-helix (affecting an egress channel closure required for retaining intermediates in the active site). This intrinsic flexibility is also reflected in isoform-selective inhibitor binding. Fadrozole binds to aldosterone synthase in the R-configuration, using part of the active site cavity pointing toward the egress channel. The structural organization of aldosterone synthase provides critical insights into the molecular mechanism of catalysis and enables rational design of more specific antihypertensive agents.
Collapse
Affiliation(s)
- Natallia Strushkevich
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada M5G 1L7.
| | | | | | | | | | | | | |
Collapse
|
27
|
Application of a new versatile electron transfer system for cytochrome P450-based Escherichia coli whole-cell bioconversions. Appl Microbiol Biotechnol 2012; 97:7741-54. [PMID: 23254762 DOI: 10.1007/s00253-012-4612-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/14/2012] [Accepted: 11/22/2012] [Indexed: 10/27/2022]
Abstract
Cytochromes P450 monooxygenases are highly interesting biocatalysts for biotechnological applications, since they perform a diversity of reactions on a broad range of organic molecules. Nevertheless, the application of cytochromes P450 is limited compared to other enzymes mainly because of the necessity of a functional redox chain to transfer electrons from NAD(P)H to the monooxygenase. In this study, we established a novel robust redox chain based on adrenodoxin, which can deliver electrons to mitochondrial, bacterial and microsomal P450s. The natural membrane-associated reductase of adrenodoxin was replaced by the soluble Escherichia coli reductase. We could demonstrate for the first time that this reductase can transfer electrons to adrenodoxin. In the first step, the electron transfer properties and the potential of this new system were investigated in vitro, and in the second step, an efficient E. coli whole-cell system using CYP264A1 from Sorangium cellulosum So ce56 was developed. It could be demonstrated that this novel redox chain leads to an initial conversion rate of 55 μM/h, which was 52 % higher compared to the 36 μM/h of the redox chain containing adrenodoxin reductase. Moreover, we optimized the whole-cell biotransformation system by a detailed investigation of the effects of different media. Finally, we are able to demonstrate that the new system is generally applicable to other cytochromes P450 by combining it with the biotechnologically important steroid hydroxylase CYP106A2 from Bacillus megaterium.
Collapse
|
28
|
Ewen KM, Ringle M, Bernhardt R. Adrenodoxin-A versatile ferredoxin. IUBMB Life 2012; 64:506-12. [DOI: 10.1002/iub.1029] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 02/23/2012] [Indexed: 11/07/2022]
|
29
|
Comparison of microbial hosts and expression systems for mammalian CYP1A1 catalysis. J Ind Microbiol Biotechnol 2011; 39:275-87. [PMID: 21863302 DOI: 10.1007/s10295-011-1026-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/04/2011] [Indexed: 10/17/2022]
Abstract
Mammalian cytochrome P450 enzymes are of special interest as biocatalysts for fine chemical and drug metabolite synthesis. In this study, the potential of different recombinant microorganisms expressing rat and human cyp1a1 genes is evaluated for such applications. The maximum specific activity for 7-ethoxyresorufin O-deethylation and gene expression levels were used as parameters to judge biocatalyst performance. Under comparable conditions, E. coli is shown to be superior over the use of S. cerevisiae and P. putida as hosts for biocatalysis. Of all tested E. coli strains, E. coli DH5α and E. coli JM101 harboring rat CYP1A1 showed the highest activities (0.43 and 0.42 U g⁻¹(CDW), respectively). Detection of active CYP1A1 in cell-free E. coli extracts was found to be difficult and only for E. coli DH5α, expression levels could be determined (41 nmol g⁻¹(CDW)). The presented results show that efficient expression of mammalian cyp1a1 genes in recombinant microorganisms is troublesome and host-dependent and that enhancing expression levels is crucial in order to obtain more efficient biocatalysts. Specific activities currently obtained are not sufficient yet for fine chemical production, but are sufficient for preparative-scale drug metabolite synthesis.
Collapse
|
30
|
Martinović-Weigelt D, Wang RL, Villeneuve DL, Bencic DC, Lazorchak J, Ankley GT. Gene expression profiling of the androgen receptor antagonists flutamide and vinclozolin in zebrafish (Danio rerio) gonads. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 101:447-458. [PMID: 21126777 DOI: 10.1016/j.aquatox.2010.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 09/25/2010] [Accepted: 10/09/2010] [Indexed: 05/30/2023]
Abstract
The studies presented in this manuscript focus on characterization of transcriptomic responses to anti-androgens in zebrafish (Danio rerio). Research on the effects of anti-androgens in fish has been characterized by a heavy reliance on apical endpoints, and molecular mechanisms of action (MOA) of anti-androgens remain poorly elucidated. In the present study, we examined effects of a short term exposure (24-96h) to the androgen receptor antagonists flutamide (FLU) and vinclozolin (VZ) on gene expression in gonads of sexually mature zebrafish, using commercially available zebrafish oligonucleotide microarrays (4×44K platform). We found that VZ and FLU potentially impact reproductive processes via multiple pathways related to steroidogenesis, spermatogenesis, and fertilization. Observed changes in gene expression often were shared by VZ and FLU, as demonstrated by overlap in differentially-expressed genes and enrichment of several common key pathways including: (1) integrin and actin signaling, (2) nuclear receptor 5A1 signaling, (3) fibroblast growth factor receptor signaling, (4) polyamine synthesis, and (5) androgen synthesis. This information should prove useful to elucidating specific mechanisms of reproductive effects of anti-androgens in fish, as well as developing biomarkers for this important class of endocrine-active chemicals.
