1
|
Tsuda M, Nakatani Y, Satoshi B, Nonaka K. Development of a protein production system using Ogataea minuta alcohol oxidase-deficient strain under reduced-methanol-consumption conditions. Biosci Biotechnol Biochem 2024; 89:102-109. [PMID: 39547939 DOI: 10.1093/bbb/zbae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
Methylotrophic yeast is a useful host for producing heterologous proteins using the unique and strong alcohol oxidase 1 (AOX1) promoter, which is induced by methanol and repressed by various carbon sources. However, methanol is preferably avoided in industrial-scale fermentation given its toxicity, flammability, and explosiveness. To develop a protein production system under reduced methanol supply conditions, we attempted to characterize the AOX1 promoter induction activity by comparing derepression conditions with methanol induction conditions. This comparison is important because decreasing methanol consumption would enhance the industrial value of Ogataea minuta for heterologous protein production. For such a comparison, an alcohol oxidase-deficient (Δaox) strain was generated, with methanol only being used for AOX1 promoter induction. We also developed a culture process in a jar fermentor using the O. minuta Δaox strain under mixed feed conditions to achieve heterologous protein production comparable to that of the wild-type strain under low-methanol conditions.
Collapse
Affiliation(s)
- Masashi Tsuda
- Bioprocess Technology Research Laboratories 1, Daiichi Sankyo Co., Ltd., Chiyoda, Gunma, Japan
| | - Yuki Nakatani
- Bioprocess Technology Research Laboratories 1, Daiichi Sankyo Co., Ltd., Chiyoda, Gunma, Japan
| | - Baba Satoshi
- Modality Research Laboratories II, Daiichi Sankyo Co., Ltd., Shinagawa, Tokyo, Japan
| | - Koichi Nonaka
- Technology Innovation Strategy and Intelligence, Daiichi Sankyo Co., Ltd., Chiyoda, Gunma, Japan
| |
Collapse
|
2
|
Nishimiya Y, Morita Y, Wu C, Ohyama Y, Tochigi Y, Okuzawa T, Sakashita M, Asakawa A, Irie T, Ohmiya Y, Ohgiya S, Morita N. Molecular evolution of Cypridina noctiluca secretory luciferase for production of spectrum-shifted luminescence-emitting mutants and their application in nuclear receptor-reporter assays. Photochem Photobiol 2024; 100:573-586. [PMID: 37715991 DOI: 10.1111/php.13857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023]
Abstract
Luciferase is a popular enzyme used for biological analyses, such as reporter assays. In addition to a conventional reporter assay using a pair of firefly and Renilla luciferases, a simple multicolor reporter assay using multiple firefly or beetle luciferases emitting different color luminescence with a single substrate has been reported. Secretory luciferases have also been used for convenient sample preparation in reporter assays; however, reporter assay using secretory luciferase mutants that emit spectrum-shifted luminescence have not yet been reported. In this study, we generated blue- and red-shifted (-16 and 12 nm) luminescence-emitting Cypridina secretory luciferase (CLuc) mutants using multiple cycles of random and site-directed mutagenesis. Even for red-shifted CLuc mutant, which exhibited relatively low activity and stability, its enzymatic activity was sufficiently high for a luciferase assay (3.26 × 106 relative light unit/s), light emission was sufficiently prolonged (half-life is 3 min), and stability at 37°C was high. We independently determined the luminescence of these CLuc mutants using a luminometer with an optical filter. Finally, we replaced the commonly used reporters, firefly and Renilla luciferases used in a conventional nuclear receptor-reporter assay with these CLuc mutants and established a secretory luciferase-based single-substrate dual-color nuclear receptor-reporter assay.
