1
|
Li K, Feng J, Li M, Han L, Wu Y. Systematic Review of Interleukin-35 in Endothelial Dysfunction: A New Target for Therapeutic Intervention. Mediators Inflamm 2025; 2025:2003124. [PMID: 39974277 PMCID: PMC11839265 DOI: 10.1155/mi/2003124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/21/2025] [Indexed: 02/21/2025] Open
Abstract
Endothelial dysfunction is a significant factor in the pathogenesis of various diseases. In pathological states, endothelial cells (ECs) undergo activation, resulting in dysfunction characterized by the stimulation of inflammatory responses, oxidative stress, cell proliferation, blood coagulation, and vascular adhesions. Interleukin-35 (IL-35), a novel member of the IL-12 family, is primarily secreted by regulatory T cells (Tregs) and regulatory B cells (Bregs). The role of IL-35 in immunomodulation, antioxidative stress, resistance to apoptosis, control of EC activation, adhesion, and angiogenesis in ECs remains incompletely understood, as the specific mechanisms of IL-35 action and its regulation have yet to be fully elucidated. Therefore, this systematic review aims to comprehensively investigate the impact of IL-35 on ECs and their physiological roles in a range of conditions, including cardiovascular diseases, tumors, sepsis, and rheumatoid arthritis (RA), with the objective of elucidating the potential of IL-35 as a therapeutic target for these ailments.
Collapse
Affiliation(s)
- Kai Li
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1 Minde Road, Nanchang 330006, Jiangxi, China
| | - Jie Feng
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1 Minde Road, Nanchang 330006, Jiangxi, China
| | - Meng Li
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1 Minde Road, Nanchang 330006, Jiangxi, China
| | - Leilei Han
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1 Minde Road, Nanchang 330006, Jiangxi, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1 Minde Road, Nanchang 330006, Jiangxi, China
| |
Collapse
|
2
|
Li J, Lin W, Huang T, Chen M, Lin Q. IL-12 improves the anti-HCC efficacy of dendritic cells loaded with exosomes from overexpressing Rab27a tumor cells. Exp Cell Res 2024; 439:114073. [PMID: 38704079 DOI: 10.1016/j.yexcr.2024.114073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/07/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Determining the appropriate source of antigens for optimal antigen presentation to T cells is a major challenge in designing dendritic cell (DC) -based therapeutic strategies against hepatocellular carcinoma (HCC). Tumor-derived exosomes (Tex) express a wide range of tumor antigens, making them a promising source of antigens for DC vaccines. As reported, the exosomes secreted by tumor cells can inhibit the antitumor function of immune cells. In this study, we transfected hepatocellular carcinoma cells with Rab27a to enhance the yield of exosomes, which were characterized using transmission electron microscopy and Western blot analysis. We found that Tex secreted by overexpressing Rab27a Hepatocellular carcinoma cell lines pulsed DC is beneficial for the differentiation and maturation of DCs but inhibits the secretion of the IL-12 cytokine. Consequently, we developed a complementary immunotherapy approach by using Tex as an antigen loaded onto DCs, in combination with the cytokine IL-12 to induce antigen-specific cytotoxic T lymphocytes (CTLs). The results indicated that the combination of DC-Tex and IL-12 was more effective in stimulating T lymphocyte proliferation, releasing IFN-γ, and enhancing cytotoxicity compared to using exosomes or IL-12 alone. Additionally, the inclusion of IL-12 also compensated for the reduced IL-2 secretion by DCs caused by Tex. Moreover, in a BALB/c nude mice model of hepatocellular carcinoma, CTLs induced by DC-Tex combined with IL-12 maximized the tumor-specific T-cell immune effect and suppressed tumor growth. Thus, Tex provides a novel and promising source of antigens, with cytokines compensating for the shortcomings of Tex as a tumor antigen. This work helps to clarify the role of exosomes in tumor immunotherapy and may offer a safe and effective prospective strategy for the clinical application of exosome-based cellular immunotherapy.