Collapse
Affiliation(s)
- Dalma Martinović-Weigelt
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA.
| | | | | | | | | | | |
Collapse
|
31
|
At the crossroads of steroid hormone biosynthesis: the role, substrate specificity and evolutionary development of CYP17. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:200-9. [PMID: 20619364 DOI: 10.1016/j.bbapap.2010.06.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/28/2010] [Accepted: 06/26/2010] [Indexed: 11/22/2022]
Abstract
Cytochrome P450s play critical roles in the metabolism of various bioactive compounds. One of the crucial functions of cytochrome P450s in Chordata is in the biosynthesis of steroid hormones. Steroid 17alpha-hydroxylase/17,20-lyase (CYP17) is localized in endoplasmic reticulum membranes of steroidogenic cells. CYP17 catalyzes the 17alpha-hydroxylation reaction of delta4-C₂₁ steroids (progesterone derivatives) and delta5-C₂₁ steroids (pregnenolone derivatives) as well as the 17,20-lyase reaction producing C₁₉-steroids, a key branch point in steroid hormone biosynthesis. Depending on CYP17 activity, the steroid hormone biosynthesis pathway is directed to either the formation of mineralocorticoids and glucocorticoids or sex hormones. In the present review, the current information on CYP17 is analyzed and discussed.
Collapse
|
32
|
Strushkevich N, Usanov SA, Park HW. Structural basis of human CYP51 inhibition by antifungal azoles. J Mol Biol 2010; 397:1067-78. [PMID: 20149798 DOI: 10.1016/j.jmb.2010.01.075] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/20/2010] [Accepted: 01/22/2010] [Indexed: 10/19/2022]
Abstract
The obligatory step in sterol biosynthesis in eukaryotes is demethylation of sterol precursors at the C14-position, which is catalyzed by CYP51 (sterol 14-alpha demethylase) in three sequential reactions. In mammals, the final product of the pathway is cholesterol, while important intermediates, meiosis-activating sterols, are produced by CYP51. Three crystal structures of human CYP51, ligand-free and complexed with antifungal drugs ketoconazole and econazole, were determined, allowing analysis of the molecular basis for functional conservation within the CYP51 family. Azole binding occurs mostly through hydrophobic interactions with conservative residues of the active site. The substantial conformational changes in the B' helix and F-G loop regions are induced upon ligand binding, consistent with the membrane nature of the protein and its substrate. The access channel is typical for mammalian sterol-metabolizing P450 enzymes, but is different from that observed in Mycobacterium tuberculosis CYP51. Comparison of the azole-bound structures provides insight into the relative binding affinities of human and bacterial P450 enzymes to ketoconazole and fluconazole, which can be useful for the rational design of antifungal compounds and specific modulators of human CYP51.
Collapse
Affiliation(s)
- Natallia Strushkevich
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
33
|
Abstract
Cytochrome P450 enzyme system consists of P450 and its NAD(P)H-linked reductase or reducing system, and catalyses monooxygenation reactions. The most prevalent type in eukaryotic organisms is 'microsomes type', which consists of membrane-bound P450 and NADPH-P450 reductase. The second type is 'mitochondria type', in which P450 is bound to the inner membrane while the reducing system consisting of an NADPH-linked flavoprotein and a ferredoxin-type iron-sulphur protein is soluble in the matrix space. The third type is 'bacteria type', in which both P450 and the reducing system are soluble in the cytoplasm. In addition to these three types, several forms of P450-reductase fusion proteins have been found in prokaryotic organisms. On the other hand, some P450s catalyse the re-arrangement of the oxygen atoms in the substrate molecules that does not require the supply of reducing equivalents for the reaction. A peculiar P450, P450nor, receives electrons directly from NADH for the reduction of nitric oxide.
Collapse
Affiliation(s)
- Tsuneo Omura
- Kyushu University, Kyushu University, Fukuoka, Fukuoka 811-8582, Japan.
| |
Collapse
|
34
|
Hlavica P. Assembly of non-natural electron transfer conduits in the cytochrome P450 system: A critical assessment and update of artificial redox constructs amenable to exploitation in biotechnological areas. Biotechnol Adv 2009; 27:103-21. [DOI: 10.1016/j.biotechadv.2008.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 09/29/2008] [Accepted: 10/04/2008] [Indexed: 10/21/2022]
|
35
|
Julsing MK, Cornelissen S, Bühler B, Schmid A. Heme-iron oxygenases: powerful industrial biocatalysts? Curr Opin Chem Biol 2008; 12:177-86. [DOI: 10.1016/j.cbpa.2008.01.029] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 01/18/2008] [Accepted: 01/18/2008] [Indexed: 11/24/2022]
|