1
|
Goossens JF, Thuru X, Bailly C. Properties and reactivity of the folic acid and folate photoproduct 6-formylpterin. Free Radic Biol Med 2021; 171:1-10. [PMID: 33965562 DOI: 10.1016/j.freeradbiomed.2021.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/20/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022]
Abstract
Folates (vitamin B9) are essential components of our diet and our gut microbiota. They are omnipresent in our cells and blood. Folates are necessary for DNA synthesis, methylation, and other vital bioprocesses. Folic acid (FA), as the synthetic form of folates, is largely found in supplements and fortified foods. FA and folate drugs are also extensively used as therapeutics. Therefore, we are continuously exposed to the pterin derivatives, and their photo-degradation products, such as 6-formylpterin (6-FPT) and pterin-6-carboxylic acid. During ultraviolet radiation, these two photolytic products generate reactive oxygen species (ROS) responsible for the cellular oxidative stress. 6-FPT can exhibit variable pro/anti-oxidative roles depending on the cell type and its environment (acting as a cell protector in normal cells, or as an enhancer of drug-induced cell death in cancer cells). The ROS-modulating capacity of 6-FPT is well-known, whereas its intrinsic reactivity has been much less investigated. Here, we have reviewed the properties of 6-FPT and highlighted its capacity to form covalent adducts with the ROS-scavenging drug edaravone (used to treat stroke and amyotrophic lateral sclerosis) as well as its implication in immune surveillance. 6-FPT and its analogue acetyl-6-FPT function as small molecule antigens, recognized by the major histocompatibility complex-related class I-like molecule, MR1, for presentation to mucosal-associated invariant T (MAIT) cells. As modulators of the MR1/MAIT machinery, 6-FPT derivatives could play a significant immuno-regulatory role in different diseases. This brief review shed light on the multiple properties and cellular activities of 6-FPT, well beyond its primary ROS-generating activity.
Collapse
Affiliation(s)
- Jean-François Goossens
- Univ. Lille, CHU Lille, ULR 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000, Lille, France.
| | - Xavier Thuru
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France.
| | | |
Collapse
|
2
|
Bailly C, Hecquet PE, Kouach M, Thuru X, Goossens JF. Chemical reactivity and uses of 1-phenyl-3-methyl-5-pyrazolone (PMP), also known as edaravone. Bioorg Med Chem 2020; 28:115463. [DOI: 10.1016/j.bmc.2020.115463] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/16/2022]
|
3
|
Sasaki T, Awaji T, Shimada K, Sasaki H. Increase of reactive oxygen species generation in cerebral cortex slices after the transiently enhanced metabolic activity. Neurosci Res 2017; 123:55-64. [PMID: 28499835 DOI: 10.1016/j.neures.2017.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/31/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
Abstract
Under certain conditions such as hypoxia-reoxygenation, the generation of reactive oxygen species (ROS) increases following hypoxia caused by a decreased oxygen supply. As another hypoxic condition, an excess neural activity status including epileptic seizure induces a decrease in tissue oxygen partial pressure (pO2) caused by enhanced oxygen utilization; however, whether ROS generation increases following the hypoxic status induced by transiently enhanced energy metabolism in brain tissue currently remains unknown. We herein investigated ROS-dependent chemiluminescence in cerebral cortex slices during the restoration of transiently enhanced energy metabolism induced by a high-potassium treatment with tissue pO2 changes and redox balance. ROS generation in the tissue was enhanced after high-potassium-induced hypoxia, but not by the reversed order of the treatment: control-potassium then high-potassium treatment, high-potassium treatment alone, and control-potassium treatment alone. The high-potassium treatment induced a transient decrease in tissue pO2 and a shift in the tissue redox balance towards reduction. The transient shift in the tissue redox balance towards reduction with enhanced metabolic activity and its recovery may correlate with ROS generation. This phenomenon may mimic ROS generation following the hypoxic status induced by transiently enhanced energy metabolism.