Collapse
Affiliation(s)
- Yoshiyuki Nishimiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Yosuke Morita
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Chun Wu
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Japan
| | - Yasushi Ohyama
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Yuki Tochigi
- Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Tsugumi Okuzawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Mami Sakashita
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | | | | | - Yoshihiro Ohmiya
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Japan
- Osaka Institute of Technology (OIT), Osaka, Japan
| | - Satoru Ohgiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- NOASTEC Foundation, Sapporo, Japan
| | - Naoki Morita
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| |
Collapse
|
3
|
Yang S, Song L, Wang J, Zhao J, Tang H, Bao X. Engineering Saccharomyces cerevisiae for efficient production of recombinant proteins. ENGINEERING MICROBIOLOGY 2024; 4:100122. [PMID: 39628786 PMCID: PMC11611019 DOI: 10.1016/j.engmic.2023.100122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 12/06/2024]
Abstract
Saccharomyces cerevisiae is an excellent microbial cell factory for producing valuable recombinant proteins because of its fast growth rate, robustness, biosafety, ease of operability via mature genomic modification technologies, and the presence of a conserved post-translational modification pathway among eukaryotic organisms. However, meeting industrial and market requirements with the current low microbial production of recombinant proteins can be challenging. To address this issue, numerous efforts have been made to enhance the ability of yeast cell factories to efficiently produce proteins. In this review, we provide an overview of recent advances in S. cerevisiae engineering to improve recombinant protein production. This review focuses on the strategies that enhance protein production by regulating transcription through promoter engineering, codon optimization, and expression system optimization. Additionally, we describe modifications to the secretory pathway, including engineered protein translocation, protein folding, glycosylation modification, and vesicle trafficking. Furthermore, we discuss global metabolic pathway optimization and other relevant strategies, such as the disruption of protein degradation, cell wall engineering, and random mutagenesis. Finally, we provide an outlook on the developmental trends in this field, offering insights into future directions for improving recombinant protein production in S. cerevisiae.
Collapse
Affiliation(s)
- Shuo Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liyun Song
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jing Wang
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianzhi Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hongting Tang
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoming Bao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
4
|
Selection of the methylotrophic yeast Ogataea minuta as a high-producing host for heterologous protein expression. J Biosci Bioeng 2023; 135:196-202. [PMID: 36702678 DOI: 10.1016/j.jbiosc.2022.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 12/11/2022] [Indexed: 01/26/2023]
Abstract
Three Ogataea minuta var. minuta strains have been deposited as NBRC 0975, NBRC 10402, and NBRC 10746 in the National Institute of Technology and Evaluation (NITE) Biological Resource Center (NBRC) collection. We investigated the ability to produce secretory proteins and several genotypic and phenotypic characteristics in order to select the best strain for heterologous protein expression. NBRC 10746 showed the best performance as evaluated by Cypridina noctiluca luciferase expression. Subsequently, clone #5-30 named tat06213, which was obtained by single-colony isolation from NBRC 10746, was established as a promising host for heterologous protein expression. To deepen our understanding of the characteristics of O.minuta var. minuta strains, sequence analysis of the D1/D2 domain of large subunit rRNA was conducted and the resulting phylogenetic tree derived from the D1/D2 domain showed that NBRC 10402 and NBRC 10746 were grouped into a different cluster far from NBRC 0975. Furthermore, a chromosome structure topology with electrophoretic karyotype and AOX1 loci analyzed by pulsed-field gel electrophoresis with Southern blotting showed different chromosome patterns and AOX1-hybridization loci among the strains. Additionally, the sequences of the promoter regions of the cloned AOX1 genes were not identical among the three strains. These findings might explain the differences in heterologous protein expression among the tested O. minuta var. minuta strains.
Collapse
|
5
|
Niwa K, Kubota H, Enomoto T, Ichino Y, Ohmiya Y. Quantitative Analysis of Bioluminescence Optical Signal. BIOSENSORS 2023; 13:223. [PMID: 36831989 PMCID: PMC9953788 DOI: 10.3390/bios13020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Bioluminescence is light emission based on the luciferin-luciferase enzymatic reaction in living organisms. Optical signals from bioluminescence (BL) reactions are available for bioanalysis and bioreporters for gene expression, in vitro, in vivo, and ex vivo bioimaging, immunoassay, and other applications. Although there are numerous bioanalysis methods based on BL signal measurements, the BL signal is measured as a relative value, and not as an absolute value. Recently, some approaches have been established to completely quantify the BL signal, resulting in, for instance, the redetermination of the quantum yield of the BL reaction and counting the photon number of the BL signal at the single-cell level. Reliable and reproducible understanding of biological events in the bioanalysis and bioreporter fields can be achieved by means of standardized absolute optical signal measurements, which is described in an International Organization for Standardization (ISO) document.