Collapse
Affiliation(s)
- JieYu Li
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - WanSong Lin
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - TianYing Huang
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - MingShui Chen
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China.
| | - QiaoYan Lin
- Department of Blood Transfusion, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China.
| |
Collapse
|
3
|
Ma YB, Zhou XQ, Jiang WD, Wu P, Liu Y, Li SW, Tang L, Zhang L, Mi HF, Feng L. Tea polyphenols protect against Flavobacterium columnare-induced gill injury via suppression of oxidative stress, inflammation, and apoptosis in grass carp. Int J Biol Macromol 2024; 254:127050. [PMID: 37742887 DOI: 10.1016/j.ijbiomac.2023.127050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Flavobacterium columnare (F. columnare) is one of the deadliest fish pathogens causing bacterial gill rot disease in various freshwater fish species globally. Tea polyphenols (TPs) are an inexpensive product extracted from tea that have received much attention as a feed additive in aquaculture. The current study was designed to investigate the underlying mechanisms and protective effects of dietary TPs against F. columnare-induced gill injury via suppression of oxidative stress, apoptosis, and inflammation in grass carp. TPs were not supplemented to the diet (control) and were supplemented at 40, 80, 120, 160 or 200 mg/kg diet. The feeding experiment was carried out for 60 days, followed by a 3-Day F. columnare challenge test. The results showed that 120 mg/kg TPs in the diet exerted the following five protective effects in fish gill: (1) control gill-rot disease and improved histopathology, (2) inhibit excessive apoptosis, (3) enhance the activity of antioxidant enzymes and upregulate related gene expression via the Nrf2/Keap1 pathway, (4) increase the activity of immune enzymes, And (5) mediate inflammatory cytokine gene expression via the JAK/STAT3 pathway. Taken together, dietary supplementation with TPs is a compelling approach to protect the gill function of fish against F. columnare.
Collapse
Affiliation(s)
- Yao-Bin Ma
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shu-Wei Li
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu 610066, Sichuan, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu 610066, Sichuan, China
| | - Lu Zhang
- Tongwei Co., Ltd., Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, China
| | - Hai-Feng Mi
- Tongwei Co., Ltd., Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
4
|
Gao W, Pan J, Pan J. Antitumor Activities of Interleukin-12 in Melanoma. Cancers (Basel) 2022; 14:cancers14225592. [PMID: 36428682 PMCID: PMC9688694 DOI: 10.3390/cancers14225592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is the most common and serious malignant tumor among skin cancers. Although more and more studies have revolutionized the systematic treatment of advanced melanoma in recent years, access to innovative drugs for melanoma is still greatly restricted in many countries. IL-12 produced mainly by antigen-presenting cells regulates the immune response and affects the differentiation of T cells in the process of antigen presentation. However, the dose-limited toxicity of IL-12 limits its clinical application. The present review summarizes the basic biological functions and toxicity of IL-12 in the treatment of melanoma and discusses the clinical application of IL-12, especially the combination of IL-12 with immune checkpoint inhibitors, cytokines and other therapeutic drugs. We also summarize several promising technological approaches such as carriers that have been developed to improve the pharmacokinetics, efficacy and safety of IL-12 or IL-12 encoding plasmid application.