Collapse
Affiliation(s)
- Toru Sasaki
- Department of Medical Engineering and Technology, Kitasato University School of Allied of Health Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0373, Japan; Research Team for Mechanism of Aging, Redox Research, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan.
| | - Takuji Awaji
- Department of Medical Engineering and Technology, Kitasato University School of Allied of Health Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0373, Japan
| | - Kazuyoshi Shimada
- Department of Medical Engineering and Technology, Kitasato University School of Allied of Health Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0373, Japan
| | - Haruyo Sasaki
- Department of Medical Engineering and Technology, Kitasato University School of Allied of Health Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
4
|
Navarrete O, Van Daele J, Stove C, Lambert W, Van Der Straeten D, Storozhenko S. A folate independent role for cytosolic HPPK/DHPS upon stress in Arabidopsis thaliana. PHYTOCHEMISTRY 2012; 73:23-33. [PMID: 21996493 DOI: 10.1016/j.phytochem.2011.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 09/17/2011] [Accepted: 09/20/2011] [Indexed: 05/24/2023]
Abstract
Cytosolic HPPK/DHPS (cytHPPK/DHPS) in Arabidopsis is a functional enzyme with activity similar to its mitochondrial isoform. Genomic complementation of the cytHPPK/DHPS knockout mutant with the wild type gene led to a complete rescue of the stress sensitive mutant phenotype in seed germination tests under abiotic stress conditions. Moreover, over-expression of the gene resulted in higher germination rate under stress as compared to the wild-type, confirming its role in stress resistance. Analysis of folates in seedlings, inflorescence and dry seeds showed unchanged levels in the wild-type, mutant and over-expressor line, upon stress and normal conditions, suggesting a role for cytHPPK/DHPS distinct from folate biosynthesis and a folate-independent stress resistance mechanism. This apparently folate-independent mechanism of stress resistance points towards a possible role of pterins, since the product of HPPK/DHPS is dihydropteroate.
Collapse
Affiliation(s)
- Oscar Navarrete
- Laboratory of Functional Plant Biology, Department of Physiology, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium.
| | | | | | | | | | | |
Collapse
|
5
|
Mori H, Nishinaka Y, Nonogawa M, Sommani P, Makino K, Yamashita K, Arai T. Substituent Effects of Pterin Derivatives on Singlet Oxygen Scavenging Activity. Biol Pharm Bull 2010; 33:905-8. [DOI: 10.1248/bpb.33.905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hiroko Mori
- Department of Anesthesia, Higashiyama Takeda Hospital
| | - Yoko Nishinaka
- School of Health Science, Faculty of Medicine, Kyoto University
| | | | | | | | - Kouhei Yamashita
- Department of Hematology and Oncology, Kyoto University Hospital
| | | |
Collapse
|
6
|
Miyoshi T, Arai T, Nonogawa M, Makino K, Mori H, Yamashita K, Sasada M. Anticancer photodynamic and non-photodynamic effects of pterin derivatives on a pancreatic cancer cell line. J Pharmacol Sci 2008; 107:221-5. [PMID: 18544897 DOI: 10.1254/jphs.08002sc] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
To evaluate the feasibility of two kinds of pterin derivatives, 2-(N,N-dimethylaminomethyleneamino)-6-formyl-3-pivaloylpteridin-4-one (DFP) and 2-(N,N-dimethylaminomethyleneamino)-3-pivaloylpteridin-4-one (DP), as anticancer drugs, their photodynamic and non-photodynamic effects on pancreatic cancer cell line Panc-1 cells were examined. For photodynamic effects, cell death 48 h after UV-A irradiation was more prominent in cells preloaded with DP than DFP. When cells were simply incubated for 96 h without irradiation, DFP induced cell death, while DP suppressed cell proliferation. Furthermore, DP was much more soluble in water than DFP. These findings collectively indicated that DP is more feasible as an anticancer drug than DFP.