Collapse
Affiliation(s)
- Kazuki Niwa
- National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8563, Japan
| | | | | | - Yoshiro Ichino
- National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8563, Japan
| | - Yoshihiro Ohmiya
- National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8563, Japan
- Osaka Institute of Technology (OIT), Osaka 535-8585, Japan
| |
Collapse
|
6
|
14-3-3 proteins are luciferases candidate proteins from lanternfish Diaphus watasei. Photochem Photobiol Sci 2023; 22:263-277. [PMID: 36197650 DOI: 10.1007/s43630-022-00311-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/17/2022] [Indexed: 10/10/2022]
Abstract
The lanternfish is a deep-sea fish with ventral-lateral and head photophores. It uses its ventral-lateral photophores to camouflage its ventral silhouette, a strategy called counterillumination. The bioluminescent reaction of lanternfish involves coelenterazine as a substrate luciferin but the enzyme catalyzing the bioluminescent reaction has not been identified. We report a candidate enzyme of luciferase from lanternfish Diaphus watasei. We purified the luciferase and performed SDS-PAGE analysis resulted in two bands corresponding to the activity, and following mass spectrometry analysis detected three 14-3-3 proteins of which functions is known to exhibit protein-protein interactions. The molecular weights and isoelectric points of the 14-3-3 proteins were almost consistent with the luciferase properties. The addition of two 14-3-3 binding compounds, R18 peptide and fusicoccin, resulted in the inhibition of the luciferase activity. However, the two 14-3-3 recombinant proteins showed very slight luminescence activity. These results suggested that the 14-3-3 proteins are candidate luciferases of D. watasei.
Collapse
|
7
|
Su J, Zhu B, Inoue A, Oyama H, Morita I, Dong J, Yasuda T, Sugita-Konishi Y, Kitaguchi T, Kobayashi N, Miyake S, Ueda H. The Patrol Yeast: A new biosensor armed with antibody-receptor chimera detecting a range of toxic substances associated with food poisoning. Biosens Bioelectron 2023; 219:114793. [PMID: 36265251 DOI: 10.1016/j.bios.2022.114793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/19/2022]
Abstract
Baker's yeast is an attractive host with established safety and stability characteristics. Many yeast-based biosensors have been developed, but transmembrane signal transduction has not been used to detect membrane-impermeable substances using antigen-antibody interactions. Therefore, we created Patrol Yeast, a novel yeast-based immunosensor of various targets, particularly toxic substances in food. A membrane-based yeast two-hybrid system using split-ubiquitin was successfully used to detect practically important concentration ranges of caffeine and aflatoxins using separated variable regions of an antibody. Moreover, enterohemorrhagic Escherichia coli O157 was detected using a specific single-chain antibody, in which Zymolyase was added to partially destroy the cell wall. The incorporation of secreted Cypridina luciferase reporter further simplified the signal detection procedures without cell lysis. The methodology is more cost-effective and faster than using mammalian cells. The ability to detect various targets renders Patrol Yeast a valuable tool for ensuring food and beverage safety and addressing other environmental and technological issues.
Collapse
Affiliation(s)
- Jiulong Su
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Bo Zhu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Akihito Inoue
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | - Jinhua Dong
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan; World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Takanobu Yasuda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | | | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | | | - Shiro Miyake
- School of Life and Environmental Science, Azabu University, Sagamihara, Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan; World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
8
|
Wang Y, Li X, Chen X, Siewers V. CRISPR/Cas9-mediated point mutations improve α-amylase secretion in Saccharomyces cerevisiae. FEMS Yeast Res 2022; 22:6626025. [PMID: 35776981 PMCID: PMC9290899 DOI: 10.1093/femsyr/foac033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/28/2022] [Indexed: 11/12/2022] Open
Abstract
The rapid expansion of the application of pharmaceutical proteins and industrial enzymes requires robust microbial workhorses for high protein production. The budding yeast Saccharomyces cerevisiae is an attractive cell factory due to its ability to perform eukaryotic post-translational modifications and to secrete proteins. Many strategies have been used to engineer yeast platform strains for higher protein secretion capacity. Herein, we investigated a line of strains that have previously been selected after UV random mutagenesis for improved α-amylase secretion. A total of 42 amino acid altering point mutations identified in this strain line were reintroduced into the parental strain AAC to study their individual effects on protein secretion. These point mutations included missense mutations (amino acid substitution), nonsense mutations (stop codon generation), and frameshift mutations. For comparison, single gene deletions for the corresponding target genes were also performed in this study. A total of 11 point mutations and seven gene deletions were found to effectively improve α-amylase secretion. These targets were involved in several bioprocesses, including cellular stresses, protein degradation, transportation, mRNA processing and export, DNA replication, and repair, which indicates that the improved protein secretion capacity in the evolved strains is the result of the interaction of multiple intracellular processes. Our findings will contribute to the construction of novel cell factories for recombinant protein secretion.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
| | - Xiaowei Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
| | - Xin Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
| | - Verena Siewers
- Corresponding author. Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden. Tel: +46 (0)317723853; E-mail:
| |
Collapse
|
9
|
Customized yeast cell factories for biopharmaceuticals: from cell engineering to process scale up. Microb Cell Fact 2021; 20:124. [PMID: 34193127 PMCID: PMC8246677 DOI: 10.1186/s12934-021-01617-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
The manufacture of recombinant therapeutics is a fastest-developing section of therapeutic pharmaceuticals and presently plays a significant role in disease management. Yeasts are established eukaryotic host for heterologous protein production and offer distinctive benefits in synthesising pharmaceutical recombinants. Yeasts are proficient of vigorous growth on inexpensive media, easy for gene manipulations, and are capable of adding post translational changes of eukaryotes. Saccharomyces cerevisiae is model yeast that has been applied as a main host for the manufacture of pharmaceuticals and is the major tool box for genetic studies; nevertheless, numerous other yeasts comprising Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha, and Yarrowia lipolytica have attained huge attention as non-conventional partners intended for the industrial manufacture of heterologous proteins. Here we review the advances in yeast gene manipulation tools and techniques for heterologous pharmaceutical protein synthesis. Application of secretory pathway engineering, glycosylation engineering strategies and fermentation scale-up strategies in customizing yeast cells for the synthesis of therapeutic proteins has been meticulously described.
