1
|
Li J, Yao S, Zimny S, Koob D, Jin H, Wimmer R, Denk G, Tuo B, Hohenester S. The acidic microenvironment in the perisinusoidal space critically determines bile salt-induced activation of hepatic stellate cells. Commun Biol 2024; 7:1591. [PMID: 39609606 PMCID: PMC11605060 DOI: 10.1038/s42003-024-07192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024] Open
Abstract
Cholestatic liver diseases, accompanied by the hepatic accumulation of bile salts, frequently lead to liver fibrosis, while underlying profibrogenic mechanisms remain incompletely understood. Here, we evaluated the role of extracellular pH (pHe) on bile salt entry and hepatic stellate cell (HSC) activation and proliferation. As modulators of intracellular pH (pHi), various proton pump inhibitors (PPI) were tested for their ability to prevent bile salt entry and HSC activation. Lastly, the PPI pantoprazole was employed in the 3,5-Diethoxycarbonyl-1,4-Dihydrocollidine (DDC)-diet model of cholestatic liver fibrosis. We found in vitro, that slightly acidic pHe (7.2-7.3) enhanced bile salt accumulation in HSC and was a prerequisite to bile salt-induced HSC activation. Pantoprazole in the DDC model exhibited antifibrotic effects. We conclude that bile salt-induced activation of HSC may depend on the slightly acidic microenvironment present in the perisinusoidal space and modulation of pHi in HSC may offer a novel pharmacological target in cholestatic disease.
Collapse
Affiliation(s)
- Jingguo Li
- Department of Medicine II, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shun Yao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Sebastian Zimny
- Department of Medicine II, LMU University Hospital, LMU Munich, Munich, Germany
| | - Dennis Koob
- Department of Medicine II, LMU University Hospital, LMU Munich, Munich, Germany
| | - Hai Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ralf Wimmer
- Department of Medicine II, LMU University Hospital, LMU Munich, Munich, Germany
| | - Gerald Denk
- Department of Medicine II, LMU University Hospital, LMU Munich, Munich, Germany
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Simon Hohenester
- Department of Medicine II, LMU University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
2
|
Yamashita M, Honda A, Shimoyama S, Umemura M, Ohta K, Chida T, Noritake H, Kurono N, Ichimura-Shimizu M, Tsuneyama K, Miyazaki T, Tanaka A, Leung PS, Gershwin ME, Suda T, Kawata K. Breach of tolerance versus burden of bile acids: Resolving the conundrum in the immunopathogenesis and natural history of primary biliary cholangitis. J Autoimmun 2023; 136:103027. [PMID: 36996700 DOI: 10.1016/j.jaut.2023.103027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/30/2023]
Abstract
Primary biliary cholangitis (PBC) is a classic autoimmune disease due to the loss of tolerance to self-antigens. Bile acids (BA) reportedly play a major role in biliary inflammation and/or in the modulation of dysregulated immune responses in PBC. Several murine models have indicated that molecular mimicry plays a role in autoimmune cholangitis; however, they have all been limited by the relative failure to develop hepatic fibrosis. We hypothesized that species-specific differences in the BA composition between mice and humans were the primary reason for this limited pathology. Here, we aimed to study the impact of human-like hydrophobic BA composition on the development of autoimmune cholangitis and hepatic fibrosis. We took advantage of a unique construct, Cyp2c70/Cyp2a12 double knockout (DKO) mice, which have human-like BA composition, and immunized them with a well-defined mimic of the major mitochondrial autoantigen of PBC, namely 2-octynoic acid (2OA). 2OA-treated DKO mice were significantly exacerbated portal inflammation and bile duct damage with increased Th1 cytokines/chemokines at 8 weeks post-initial immunization. Most importantly, there was clear progression of hepatic fibrosis and increased expression of hepatic fibrosis-related genes. Interestingly, these mice demonstrated increased serum BA concentrations and decreased biliary BA concentrations; hepatic BA levels did not increase because of the upregulation of transporters responsible for the basolateral efflux of BA. Furthermore, cholangitis and hepatic fibrosis were more advanced at 24 weeks post-initial immunization. These results indicate that both the loss of tolerance and the effect of hydrophobic BA are essential for the progression of PBC.