Collapse
Affiliation(s)
- Takashi Miyoshi
- Department of Hematology and Oncology, Kyoto University Hospital, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Arai T, Nonogawa M, Makino K, Endo N, Mori H, Miyoshi T, Yamashita K, Sasada M, Kakuyama M, Fukuda K. The radical scavenger edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) reacts with a pterin derivative and produces a cytotoxic substance that induces intracellular reactive oxygen species generation and cell death. J Pharmacol Exp Ther 2008; 324:529-38. [PMID: 18029546 DOI: 10.1124/jpet.107.131391] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Cytotoxic effects of the combined use of edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a radical scavenger and an approved medicine for acute brain infarction in Japan, with a pterin derivative, were examined in vitro. When pancreatic cancer cell line Panc-1 cells were incubated with 50 to 400 microM of a pterin derivative, 2-(N,N-dimethylaminomethyleneamino)-6-formyl-3-pivaloylpteridine-4-one (DFP), and the equivalent dose of edaravone, reactive oxygen species (ROS), were generated, and cell death was induced. ROS generation and the loss of mitochondrial membrane potential (MMP) preceding cell death were simultaneously monitored using time-lapse microscopy with an ROS-sensitive dye and a probe to monitor MMP, respectively. Cell death was also estimated quantitatively by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. ROS generation and cell death were prominent when more than 100 microM of each agent was used in combination, whereas the sole use of each agent did not show any effects even at the highest dose, 400 microM. Chemical analysis revealed that DFP and edaravone react immediately in aqueous solution and produce a new compound named DFP-E. DFP-E chemically reacted with NADH much faster than DFP and generated ROS, and biologically, it was much more cell-permeable than DFP. These findings collectively indicated that the combined use of DFP with edaravone produced DFP-E, which caused intracellular ROS generation and cell death. Cell death was observed in normal cells, and edaravone reacted with another pterin derivative to yield an ROS-generating compound. As a result, care should be taken with the clinical use of edaravone when pterin derivatives stay in the body.
Collapse
Affiliation(s)
- Toshiyuki Arai
- Department of Anesthesia, Kyoto University Hospital, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Nonogawa M, Pack SP, Arai T, Endo N, Sommani P, Kodaki T, Kotake Y, Makino K. Synthesis of 6-formylpterin nucleoside analogs and their ROS generation activities in the presence of NADH in the dark. Org Biomol Chem 2007; 5:3314-9. [PMID: 17912384 DOI: 10.1039/b710466a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We demonstrated previously that 3-position-modified 6-formylpterin (6FP) derivatives produce reactive oxygen species (ROS) such as hydrogen peroxide (H(2)O(2)) from oxygen in the presence of NADH in the dark. It has been shown that 6FP derivatives markedly generate ROS, which gives rise to their particular physiological activities, such as induction of apoptosis in cellular and living systems, suggesting that such compounds provide a hint for the design of a ROS controlling agent in vivo. However, it is not well understood why such unique activities appear on chemical modification. In the present study, in order to see the effect on ROS generation activity in the dark by the modification of the 1-position in 6FP, we have developed a new synthetic procedure for nucleoside analogs of 6FP and prepared 1-(beta-d-ribofuranosyl)-2-(N,N-diethylaminomethyleneamino)-6-formylpteridin-4-one (RDEF) and 1-(beta-d-ribofuranosyl)-2-(piperidine-1-ylmethyleneamino)-6-formylpteridin-4-one (RPIF) in which the 1-position of 6FP is glycosylated. At pH 7.4, NADH was spontaneously oxidized to NAD(+) in the presence of RDEF in the dark. Using electron paramagnetic resonance analysis coupled with the spin trapping technique, we show that O(2) was converted to H(2)O(2)via superoxide anion radical ( O(2)(-)) during this reaction. The modification of the 1-position of 6FP did not cancel ROS generation activities, which were demonstrated in 3-position-modified 6FPs. Since the 6FP derivatives developed in the present study have a ribose moiety, these compounds can be subjected to further derivatization, such as incorporation into oligonucleotides, oligosaccharides, proteins, or any other compounds that recognize and interact with specific biomolecules, and therefore would be useful in pharmaceutical investigations that need generation of appropriate and controllable amounts of ROS in vivo.
Collapse
Affiliation(s)
- Mitsuru Nonogawa
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji 611-0011, Japan
| | | | | | | | | | | | | | | |
Collapse
|