Collapse
|
10
|
Exploiting strain diversity and rational engineering strategies to enhance recombinant cellulase secretion by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2020; 104:5163-5184. [PMID: 32337628 DOI: 10.1007/s00253-020-10602-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
Consolidated bioprocessing (CBP) of lignocellulosic material into bioethanol has progressed in the past decades; however, several challenges still exist which impede the industrial application of this technology. Identifying the challenges that exist in all unit operations is crucial and needs to be optimised, but only the barriers related to the secretion of recombinant cellulolytic enzymes in Saccharomyces cerevisiae will be addressed in this review. Fundamental principles surrounding CBP as a biomass conversion platform have been established through the successful expression of core cellulolytic enzymes, namely β-glucosidases, endoglucanases, and exoglucanases (cellobiohydrolases) in S. cerevisiae. This review will briefly address the challenges involved in the construction of an efficient cellulolytic yeast, with particular focus on the secretion efficiency of cellulases from this host. Additionally, strategies for studying enhanced cellulolytic enzyme secretion, which include both rational and reverse engineering approaches, will be discussed. One such technique includes bio-engineering within genetically diverse strains, combining the strengths of both natural strain diversity and rational strain development. Furthermore, with the advancement in next-generation sequencing, studies that utilise this method of exploiting intra-strain diversity for industrially relevant traits will be reviewed. Finally, future prospects are discussed for the creation of ideal CBP strains with high enzyme production levels.Key Points• Several challenges are involved in the construction of efficient cellulolytic yeast, in particular, the secretion efficiency of cellulases from the hosts.• Strategies for enhancing cellulolytic enzyme secretion, a core requirement for CBP host microorganism development, include both rational and reverse engineering approaches.• One such technique includes bio-engineering within genetically diverse strains, combining the strengths of both natural strain diversity and rational strain development.
Collapse
|
11
|
Yasuno R, Mitani Y, Ohmiya Y. Effects of N
-Glycosylation Deletions on Cypridina
Luciferase Activity. Photochem Photobiol 2017. [DOI: 10.1111/php.12847 and 1=1#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rie Yasuno
- Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Japan
| | - Yasuo Mitani
- Bioproduction Research Institute; AIST; Sapporo Japan
| | - Yoshihiro Ohmiya
- Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Japan
- DAILAB; Biomedical Research Institute; AIST; Tsukuba Japan
| |
Collapse
|
12
|
Yasuno R, Mitani Y, Ohmiya Y. Effects of N
-Glycosylation Deletions on Cypridina
Luciferase Activity. Photochem Photobiol 2017. [DOI: 10.1111/php.12847 and 1=1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Rie Yasuno
- Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Japan
| | - Yasuo Mitani
- Bioproduction Research Institute; AIST; Sapporo Japan
| | - Yoshihiro Ohmiya
- Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Japan
- DAILAB; Biomedical Research Institute; AIST; Tsukuba Japan
| |
Collapse
|
13
|
Yasuno R, Mitani Y, Ohmiya Y. Effects of N
-Glycosylation Deletions on Cypridina
Luciferase Activity. Photochem Photobiol 2017. [DOI: 10.1111/php.12847 or(1=2)-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Rie Yasuno
- Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Japan
| | - Yasuo Mitani
- Bioproduction Research Institute; AIST; Sapporo Japan
| | - Yoshihiro Ohmiya
- Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Japan
- DAILAB; Biomedical Research Institute; AIST; Tsukuba Japan
| |
Collapse
|
14
|
Yasuno R, Mitani Y, Ohmiya Y. Effects of N
-Glycosylation Deletions on Cypridina
Luciferase Activity. Photochem Photobiol 2017. [DOI: 10.1111/php.12847 and 1=2-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rie Yasuno
- Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Japan
| | - Yasuo Mitani
- Bioproduction Research Institute; AIST; Sapporo Japan
| | - Yoshihiro Ohmiya
- Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Japan