Collapse
|
3
|
Yuan Z, Wang J, Zhang H, Chai Y, Xu Y, Miao Y, Yuan Z, Zhang L, Jiang Z, Yu Q. Glycocholic acid aggravates liver fibrosis by promoting the up-regulation of connective tissue growth factor in hepatocytes. Cell Signal 2023; 101:110508. [PMID: 36341984 DOI: 10.1016/j.cellsig.2022.110508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022]
Abstract
AIMS The precise role of bile acid in the progression of liver fibrosis has yet to be elucidated. In this study, common bile duct ligation was used as an in vivo mouse model for the evaluation of bile acids that promote liver connective tissue growth factor expression. MAIN METHODS Primary rat and mice hepatocytes, as well as primary rat hepatic stellate and HepaRG cells were evaluated as in vitro models for promoting the expression of connective tissue growth factor by bile acids. KEY FINDINGS Compared with taurochenodeoxycholic acid, glycochenodeoxycholic acid, and taurocholic acid, glycocholic acid (GCA) most strongly promoted the secretion of connective tissue growth factor in mouse primary hepatocytes, rat primary hepatocytes and HepaRGs. GCA did not directly promote the activation of hepatic stellate cells. The administration of GCA in mice with ligated bile ducts promotes the progression of liver fibrosis, which may promote the yes-associated protein of hepatocytes into the nucleus, resulting in the hepatocytes secreting more connective tissue growth factor for hepatic stellate cell activation. In conclusion, our data showed that GCA can induce the expression of connective tissue growth factor in hepatocytes by promoting the nuclear translocation of yes-associated protein, thereby activating hepatic stellate cells. SIGNIFICANCE Our findings help to elucidate the contribution of GCA to the progression of hepatic fibrosis in cholestatic disease and aid the clinical monitoring of cholestatic liver fibrosis development.
Collapse
Affiliation(s)
- Zihang Yuan
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Jie Wang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Haoran Zhang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Chai
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Yunxia Xu
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Yingying Miao
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Ziqiao Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Luyong Zhang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhenzhou Jiang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Qinwei Yu
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
4
|
Wang C, Ma C, Fu K, Liu Y, Gong L, Peng C, Li Y. Hepatoprotective effect of phillygenin on carbon tetrachloride-induced liver fibrosis and its effects on short chain fatty acid and bile acid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115478. [PMID: 35716920 DOI: 10.1016/j.jep.2022.115478] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Forsythiae fructus, the dried fruit of Oleaceae plant Forsythia suspensa (Thunb.) Vahl, is a traditional Chinese medicine widely used in clinical practice and has a variety of pharmacological activities, such as anti-inflammation, antioxidation, and hepatoprotection. AIM OF THE STUDY Phillygenin (PHI), an important fingerprint lignan component of Forsythiae fructus, has prominent hepatoprotective, anti-inflammatory and antioxidant effects. Previously, it was shown that PHI could exert anti-fibrotic effects by modulating inflammation and gut microbiota. Therefore, given the important roles of SCFAs and BAs in the development of liver fibrosis, as well as their close links with gut microbiota, we aimed to determine the protective effects of PHI on carbon tetrachloride (CCl4)-induced liver fibrosis and its effects on the metabolism of SCFAs and BAs based on metabolomics. MATERIALS AND METHODS In C57BL/6J mice, liver fibrosis model was established by intraperitoneal injection of olive oil containing 10% CCl4 for 4 weeks. Firstly, the mouse liver tissues were subjected to histological analysis and biochemical index assay to evaluate the protective effect of PHI on CCl4-induced liver fibrosis. Subsequently, the effects of PHI on the metabolism of SCFAs and BAs in CCl4-induced liver fibrosis mice were determined using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) for metabolomics analysis. Finally, the levels of the closely related proteins and genes were detected by immunohistochemistry and real-time quantitative polymerase chain reaction (RT-qPCR) to explore the underlying mechanisms of the protective effect of PHI on CCl4-induced liver fibrosis. RESULTS The histological analysis and the determination of relevant biochemical indexes of liver tissues showed that PHI could attenuate CCl4-induced liver fibrosis. The metabolomic analysis on SCFAs showed that PHI could promote SCFA production in the gut of mice with CCl4-induced liver fibrosis, especially acetic acid, propionic acid and butyric acid. It has been reported that the increased production of SCFAs was possibly beneficial to health. The metabolomic analysis on BAs found that PHI could restore the disturbance of BA metabolism in mice with CCl4-induced liver fibrosis. The immunohistochemistry and RT-qPCR results confirmed that PHI could ameliorate intestinal epithelial barrier disruption, and reverse the expression of BA metabolism-related genes in mice with CCl4-induced liver fibrosis. CONCLUSIONS Promoting the production of SCFAs in the gut and restoring the disturbance of BA metabolism may be the potential mechanisms by which PHI alleviated CCl4-induced liver fibrosis.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yanfang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
5
|
Hydrophobic Bile Salts Induce Pro-Fibrogenic Proliferation of Hepatic Stellate Cells through PI3K p110 Alpha Signaling. Cells 2022; 11:cells11152344. [PMID: 35954188 PMCID: PMC9367387 DOI: 10.3390/cells11152344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/08/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Bile salts accumulating during cholestatic liver disease are believed to promote liver fibrosis. We have recently shown that chenodeoxycholate (CDC) induces expansion of hepatic stellate cells (HSCs) in vivo, thereby promoting liver fibrosis. Mechanisms underlying bile salt-induced fibrogenesis remain elusive. We aimed to characterize the effects of different bile salts on HSC biology and investigated underlying signaling pathways. Murine HSCs (mHSCs) were stimulated with hydrophilic and hydrophobic bile salts. Proliferation, cell mass, collagen deposition, and activation of signaling pathways were determined. Activation of the human HSC cell line LX 2 was assessed by quantification of α-smooth muscle actin (αSMA) expression. Phosphatidyl-inositol-3-kinase (PI3K)-dependent signaling was inhibited both pharmacologically and by siRNA. CDC, the most abundant bile salt accumulating in human cholestasis, but no other bile salt tested, induced Protein kinase B (PKB) phosphorylation and promoted HSC proliferation and subsequent collagen deposition. Pharmacological inhibition of the upstream target PI3K-inhibited activation of PKB and pro-fibrogenic proliferation of HSCs. The PI3K p110α-specific inhibitor Alpelisib and siRNA-mediated knockdown of p110α ameliorated pro-fibrogenic activation of mHSC and LX 2 cells, respectively. In summary, pro-fibrogenic signaling in mHSCs is selectively induced by CDC. PI3K p110α may be a potential therapeutic target for the inhibition of bile salt-induced fibrogenesis in cholestasis.