Collapse
Affiliation(s)
- Wei Gao
- Institute of Translational Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Jun Pan
- Institute of Cancer, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jianping Pan
- Institute of Translational Medicine, Zhejiang University City College, Hangzhou 310015, China
- Correspondence: ; Tel.: +86-0571-88285702
| |
Collapse
|
5
|
Wang H, Huang S, Wu S, Yin S, Tang A, Wen W. Follistatin-Like Protein-1 Upregulates Dendritic Cell-Based Immunity in Patients with Nasopharyngeal Carcinoma. J Interferon Cytokine Res 2018; 37:494-502. [PMID: 29135371 DOI: 10.1089/jir.2017.0064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Follistatin-like protein-1 (FSTL1) is an inflammatory factor that can induce an inflammatory response and is expressed in cancers. However, little is known about its content and function in nasopharyngeal carcinoma (NPC). Interleukin (IL)-12 and IL-4 are primarily secreted by dendritic cells (DCs) and activated T lymphocytes, respectively; these factors can induce Th cell differentiation and cytotoxic lymphocyte production, both of which facilitate tumors through the STAT4 and STAT6 pathways, respectively. In this study, the relationship between FSTL1 and both IL-12 and IL-4 as well as the functional mechanism of these cytokines was explored. Enzyme-linked immunosorbent assay, flow cytometry, and Western blotting were used to assess the levels of key inflammatory factors and DC markers as well as elucidate the mechanism by which FSTL-1 mediates and exerts it antitumor effects. The results revealed that serum FSTL1 and IL-12 levels were significantly decreased in NPC patients compared with those in the control group (P < 0.05); conversely, IL-4 levels were increased (P < 0.05). Supernatants from the experimental groups (EGs) contained higher IL-4 and IL-12 levels than those from the control groups (P < 0.05). Additionally, phosphorylated-STAT6 and phosphorylated-STAT4 were increased in the EGs (P < 0.05). These results suggest that DC-mediated immunity was activated by FSTL1, which leads to an increase of IL-12 and IL-4 production and consequently activates the STAT4 and STAT6 pathways through upregulation of STAT4 and STAT6 phosphorylation, respectively.
Collapse
Affiliation(s)
- Hong Wang
- 1 Department of Otolaryngology, The First Affiliated Hospital of Guangxi Medical University , Nanning, China
| | - Shiping Huang
- 2 Department of Otolaryngology, The People's Hospital of Guigang , Guigang, China
| | - Senyong Wu
- 2 Department of Otolaryngology, The People's Hospital of Guigang , Guigang, China
| | - Shaolin Yin
- 3 Department of Otolaryngology, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, China
| | - Anzhou Tang
- 1 Department of Otolaryngology, The First Affiliated Hospital of Guangxi Medical University , Nanning, China
| | - Wensheng Wen
- 1 Department of Otolaryngology, The First Affiliated Hospital of Guangxi Medical University , Nanning, China
| |
Collapse
|
6
|
Targeting of prosurvival pathways as therapeutic approaches against primary effusion lymphomas: past, present, and Future. BIOMED RESEARCH INTERNATIONAL 2015; 2015:104912. [PMID: 25695042 PMCID: PMC4324489 DOI: 10.1155/2015/104912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 10/29/2014] [Indexed: 01/18/2023]
Abstract
Constitutively activated prosurvival pathways render cancer cells addicted to their effects. Consequently they turn out to be the Achilles' heels whose inhibition can be exploited in anticancer therapy. Primary effusion lymphomas (PELs) are very aggressive non-Hodgkin's B cell lymphomas, whose pathogenesis is strictly linked to Kaposi's sarcoma herpesvirus (KSHV) infection. Here we summarized previous studies from our and other laboratories exploring the cytotoxic effect of drugs inhibiting the main prosurvival pathways activated in PEL cells. Moreover, the immunogenicity of cell death, in terms of dendritic cell (DC) activation and their potential side effect on DCs, is discussed.