- DAILAB; Biomedical Research Institute; AIST; Tsukuba Japan
| |
Collapse
|
15
|
Yasuno R, Mitani Y, Ohmiya Y. Effects of N
-Glycosylation Deletions on Cypridina
Luciferase Activity. Photochem Photobiol 2017. [DOI: 10.1111/php.12847 and 1=1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rie Yasuno
- Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Japan
| | - Yasuo Mitani
- Bioproduction Research Institute; AIST; Sapporo Japan
| | - Yoshihiro Ohmiya
- Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Japan
- DAILAB; Biomedical Research Institute; AIST; Tsukuba Japan
| |
Collapse
|
16
|
Yasuno R, Mitani Y, Ohmiya Y. Effects of N
-Glycosylation Deletions on Cypridina
Luciferase Activity. Photochem Photobiol 2017; 94:338-342. [DOI: 10.1111/php.12847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 09/15/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Rie Yasuno
- Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Japan
| | - Yasuo Mitani
- Bioproduction Research Institute; AIST; Sapporo Japan
| | - Yoshihiro Ohmiya
- Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Japan
- DAILAB; Biomedical Research Institute; AIST; Tsukuba Japan
| |
Collapse
|
17
|
Yasuno R, Mitani Y, Ohmiya Y. Effects of N
-Glycosylation Deletions on Cypridina
Luciferase Activity. Photochem Photobiol 2017. [DOI: 10.1111/php.12847 and 1=2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rie Yasuno
- Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Japan
| | - Yasuo Mitani
- Bioproduction Research Institute; AIST; Sapporo Japan
| | - Yoshihiro Ohmiya
- Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Japan
- DAILAB; Biomedical Research Institute; AIST; Tsukuba Japan
| |
Collapse
|
18
|
Yasuno R, Mitani Y, Ohmiya Y. Effects of N
-Glycosylation Deletions on Cypridina
Luciferase Activity. Photochem Photobiol 2017. [DOI: 10.1111/php.12847 and 1=2#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rie Yasuno
- Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Japan
| | - Yasuo Mitani
- Bioproduction Research Institute; AIST; Sapporo Japan
| | - Yoshihiro Ohmiya
- Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Japan
- DAILAB; Biomedical Research Institute; AIST; Tsukuba Japan
| |
Collapse
|
19
|
Yasuno R, Mitani Y, Ohmiya Y. Effects of N
-Glycosylation Deletions on Cypridina
Luciferase Activity. Photochem Photobiol 2017. [DOI: 10.1111/php.12847 or(1=1)-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rie Yasuno
- Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Japan
| | - Yasuo Mitani
- Bioproduction Research Institute; AIST; Sapporo Japan
| | - Yoshihiro Ohmiya
- Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Japan
- DAILAB; Biomedical Research Institute; AIST; Tsukuba Japan
| |
Collapse
|
20
|
de Ruijter JC, Jurgens G, Frey AD. Screening for novel genes of Saccharomyces cerevisiae involved in recombinant antibody production. FEMS Yeast Res 2016; 17:fow104. [PMID: 27956492 DOI: 10.1093/femsyr/fow104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/05/2016] [Indexed: 01/17/2023] Open
Abstract
Cost-effective manufacturing of biopharmaceuticals in non-mammalian hosts still requires tremendous efforts in strain development. In order to expedite identification of novel leads for strain engineering, we used a transposon-mutagenized yeast genomic DNA library to create a collection of Saccharomyces cerevisiae deletion strains expressing a full-length IgG antibody. Using a high-throughput screening, transformants with either significantly higher or lower IgG expression were selected. The integration site of the transposon in three of the selected strains was located by DNA sequencing. The inserted DNA lay within the VPS30 and TAR1 open reading frame, and upstream of the HEM13 open reading frame. The complete coding sequence of these genes was deleted in the wild-type strain background to confirm the IgG expression phenotypes. Production of recombinant antibody was increased 2-fold in the Δvps30 strain, but only mildly affected secretion levels in the Δtar1 strain. Remarkably, expression of endogenous yeast acid phosphatase was increased 1.7- and 2.4-fold in Δvps30 and Δtar1 strains. The study confirmed the power of genome-wide high-throughput screens for strain development and highlights the importance of using the target molecule during the screening process.