Collapse
|
6
|
Leilei L, Wenke Q, Yuyuan L, Sihang L, Xue S, Weiqiang C, Lianbao Y, Ying W, Yan L, Ming L. Oleanolic acid-loaded nanoparticles attenuate activation of hepatic stellate cells via suppressing TGF-β1 and oxidative stress in PM2.5-exposed hepatocytes. Toxicol Appl Pharmacol 2022; 437:115891. [PMID: 35077758 DOI: 10.1016/j.taap.2022.115891] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/08/2022] [Accepted: 01/18/2022] [Indexed: 12/24/2022]
Abstract
Liver fibrosis has the potential to progress into liver cirrhosis, liver failure, and even death. Hepatic stellate cells (HSCs) activation play a central role in liver fibrosis, and persistently damaged hepatocytes secrete soluble factors that activate transdifferentiation of HSCs into myofibroblasts. Our previous studies indicated that fine particulate matter (PM2.5) can activate HSCs by stimulating hepatocytes to secrete TGF-β1. However, whether PM2.5 activates HSCs by regulating oxidative stress in hepatocytes remains uncertain. Oleanolic acid (OA) has been widely used in the clinic for hepatoprotection in Chinese medicine. In the present study, OA-loaded nanoparticles (OA-NP) with high solubility were used to attenuate the activation of HSCs induced by PM2.5-treated hepatocytes, and further studies were performed to explore the mechanism in which OA-NP plays a vital part. Our results showed that consistently PM2.5 treatment induced oxidative stress in hepatocytes. Moreover, the activation of HSCs induced by PM2.5-treated hepatocytes was reversed by antioxidant N-acetylcysteine treatment. Hence, PM2.5 may participate in the activation of HSCs by regulating oxidative stress in hepatocytes. Using a co-cultivation system, our results proved pretreatment with OA-NP significantly attenuates the activation of HSCs induced by PM2.5-exposed hepatocytes. In addition, the TGF-β1 expression and oxidative stress in hepatocytes with PM2.5 treated were reduced by the incubation with OA-NP. These observations demonstrated that OA-NP protects against the activation of HSCs by decreasing the TGF-β1 level and oxidative stress in PM2.5-exposed hepatocytes.
Collapse
Affiliation(s)
- Lin Leilei
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangdong, China
| | - Qiu Wenke
- School of Pharmacy, Guangdong Pharmaceutical University, Guangdong, China
| | - Luo Yuyuan
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangdong, China; First Affiliated Hospital, Guangzhou Medical University, Guangdong, China
| | - Lin Sihang
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangdong, China
| | - Sun Xue
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Chen Weiqiang
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangdong, China
| | - Ye Lianbao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangdong, China
| | - Wang Ying
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangdong, China
| | - Li Yan
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China.
| | - Li Ming
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangdong, China.
| |
Collapse
|
7
|
PM2.5-exposed hepatocytes induce hepatic stellate cells activation by releasing TGF-β1. Biochem Biophys Res Commun 2021; 569:125-131. [PMID: 34243068 DOI: 10.1016/j.bbrc.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
The interaction between various types of hepatic cells is related to liver fibrosis. Recent studies demonstrated that fine particulate matter (PM2.5) exposure is an important risk factor for the occurrence of liver fibrosis, but its molecular mechanism is still obscure. In this study, we aimed to investigate whether transforming growth factor- β1 (TGF- β1) secreted from PM2.5-treated hepatocytes (L-O2) are shuttled to hepatic stellate cells (HSCs) and to establish their effects on HSCs. We have observed that the conditioned medium from L-O2 cells stimulated with PM2.5 induced the activation of LX-2 cells, and at the same time, the same results were obtained when we co-cultured LX-2 in PM2.5-exposed L-O2 cells. In addition, analysis of L-O2 cells stimulated with PM2.5 revealed significant increases in TGF-β1 expression. Moreover, we found that the TGF-β1 receptor inhibitor, SB-525334, decreases the proliferation and migration of LX-2 cells in the co-culture system. In addition, the expression of α-smooth muscle actin and type I collagen in LX-2 cells induced by PM2.5-treated L-O2 cells were also blocked by pretreated with SB-525334. These observations imply that PM2.5 induces TGF- β1expression in hepatocytes, which leads to HSCs activation.