Collapse
|
7
|
Ma Z, Zhang H, Yi L, Fan H, Lu C. Microarray analysis of the effect of Streptococcus equi subsp. zooepidemicus M-like protein in infecting porcine pulmonary alveolar macrophage. PLoS One 2012; 7:e36452. [PMID: 22567158 PMCID: PMC3342272 DOI: 10.1371/journal.pone.0036452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/04/2012] [Indexed: 11/27/2022] Open
Abstract
Streptococcus equi subsp. zooepidemicus (S. zooepidemicus), which belongs to Lancefield group C streptococci, is an important pathogen of domesticated species, causing septicemia, meningitis and mammitis. M-like protein (SzP) is an important virulence factor of S. zooepidemicus and contributes to bacterial infection and antiphagocytosis. To increase our knowledge of the mechanism of SzP in infection, we profiled the response of porcine pulmonary alveolar macrophage (PAM) to infection with S. zooepidemicus ATCC35246 wild strain (WD) and SzP-knockout strain (KO) using the Roche NimbleGen Porcine Genome Expression Array. We found SzP contributed to differential expression of 446 genes, with upregulation of 134 genes and downregulation of 312 genes. Gene Ontology category and KEGG pathway were analyzed for relationships among differentially expressed genes. These genes were represented in a variety of functional categories, including genes involved in immune response, regulation of chemokine production, signal transduction and regulation of apoptosis. The reliability of the data obtained from the microarray was verified by performing quantitative real-time PCR on 12 representative genes. The data will contribute to understanding of SzP mediated mechanisms of S. zooepidemicus pathogenesis.
Collapse
Affiliation(s)
- Zhe Ma
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Hui Zhang
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Li Yi
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
- * E-mail:
| | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| |
Collapse
|
8
|
Kim YS, Kim YJ, Lee JM, Han SH, Ko HJ, Park HJ, Pereboev A, Nguyen HH, Kang CY. CD40-targeted recombinant adenovirus significantly enhances the efficacy of antitumor vaccines based on dendritic cells and B cells. Hum Gene Ther 2011; 21:1697-706. [PMID: 20604681 DOI: 10.1089/hum.2009.202] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite the advantages of using adenoviral vectors for specific antigenic gene delivery in the development of antigen-presenting cell (APC)-based vaccines, the lack of the coxsackievirus-adenovirus receptor (CAR) on APCs limits the use of adenoviral vectors for in vitro gene delivery. In this study, we used a recombinant adapter protein, CFm40L, which consists of the ectodomain of CAR genetically fused to the ectodomain of CD40 ligand (CD40L) via a trimerization motif, to target Her-2/neu- or human papillomavirus 16 (HPV16) E6/E7-encoding adenoviruses to CD40 on dendritic cells (DCs) and B cells. Targeting CD40 enabled the enhancement of tumor antigen delivery and simultaneous activation of APCs via the CD40-CD40L interaction. We found that these transduced DCs and B cells substantially enhanced the CTL response against human Her-2/neu- and HPV16 E6/E7-expressing tumors, resulting in significant inhibition of tumor growth in a murine tumor model. In addition, the use of the CFm40L adapter protein in combination with gemcitabine treatment allowed for a successful immune response against a self-tumor antigen, murine Her-2/neu. Our results suggest that targeting adenovirus to APCs via CD40, using CFm40L, represents a great improvement in anticancer cellular vaccines.
Collapse
Affiliation(s)
- Yun-Sun Kim
- Institute of Pharmaceutical Science, Seoul National University, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Butts CL, Candando KM, Warfel J, Belyavskaya E, D'Agnillo F, Sternberg EM. Progesterone regulation of uterine dendritic cell function in rodents is dependent on the stage of estrous cycle. Mucosal Immunol 2010; 3:496-505. [PMID: 20505661 DOI: 10.1038/mi.2010.28] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Steroid hormones, such as progesterone, are able to modify immunity and influence disease outcome. Dendritic cells (DCs) drive potent immune responses, express receptors for steroid hormones, and may be a primary target of steroid hormone actions during infection of the genital tract, including uterine tissue. Here, we report that progesterone limited DC-associated activation marker expression and inhibited cytokine secretion by uterine DCs, which was associated with changes in signal transducer and activator of transcription 1 (STAT1) activity. We also found that DCs from mice at stages with higher progesterone concentrations (diestrus, metaestrus) were more sensitive to progesterone than those in stages with lower progesterone concentrations (proestrus, estrus), both in vitro and in vivo. This difference correlated with the levels of progesterone receptor expressed by DCs. These data suggest that progesterone regulates DC function and could contribute to the susceptibility of females to uterine and other genital tract infections at selected time periods throughout the life cycle.