Collapse
Affiliation(s)
- Jorg C de Ruijter
- Department of Biotechnology and Chemical Technology, Aalto University, 02150 Espoo, Finland
| | | | - Alexander D Frey
- Department of Biotechnology and Chemical Technology, Aalto University, 02150 Espoo, Finland
| |
Collapse
|
21
|
Kim H, Yoo SJ, Kang HA. Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res 2015; 15:1-16. [PMID: 25130199 DOI: 10.1111/1567-1364.12195] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/12/2014] [Accepted: 08/05/2014] [Indexed: 11/29/2022] Open
Abstract
The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins.
Collapse
Affiliation(s)
- Hyunah Kim
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Su Jin Yoo
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul, Korea
| |
Collapse
|
22
|
Improved production of a heterologous amylase in Saccharomyces cerevisiae by inverse metabolic engineering. Appl Environ Microbiol 2014; 80:5542-50. [PMID: 24973076 DOI: 10.1128/aem.00712-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The increasing demand for industrial enzymes and biopharmaceutical proteins relies on robust production hosts with high protein yield and productivity. Being one of the best-studied model organisms and capable of performing posttranslational modifications, the yeast Saccharomyces cerevisiae is widely used as a cell factory for recombinant protein production. However, many recombinant proteins are produced at only 1% (or less) of the theoretical capacity due to the complexity of the secretory pathway, which has not been fully exploited. In this study, we applied the concept of inverse metabolic engineering to identify novel targets for improving protein secretion. Screening that combined UV-random mutagenesis and selection for growth on starch was performed to find mutant strains producing heterologous amylase 5-fold above the level produced by the reference strain. Genomic mutations that could be associated with higher amylase secretion were identified through whole-genome sequencing. Several single-point mutations, including an S196I point mutation in the VTA1 gene coding for a protein involved in vacuolar sorting, were evaluated by introducing these to the starting strain. By applying this modification alone, the amylase secretion could be improved by 35%. As a complement to the identification of genomic variants, transcriptome analysis was also performed in order to understand on a global level the transcriptional changes associated with the improved amylase production caused by UV mutagenesis.
Collapse
|
23
|
Liu L, Yang H, Shin HD, Chen RR, Li J, Du G, Chen J. How to achieve high-level expression of microbial enzymes: strategies and perspectives. Bioengineered 2013; 4:212-23. [PMID: 23686280 DOI: 10.4161/bioe.24761] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microbial enzymes have been used in a large number of fields, such as chemical, agricultural and biopharmaceutical industries. The enzyme production rate and yield are the main factors to consider when choosing the appropriate expression system for the production of recombinant proteins. Recombinant enzymes have been expressed in bacteria (e.g., Escherichia coli, Bacillus and lactic acid bacteria), filamentous fungi (e.g., Aspergillus) and yeasts (e.g., Pichia pastoris). The favorable and very advantageous characteristics of these species have resulted in an increasing number of biotechnological applications. Bacterial hosts (e.g., E. coli) can be used to quickly and easily overexpress recombinant enzymes; however, bacterial systems cannot express very large proteins and proteins that require post-translational modifications. The main bacterial expression hosts, with the exception of lactic acid bacteria and filamentous fungi, can produce several toxins which are not compatible with the expression of recombinant enzymes in food and drugs. However, due to the multiplicity of the physiological impacts arising from high-level expression of genes encoding the enzymes and expression hosts, the goal of overproduction can hardly be achieved, and therefore, the yield of recombinant enzymes is limited. In this review, the recent strategies used for the high-level expression of microbial enzymes in the hosts mentioned above are summarized and the prospects are also discussed. We hope this review will contribute to the development of the enzyme-related research field.