Collapse
|
8
|
Hohenester S, Kanitz V, Kremer AE, Paulusma CC, Wimmer R, Kuehn H, Denk G, Horst D, Oude Elferink R, Beuers U. Glycochenodeoxycholate Promotes Liver Fibrosis in Mice with Hepatocellular Cholestasis. Cells 2020; 9:cells9020281. [PMID: 31979271 PMCID: PMC7072501 DOI: 10.3390/cells9020281] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/15/2020] [Accepted: 01/19/2020] [Indexed: 02/06/2023] Open
Abstract
Hydrophobic bile salts are considered to promote liver fibrosis in cholestasis. However, evidence for this widely accepted hypothesis remains scarce. In established animal models of cholestasis, e.g., by Mdr2 knockout, cholestasis and fibrosis are both secondary to biliary damage. Therefore, to test the specific contribution of accumulating bile salts to liver fibrosis in cholestatic disease, we applied the unique model of inducible hepatocellular cholestasis in cholate-fed Atp8b1G308V/G308V mice. Glycochenodeoxycholate (GCDCA) was supplemented to humanize the murine bile salt pool, as confirmed by HPLC. Biomarkers of cholestasis and liver fibrosis were quantified. Hepatic stellate cells (HSC) isolated from wild-type mice were stimulated with bile salts. Proliferation, cell accumulation, and collagen deposition of HSC were determined. In cholestatic Atp8b1G308V/G308V mice, increased hepatic expression of αSMA and collagen1a mRNA and excess hepatic collagen deposition indicated development of liver fibrosis only upon GCDCA supplementation. In vitro, numbers of myofibroblasts and deposition of collagen were increased after incubation with hydrophobic but not hydrophilic bile salts, and associated with EGFR and MEK1/2 activation. We concluded that chronic hepatocellular cholestasis alone, independently of biliary damage, induces liver fibrosis in mice in presence of the human bile salt GCDCA. Bile salts may have direct pro-fibrotic effects on HSC, putatively involving EGFR and MEK1/2 signaling.
Collapse
Affiliation(s)
- Simon Hohenester
- Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany; (R.W.); (G.D.)
- Correspondence:
| | - Veronika Kanitz
- Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany;
| | - Andreas E. Kremer
- Department of Medicine I, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.E.K.); (H.K.)
| | - Coen C. Paulusma
- Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, 1018 TV Amsterdam, The Netherlands; (C.C.P.); (R.O.E.); (U.B.)
| | - Ralf Wimmer
- Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany; (R.W.); (G.D.)
| | - Helen Kuehn
- Department of Medicine I, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.E.K.); (H.K.)
| | - Gerald Denk
- Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany; (R.W.); (G.D.)
| | - David Horst
- Department of Pathology, Charité—Universitätsmedizin, 10117 Berlin, Germany;
| | - Ronald Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, 1018 TV Amsterdam, The Netherlands; (C.C.P.); (R.O.E.); (U.B.)
| | - Ulrich Beuers
- Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, 1018 TV Amsterdam, The Netherlands; (C.C.P.); (R.O.E.); (U.B.)
| |
Collapse
|
9
|
Cai FF, Wu R, Song YN, Xiong AZ, Chen XL, Yang MD, Yang L, Hu Y, Sun MY, Su SB. Yinchenhao Decoction Alleviates Liver Fibrosis by Regulating Bile Acid Metabolism and TGF-β/Smad/ERK Signalling Pathway. Sci Rep 2018; 8:15367. [PMID: 30337590 PMCID: PMC6194075 DOI: 10.1038/s41598-018-33669-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Yinchenhao decoction (YCHD), comprising Yinchenhao (Artemisiae Scopariae Herba), Zhizi (Gardeniae Fructus) and Dahuang (Radix Rhei et Rhizoma), is widely used for treating various diseases. We aimed to investigate the bile acid metabolic mechanism of YCHD in dimethylnitrosamine (DMN)-induced liver fibrosis model. Rats received DMN (10 mg/kg, intraperitoneally) for four successive weeks for liver fibrosis induction and were treated with YCHD for the last 2 weeks. Histopathological analysis showed that YCHD prevented DMN-induced histopathological changes in liver tissues. Serum liver function in YCHD group improved. Ultraperformance liquid chromatography-mass spectrometry analysis showed that YCHD significantly restored both free and conjugated bile acid levels increased by DMN, to normal levels. RT-qPCR results showed that YCHD treatment upregulated the expression of genes related to bile acid synthesis, reabsorption, and excretion. Western blotting analysis showed that YCHD downregulated α-SMA, TGF-β1, p-Smad3, and p-ERK1/2 expression in chenodeoxycholic acid (CDCA)-activated hepatic stellate cells (HSCs). The viability of CDCA-activated HSCs significantly increased after treatment with YCHD and PD98059 (an ERK inhibitor) compared to YCHD treatment alone. Our findings suggest that YCHD alleviated DMN-induced liver fibrosis by regulating enzymes responsible for bile acid metabolism. Additionally, it inhibits CDCA-induced HSC proliferation and activation via TGF-β1/Smad/ERK signalling pathway.