Collapse
Affiliation(s)
- C L Butts
- Section on Neuroendocrine Immunology & Behavior, National Institute of Mental Health, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
10
|
Ghafoori P, Yoshimura T, Turpie B, Masli S. Increased IkappaB alpha expression is essential for the tolerogenic property of TGF-beta-exposed APCs. FASEB J 2009; 23:2226-34. [PMID: 19237504 PMCID: PMC2704595 DOI: 10.1096/fj.08-124545] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 01/29/2009] [Indexed: 11/11/2022]
Abstract
IkappaB alpha is an inhibitor of the transcriptional factor NF-kappaB, and it is an essential component of the signaling pathways that lead to expression of inflammatory molecules. These include cytokines and costimulatory molecules associated with antigen presentation in an inflammatory immune response. In this study, we report that antigen-presenting cells exposed to TGF-beta induce peripheral tolerance by increasing IkappaB alpha expression. Exposure of antigen presenting cells (APCs) to TGF-beta is known to impair their ability to secrete IL-12, and such impairment correlated with reduced NF-kappaB activity as indicated by significantly reduced nuclear levels of p50, an essential subunit of NF-kappaB for IL-12 transcription. Blockade of increased nuclear IkappaB alpha in APCs by expression of small interfering RNA molecules (siRNAs) targeting IkappaB alpha transcripts prevented IL-12 impairment and the decline in nuclear p50 levels. Furthermore, such IkappaB alpha blockade also interfered with the tolerogenic property of TGF-beta-exposed APCs. However, increased expression of IkappaB alpha in APCs, independent of TGF-beta exposure, reduced nuclear p50 levels and permitted tolerance induction by APCs. Thus, our findings attribute a direct and significant role to IkappaB alpha in the tolerogenic potential of APCs. Increased IkappaB alpha expression in APCs may therefore offer a therapeutic approach to achieve antigen-specific immunomodulation.
Collapse
Affiliation(s)
- Paiman Ghafoori
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
11
|
Donor bone-marrow suppressor of cytokine signaling-1-silenced dendritic cells prolong rat intestinal allograft survival. Transplant Proc 2009; 40:3707-10. [PMID: 19100470 DOI: 10.1016/j.transproceed.2008.07.131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 06/06/2008] [Accepted: 07/22/2008] [Indexed: 11/24/2022]
Abstract
Suppressor of cytokine signaling (SOCS) molecules belong to intracellular proteins that inhibit Janus kinase as well as signal transduction and activators of transcription pathways. In this study, we investigated whether SOCS-1-silenced dendritic cells (DCs) prolonged allograft survival in rat intestinal transplantation. Donor bone marrow-derived DCs were genetically transfected with SOCS-1 siRNA using liposomes. The level of SOCS-1 expression was quantitated by Western blots. DC function was assessed by MTT in mixed leukocyte reactions. We injected donor-derived SOCS-1 silenced DCs 7 days before heterotopic intestinal transplantation between SD donors and Wistar recipients. We compared untransfected DCs and silenced DCs to suppress allogeneic mixed leukocyte reactions. Recipients pretreated with SOCS-1-silenced DCs showed moderate survival prolongation with a mean allograft survival of 18.3 +/- 5.3 days (P < .05), compared with 6.4 +/- 2.0 days in the control group and 7.2 +/- 2.1 days in a control siRNA transfection DC group. The difference between untreated DCs group and the control group was not significant. In summary, SOCS-1 silenced DCs induced allogeneic T-cell hyporesponsiveness in vitro, promoting allograft survival in rat intestinal transplantation.
Collapse
|