Collapse
Affiliation(s)
- Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells. J Ind Microbiol Biotechnol 2013; 40:257-74. [PMID: 23385853 DOI: 10.1007/s10295-013-1235-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/22/2013] [Indexed: 12/28/2022]
Abstract
Almost all of the 200 or so approved biopharmaceuticals have been produced in one of three host systems: the bacterium Escherichia coli, yeasts (Saccharomyces cerevisiae, Pichia pastoris) and mammalian cells. We describe the most widely used methods for the expression of recombinant proteins in the cytoplasm or periplasm of E. coli, as well as strategies for secreting the product to the growth medium. Recombinant expression in E. coli influences the cell physiology and triggers a stress response, which has to be considered in process development. Increased expression of a functional protein can be achieved by optimizing the gene, plasmid, host cell, and fermentation process. Relevant properties of two yeast expression systems, S. cerevisiae and P. pastoris, are summarized. Optimization of expression in S. cerevisiae has focused mainly on increasing the secretion, which is otherwise limiting. P. pastoris was recently approved as a host for biopharmaceutical production for the first time. It enables high-level protein production and secretion. Additionally, genetic engineering has resulted in its ability to produce recombinant proteins with humanized glycosylation patterns. Several mammalian cell lines of either rodent or human origin are also used in biopharmaceutical production. Optimization of their expression has focused on clonal selection, interference with epigenetic factors and genetic engineering. Systemic optimization approaches are applied to all cell expression systems. They feature parallel high-throughput techniques, such as DNA microarray, next-generation sequencing and proteomics, and enable simultaneous monitoring of multiple parameters. Systemic approaches, together with technological advances such as disposable bioreactors and microbioreactors, are expected to lead to increased quality and quantity of biopharmaceuticals, as well as to reduced product development times.
Collapse
|
25
|
Li WF, Ji J, Wang G, Wang HY, Niu BL, Josine TL. Oxidative stress-resistance assay for screening yeast strains overproducing heterologous proteins. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411090122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Ochi Y, Sugawara H, Iwami M, Tanaka M, Eki T. Sensitive detection of chemical-induced genotoxicity by the Cypridina secretory luciferase reporter assay, using DNA repair-deficient strains of Saccharomyces cerevisiae. Yeast 2011; 28:265-78. [DOI: 10.1002/yea.1837] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/25/2010] [Indexed: 11/10/2022] Open
|
27
|
Kitagawa T, Kohda K, Tokuhiro K, Hoshida H, Akada R, Takahashi H, Imaeda T. Identification of genes that enhance cellulase protein production in yeast. J Biotechnol 2010; 151:194-203. [PMID: 21167225 DOI: 10.1016/j.jbiotec.2010.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 12/02/2010] [Accepted: 12/07/2010] [Indexed: 10/18/2022]
Abstract
In order to enhance heterologous cellulase protein production in yeast, a plasmid harboring the endoglucanase gene from Clostridium thermocellum (Ctcel8A) was used to systematically transform a homozygous diploid yeast deletion strain collection. We identified 55 deletion strains that exhibited enhanced endoglucanase activity compared with that of the wild-type strain. Genes disrupted in these strains were classified into the categories of transcription, translation, phospholipid synthesis, endosome/vacuole function, ER/Golgi function, nitrogen starvation response, and cytoskeleton. The vps3Δ and vps16Δ strains, which have deletion in genes encoding components of the class C core vacuole/endosome tethering (CORVET) complex, also exhibited enhanced β-glucosidase activity when Ctcel8A was heterologously expressed. Moreover, multiple gene deletion strains were constructed by using the vps3Δ strain. Endoglucanase activity of the resulting rav1Δvps3Δ double deletion strain was exhibited higher than that of the rav1Δ or vps3Δ strains. Our genome-wide analyses using the yeast deletion strain collection identified useful genes that allow efficient expression of cellulase.
Collapse
Affiliation(s)
- Takao Kitagawa
- Department of Applied Molecular Bioscience, Yamaguchi University Graduate School of Medicine, Tokiwadai, Ube 755-8611, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Nakajima Y, Ohmiya Y. Bioluminescence assays: multicolor luciferase assay, secreted luciferase assay and imaging luciferase assay. Expert Opin Drug Discov 2010; 5:835-49. [PMID: 22823259 DOI: 10.1517/17460441.2010.506213] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD By selecting the most appropriate bioluminescence assay, the researcher can study the underlying molecular mechanisms of a physiological system and the effects of a drug throughout the body. AREAS COVERED IN THIS REVIEW This review covers three luciferase assay systems: the multicolor luciferase assay, secreted luciferase assay and imaging luciferase assay. These assays are applied to drug screening in vitro, in cellulo and in vivo. WHAT THE READER WILL GAIN Different solutions for reporter assay in vitro, in cellulo and in vivo are presented. A suitable bioluminescence system depending on the assay purpose is also discussed. TAKE HOME MESSAGE Bioluminescence is a manifold system based on the different types of luciferin and its luciferase. Namely, luciferin catalyzed by corresponding luciferases resulted in the production of different color lights. We must understand the manifold mechanisms of bioluminescence reaction.