Collapse
Affiliation(s)
- Fei-Fei Cai
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Wu
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya-Nan Song
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ai-Zhen Xiong
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Le Chen
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng-Die Yang
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanjia Hu
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau, Macao, SAR, China
| | - Ming-Yu Sun
- Liver disease institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Shi-Bing Su
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
10
|
Murphy-Ullrich JE, Suto MJ. Thrombospondin-1 regulation of latent TGF-β activation: A therapeutic target for fibrotic disease. Matrix Biol 2018; 68-69:28-43. [PMID: 29288716 PMCID: PMC6015530 DOI: 10.1016/j.matbio.2017.12.009] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 12/12/2022]
Abstract
Transforming growth factor-β (TGF-β) is a central player in fibrotic disease. Clinical trials with global inhibitors of TGF-β have been disappointing, suggesting that a more targeted approach is warranted. Conversion of the latent precursor to the biologically active form of TGF-β represents a novel approach to selectively modulating TGF-β in disease, as mechanisms employed to activate latent TGF-β are typically cell, tissue, and/or disease specific. In this review, we will discuss the role of the matricellular protein, thrombospondin 1 (TSP-1), in regulation of latent TGF-β activation and the use of an antagonist of TSP-1 mediated TGF-β activation in a number of diverse fibrotic diseases. In particular, we will discuss the TSP-1/TGF-β pathway in fibrotic complications of diabetes, liver fibrosis, and in multiple myeloma. We will also discuss emerging evidence for a role for TSP-1 in arterial remodeling, biomechanical modulation of TGF-β activity, and in immune dysfunction. As TSP-1 expression is upregulated by factors induced in fibrotic disease, targeting the TSP-1/TGF-β pathway potentially represents a more selective approach to controlling TGF-β activity in disease.
Collapse
Affiliation(s)
- Joanne E Murphy-Ullrich
- Departments of Pathology, Cell Developmental and Integrative Biology, and Ophthalmology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, United States.
| | - Mark J Suto
- Southern Research, 2000 Ninth Avenue South, Birmingham, AL 35205, United States
| |
Collapse
|
11
|
Li Y, Turpin CP, Wang S. Role of thrombospondin 1 in liver diseases. Hepatol Res 2017; 47:186-193. [PMID: 27492250 PMCID: PMC5292098 DOI: 10.1111/hepr.12787] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/13/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023]
Abstract
Thrombospondin 1 (TSP1) is a matricellular glycoprotein that can be secreted by many cell types. Through binding to extracellular proteins and/or cell surface receptors, TSP1 modulates a variety of cellular functions. Since its discovery in 1971, TSP1 has been found to play important roles in multiple biological processes including angiogenesis, apoptosis, latent transforming growth factor-β activation, and immune regulation. Thrombospondin 1 is also involved in regulating many organ functions. However, the role of TSP1 in liver diseases has not been extensively addressed. In this review, we summarize the findings about the possible role that TSP1 plays in chronic liver diseases focusing on non-alcoholic fatty liver diseases, liver fibrosis, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yanzhang Li
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
- Medical College of Henan University, Kaifeng, Henan 475004, China
| | - Courtney P Turpin
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Shuxia Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
12
|
Abstract
A characteristic feature of liver cirrhosis is the accumulation of large amounts of connective tissue with the prevailing content of type I collagen. Elastin is a minor connective tissue component in normal liver but it is actively synthesized by hepatic stellate cells and portal fibroblasts in diseased liver. The accumulation of elastic fibers in later stages of liver fibrosis may contribute to the decreasing reversibility of the disease with advancing time. Elastin is formed by polymerization of tropoelastin monomers. It is an amorphous protein highly resistant to the action of proteases that forms the core of elastic fibers. Microfibrils surrounding the core are composed of fibrillins that bind a number of proteins involved in fiber formation. They include microfibril-associated glycoproteins (MAGPs), microfibrillar-associated proteins (MFAPs) and fibulins. Lysyl oxidase (LOX) and lysyl oxidase-like proteins (LOXLs) are responsible for tropoelastin cross-linking and polymerization. TGF-β complexes attached to microfibrils release this cytokine and influence the behavior of the cells in the neighborhood. The role of TGF-β as the main profibrotic cytokine in the liver is well-known and the release of the cytokines of TGF-β superfamily from their storage in elastic fibers may affect the course of fibrosis. Elastic fibers are often studied in the tissues where they provide elasticity and resilience but their role is no longer viewed as purely mechanical. Tropoelastin, elastin polymer and elastin peptides resulting from partial elastin degradation influence fibroblastic and inflammatory cells as well as angiogenesis. A similar role may be performed by elastin in the liver. This article reviews the results of the research of liver elastic fibers on the background of the present knowledge of elastin biochemistry and physiology. The regulation of liver elastin synthesis and degradation may be important for the outcome of liver fibrosis.
Collapse
Affiliation(s)
- Jiří Kanta
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University in Prague Hradec Kralove, Czechia
| |
Collapse
|
13
|
Song YN, Zhang GB, Lu YY, Chen QL, Yang L, Wang ZT, Liu P, Su SB. Huangqi decoction alleviates dimethylnitrosamine-induced liver fibrosis: An analysis of bile acids metabolic mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2016; 189:148-156. [PMID: 27196295 DOI: 10.1016/j.jep.2016.05.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/30/2016] [Accepted: 05/16/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huangqi Decoction (HQD), a classical traditional Chinese medicine (TCM) formula, is used to treating liver injury in China. The aim of the study is to investigate mechanisms of HQD against dimethylnitrosamine (DMN)-induced liver fibrosis underlying metabolic profiles of bile acids. MATERIALS AND METHODS DMN-induced liver fibrosis rats were administrated HQD and its compounds, astragalosides (AS), glycyrrhizic acid (GA) and their combination. The anti-fibrosis effects were evaluated and targeted metabolomics by UPLC-MS was used to examine whether HQD had an influence on bile acid metabolism. The levels of mRNAs associated with bile acid metabolism were expressed by RT-PCR. Chenodeoxycholic acid (CDCA)-induced hepatic stellate cells (HSCs) proliferation and activation were examined using MTS assay and Western blot. RESULTS Histopathological changes and serum liver function in HQD group had significant improvements (P<0.01). Concentrations of free bile acids and taurine conjugates were significantly increased in DMN group (P<0.05). HQD and its compounds restored the increased bile acids to normal levels, and HQD was more effected on parts of bile acids. Furthermore, the levels of mRNAs related bile acid synthesis and reabsorption such as CYP7A1, CYP8B1, CYP27A1, OATP2, OATP3, OATP4 and NTCP were significantly down-regulated in DMN group (P<0.05), mRNAs related excretion such as MRP3 and BESP were up-regulated (P<0.01), and CYP7A1, CYP8B1, OATP3, OATP4, NTCP and MRP3 restored to normal levels by HQD treatment. Moreover, CDCA-induced HSCs proliferation and activation were weaken by HQD (P<0.05) with down-regulated α-SMA, TGF-β1, p-Smad2 and p-Smad3 expressions. CONCLUSIONS HQD alleviated DMN-induced liver fibrosis with a better effect than its compounds, which may be involved in the regulation of bile acid metabolism enzyme. Moreover, HQD may inhibit CDCA-induced HSCs proliferation and activation.
Collapse
MESH Headings
- Animals
- Astragalus propinquus
- Bile Acids and Salts/blood
- Biomarkers/blood
- Cell Proliferation/drug effects
- Chemical and Drug Induced Liver Injury/enzymology
- Chemical and Drug Induced Liver Injury/genetics
- Chemical and Drug Induced Liver Injury/pathology
- Chemical and Drug Induced Liver Injury/prevention & control
- Chromatography, High Pressure Liquid
- Dimethylnitrosamine
- Drugs, Chinese Herbal/pharmacology
- Gene Expression Regulation, Enzymologic
- Hepatic Stellate Cells/drug effects
- Hepatic Stellate Cells/enzymology
- Hepatic Stellate Cells/pathology
- Hydroxyproline/metabolism
- Liver/drug effects
- Liver/enzymology
- Liver/pathology
- Liver Cirrhosis, Experimental/chemically induced
- Liver Cirrhosis, Experimental/enzymology
- Liver Cirrhosis, Experimental/genetics
- Liver Cirrhosis, Experimental/pathology
- Liver Cirrhosis, Experimental/prevention & control
- Male
- Mass Spectrometry
- Metabolomics/methods
- Protective Agents/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Wistar
Collapse
Affiliation(s)
- Ya-Nan Song
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Gui-Biao Zhang
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yi-Yu Lu
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Qi-Long Chen
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Li Yang
- Research Center for Traditional Chinese Medicine and System biology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China.
| | - Zheng-Tao Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ping Liu
- E-institutes of Traditional Chinese Internal Medicine, Shanghai Municipal Education Commission, Shanghai 201203, China.
| | - Shi-Bing Su
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
14
|
Venkatraman L, Tucker-Kellogg L. The CD47-binding peptide of thrombospondin-1 induces defenestration of liver sinusoidal endothelial cells. Liver Int 2013; 33:1386-97. [PMID: 23799952 PMCID: PMC4285809 DOI: 10.1111/liv.12231] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/19/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS A fenestrated phenotype is characteristic of liver sinusoidal endothelial cells (LSECs), but liver sinusoids become defenestrated during fibrosis and other liver diseases. Thrombospondin-1 (TSP1) is a matrix glycoprotein with pro-fibrotic effects, and the CD47-binding fragment of TSP1 also has anti-angiogenic effects in endothelial cells. We hypothesized that the CD47-binding fragment of TSP1 could induce defenestration in LSECs through the Rho-Rho kinase (ROCK)-myosin pathway. METHODS Freshly isolated rat LSECs were treated with TSP1 or CD47-binding peptides of TSP1. LSEC fenestration was assessed with scanning electron microscopy, and myosin phosphorylation was assessed with immuno-fluorescence. RESULTS Treating LSECs with TSP1 caused a dose-dependent loss of fenestrae, and this effect could not be blocked by SB-431542, the TGF-β1 receptor inhibitor. A CD47-binding fragment of TSP1, p4N1, was able to induce defenestration, and a CD47-blocking antibody, B6H12, was able to suppress p4N1-induced defenestration. The p4N1 fragment also caused contraction of fenestra size, correlated with an increase in myosin activation. Pretreatment with Y-237642 (a ROCK inhibitor) prevented p4N1-induced myosin activation and fenestrae decrease. Simvastatin has also been shown to antagonize Rho-ROCK signalling, and we found that simvastatin pretreatment protected LSECs from p4N1-induced myosin activation and defenestration. CONCLUSIONS We conclude that CD47 signals through the Rho-ROCK-myosin pathway to induce defenestration in LSECs. In addition, our results show that simvastatin and Y-237642 have a beneficial impact on fenestration in vitro, providing an additional explanation for the efficacy of these compounds for regression of liver fibrosis.