Collapse
Affiliation(s)
- Yoshihiro Nakajima
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka, Japan
| | | |
Collapse
|
29
|
Tochigi Y, Sato N, Sahara T, Wu C, Saito S, Irie T, Fujibuchi W, Goda T, Yamaji R, Ogawa M, Ohmiya Y, Ohgiya S. Sensitive and Convenient Yeast Reporter Assay for High-Throughput Analysis by Using a Secretory Luciferase from Cypridina noctiluca. Anal Chem 2010; 82:5768-76. [DOI: 10.1021/ac100832b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuki Tochigi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan, Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda 563-8577, Japan, ATTO Corporation, 1-5-32
| | - Natsuko Sato
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan, Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda 563-8577, Japan, ATTO Corporation, 1-5-32
| | - Takehiko Sahara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan, Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda 563-8577, Japan, ATTO Corporation, 1-5-32
| | - Chun Wu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan, Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda 563-8577, Japan, ATTO Corporation, 1-5-32
| | - Shinya Saito
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan, Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda 563-8577, Japan, ATTO Corporation, 1-5-32
| | - Tsutomu Irie
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan, Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda 563-8577, Japan, ATTO Corporation, 1-5-32
| | - Wataru Fujibuchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan, Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda 563-8577, Japan, ATTO Corporation, 1-5-32
| | - Takako Goda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan, Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda 563-8577, Japan, ATTO Corporation, 1-5-32
| | - Ryoichi Yamaji
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan, Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda 563-8577, Japan, ATTO Corporation, 1-5-32
| | - Masahiro Ogawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan, Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda 563-8577, Japan, ATTO Corporation, 1-5-32
| | - Yoshihiro Ohmiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan, Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda 563-8577, Japan, ATTO Corporation, 1-5-32
| | - Satoru Ohgiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan, Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda 563-8577, Japan, ATTO Corporation, 1-5-32
| |
Collapse
|
30
|
Idiris A, Tohda H, Kumagai H, Takegawa K. Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 2010; 86:403-17. [DOI: 10.1007/s00253-010-2447-0] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 01/07/2010] [Accepted: 01/09/2010] [Indexed: 01/08/2023]
|
31
|
Abe H, Takaoka Y, Chiba Y, Sato N, Ohgiya S, Itadani A, Hirashima M, Shimoda C, Jigami Y, Nakayama KI. Development of valuable yeast strains using a novel mutagenesis technique for the effective production of therapeutic glycoproteins. Glycobiology 2009; 19:428-36. [PMID: 19129247 DOI: 10.1093/glycob/cwn157] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Yeast cells producing mammalian-type N-linked oligosaccharide show severe growth defects and the decreased protein productivity because of the disruption of yeast-specific glycosyltransferases. This decreased protein productivity in engineered yeast strains is an obstacle to the development of efficient glycoprotein production in yeast. For economic and effective synthesis of such therapeutic glycoproteins in yeast, the development of appropriate strains is highly desirable. We applied a novel mutagenesis technique that utilized the proofreading-deficient DNA polymerase delta variant encoded by the pol3-01 gene of Saccharomyces cerevisiae or the cdc6-1 gene of Schizosaccharomyces pombe to the engineered S. cerevisiae TIY20 strain and S. pombe KT97 strain, respectively. TIY20, which is deficient in the outer chain of mannan due to the disruption of three genes (och1Delta, mnn1 Delta, mnn4 Delta), and KT97, which is an och1 disruptant, are impractical as hosts for the production of therapeutic glycoproteins since they show a temperature-sensitive (ts) phenotype, a growth defect phenotype, and decreased protein productivity. We successfully isolated YAB mutants that alleviated the growth defect of the TIY20 strain. Surprisingly, these mutants generally secreted foreign proteins better than the wild-type strain. Furthermore, we successfully isolated YPAB mutants that alleviated the growth defect of the KT97 strain, too. The development of these new mutants by the combination of genetic engineering of yeast and this mutagenesis technique are major breakthroughs for the production of therapeutic glycoproteins in engineered yeast cells.
Collapse
Affiliation(s)
- Hiroko Abe
- Health Technology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14, Hayashi, Takamatsu, Kagawa 761-0395, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|