Collapse
Affiliation(s)
| | - Lisa Tucker-Kellogg
- Mechanobiology Institute, National University of SingaporeSingapore,Department of Dermatology, School of Medicine, State University of New York at Stony BrookNew York, NY, USA,Singapore-MIT Alliance, National University of SingaporeSingapore
| |
Collapse
|
15
|
Sweetwyne MT, Murphy-Ullrich JE. Thrombospondin1 in tissue repair and fibrosis: TGF-β-dependent and independent mechanisms. Matrix Biol 2012; 31:178-86. [PMID: 22266026 DOI: 10.1016/j.matbio.2012.01.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 12/20/2011] [Accepted: 12/22/2011] [Indexed: 12/16/2022]
Abstract
Thrombospondin 1 (TSP1) plays major roles in both physiologic and pathologic tissue repair. TSP1 through its type 1 repeats is a known regulator of latent TGF-β activation and plays a role in wound healing and fibrosis. Binding of the TSP N-terminal domain to cell surface calreticulin in complex with LDL-receptor related protein 1 stimulates intermediate cell adhesion, cell migration, anoikis resistance, collagen expression and matrix deposition in an in vivo model of the foreign body response. There is also emerging evidence that TSP EGF-like repeats alter endothelial cell-cell interactions and stimulate epithelial migration through transactivation of EGF receptors. The mechanisms underlying these functions of TSP1 and the implications for physiologic and pathologic wound repair and fibrosis will be discussed.
Collapse
Affiliation(s)
- Mariya T Sweetwyne
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, United States
| | | |
Collapse
|
16
|
Abstract
Bile acids are physiological detergents that generate bile flow and facilitate intestinal absorption and transport of lipids, nutrients, and vitamins. Bile acids also are signaling molecules and inflammatory agents that rapidly activate nuclear receptors and cell signaling pathways that regulate lipid, glucose, and energy metabolism. The enterohepatic circulation of bile acids exerts important physiological functions not only in feedback inhibition of bile acid synthesis but also in control of whole-body lipid homeostasis. In the liver, bile acids activate a nuclear receptor, farnesoid X receptor (FXR), that induces an atypical nuclear receptor small heterodimer partner, which subsequently inhibits nuclear receptors, liver-related homolog-1, and hepatocyte nuclear factor 4alpha and results in inhibiting transcription of the critical regulatory gene in bile acid synthesis, cholesterol 7alpha-hydroxylase (CYP7A1). In the intestine, FXR induces an intestinal hormone, fibroblast growth factor 15 (FGF15; or FGF19 in human), which activates hepatic FGF receptor 4 (FGFR4) signaling to inhibit bile acid synthesis. However, the mechanism by which FXR/FGF19/FGFR4 signaling inhibits CYP7A1 remains unknown. Bile acids are able to induce FGF19 in human hepatocytes, and the FGF19 autocrine pathway may exist in the human livers. Bile acids and bile acid receptors are therapeutic targets for development of drugs for treatment of cholestatic liver diseases, fatty liver diseases, diabetes, obesity, and metabolic syndrome.
Collapse
Affiliation(s)
- John Y L Chiang
- Department of Integrative Medical Sciences, Northeastern Ohio University's Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA.
| |
Collapse
|
17
|
Wu MS, Liao CW, Du WY, Kao TC, Su KE, Lin YH, Chang CC, Fan CK. Enhanced expression of transforming growth factor-beta 1 in inflammatory cells, alpha-smooth muscle actin in stellate cells, and collagen accumulation in experimental granulomatous hepatitis caused by Toxocara canis in mice. Acta Trop 2008; 105:260-8. [PMID: 18178169 DOI: 10.1016/j.actatropica.2007.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 10/12/2007] [Accepted: 11/19/2007] [Indexed: 11/19/2022]
Abstract
Although toxocaral granulomatous hepatitis (TGH) characterized with a dominant-Th2 type immune response is a self-limiting disease, little is known concerning the role of fibrosis-related cytokine transforming growth factor-beta 1 (TGF-beta 1) in pathogenesis of TGH. A detailed histological and quantitatively immunohistochemical analysis of TGF-beta 1, alpha-smooth muscle actins (alpha-SMA), and collagen was performed on the liver tissues from mice infected with Toxocara canis as assessed between day 1 and 42 weeks post-infection (DPI or WPI). TGF-beta1 was detected mainly in infiltrating leukocytes in lesions with strong expressions from 4 to 16 WPI. Larvae per se also exhibited strong TGF-beta 1-like molecule expressions in the trial. Alpha-SMA was detected predominantly in hepatic stellate cells (HSC) which surrounded the lesions with moderate expressions largely throughout the period of the entire experiment. Collagen was observed to accumulate in inflammatory lesions and biliary basement with moderate to strong expressions from 1 WPI onwards in the trial. Since many evidences have indicated that leukocytes have the potential to influence HSC by producing TGF-beta 1 which can affect HSC to increase collagen synthesis in various liver diseases, we may propose that persistently elevated TGF-beta 1 expression in infiltrating leukocytes and active HSC with marked alpha-SMA expressions may contribute to healing of injured sites through up-stimulation of collagen deposition; in contrast, abnormally persistent collagen accumulation may cause irreversible fibrotic injury in the TGH.
Collapse
Affiliation(s)
- Ming-Shun Wu
- Department of Internal Medicine, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The hepatic stellate cell has surprised and engaged physiologists, pathologists, and hepatologists for over 130 years, yet clear evidence of its role in hepatic injury and fibrosis only emerged following the refinement of methods for its isolation and characterization. The paradigm in liver injury of activation of quiescent vitamin A-rich stellate cells into proliferative, contractile, and fibrogenic myofibroblasts has launched an era of astonishing progress in understanding the mechanistic basis of hepatic fibrosis progression and regression. But this simple paradigm has now yielded to a remarkably broad appreciation of the cell's functions not only in liver injury, but also in hepatic development, regeneration, xenobiotic responses, intermediary metabolism, and immunoregulation. Among the most exciting prospects is that stellate cells are essential for hepatic progenitor cell amplification and differentiation. Equally intriguing is the remarkable plasticity of stellate cells, not only in their variable intermediate filament phenotype, but also in their functions. Stellate cells can be viewed as the nexus in a complex sinusoidal milieu that requires tightly regulated autocrine and paracrine cross-talk, rapid responses to evolving extracellular matrix content, and exquisite responsiveness to the metabolic needs imposed by liver growth and repair. Moreover, roles vital to systemic homeostasis include their storage and mobilization of retinoids, their emerging capacity for antigen presentation and induction of tolerance, as well as their emerging relationship to bone marrow-derived cells. As interest in this cell type intensifies, more surprises and mysteries are sure to unfold that will ultimately benefit our understanding of liver physiology and the diagnosis and treatment of liver disease.
Collapse
Affiliation(s)
- Scott L Friedman
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York 10029-6574, USA.
| |
Collapse
|
19
|
Li T, Chiang JYL. A novel role of transforming growth factor beta1 in transcriptional repression of human cholesterol 7alpha-hydroxylase gene. Gastroenterology 2007; 133:1660-9. [PMID: 17920062 DOI: 10.1053/j.gastro.2007.08.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 08/09/2007] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Inhibition of cholesterol 7alpha-hydroxylase (CYP7A1) by bile acids and inflammatory cytokines provides an important mechanism to protect hepatocytes from bile acid toxicity during cholestasis. Transforming growth factor beta1 (TGFbeta1) released by hepatic stellate cells during chronic liver injury plays a critical role in liver inflammation and fibrogenesis. The objective of this study is to investigate the role of TGFbeta1 in hepatic bile acid synthesis. METHODS mRNA expressions in primary human hepatocytes and HepG2 cells were measured by quantitative real-time polymerase chain reaction. Reporter assay, glutathione-S-transferase pull-down assay, adenovirus-mediated gene transduction, and chromatin immunoprecipitation assay were used to study the mechanism of TGFbeta1 regulation of CYP7A1 gene transcription. RESULTS TGFbeta1 inhibited the mRNA expression of CYP7A1 and bile acid synthesis in HepG2 cells and primary human hepatocytes. Mothers against decapentaplegic homolog (Smad3) inhibited both CYP7A1 promoter activity and mRNA expression by inhibiting DNA-binding activity of hepatocyte nuclear factor 4alpha (HNF4alpha). The histone deacetylase (HDAC) inhibitor Tricostatin A partially blocked the TGFbeta1 inhibition of CYP7A1 mRNA expression, whereas TGFbeta1 decreased histone 3 acetylation in the CYP7A1 chromatin. TGFbeta1 treatment and adenovirus Smad3 reduced HNF4alpha binding but increased the recruitment of Smad3, HDAC1, and a repressor mSin3A to the CYP7A1 chromatin. CONCLUSIONS This study provides the first evidence that TGFbeta1 represses CYP7A1 gene transcription in human hepatocytes by a mechanism involving Smad3-dependent inhibition of HNF4alpha and HDAC remodeling of CYP7A1 chromatin. The TGFbeta1/Smad3 signaling may reduce bile acid synthesis in the liver and prevent hepatocyte injury in cholestatic liver disease.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Microbiology, Immunology and Biochemistry, Northeastern Ohio University, College of Medicine, Rootstown, Ohio, USA
| | | |
Collapse
|