1
|
Chen M, Karimpour PA, Elliott A, He D, Knifley T, Liu J, Wang C, O’Connor KL. Integrin α6β4 Upregulates PTPRZ1 Through UCHL1-Mediated Hif-1α Nuclear Accumulation to Promote Triple-Negative Breast Cancer Cell Invasive Properties. Cancers (Basel) 2024; 16:3683. [PMID: 39518121 PMCID: PMC11545476 DOI: 10.3390/cancers16213683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Integrin α6β4 drives triple-negative breast cancer (TNBC) aggressiveness through the transcriptional regulation of key genes. Here, we investigated how integrin α6β4 regulates protein tyrosine phosphatase receptor type Z1 (PTPRZ1). Using stable re-expression of integrin β4 (ITGB4) in cells naturally devoid of integrin α6β4 or knockdown or knockout (KO) of ITGB4, we found that integrin α6β4 regulates PTPRZ1 expression. To gain mechanistic insight, we focused on Hif-1α due to the impact of integrin α6β4 on a hypoxia-associated signature. We found that nuclear localization of Hif-1α, but not Hif-2α, was substantially enhanced with integrin α6β4 signaling. Hif-1α knockdown by shRNA or chemical inhibition decreased PTPRZ1 expression, while chemical activation of Hif-1α increased it. Upstream of Hif-1α, integrin α6β4 upregulates UCHL1 to stabilize Hif-1α and ultimately regulate PTPRZ1. Inhibition of UCHL1 and PTPRZ1 dramatically decreases integrin α6β4-mediated cell migration and three-dimensional invasive growth. Finally, public breast cancer database analyses demonstrated that ITGB4 correlates with PTPRZ1 and that high expression of ITGB4, UCHL1, HIF1A, and PTPRZ1 associated with decreased overall survival, distant metastasis free survival, post progression survival, and relapse-free survival. In summary, these findings provide a novel function of integrin α6β4 in promoting tumor invasive phenotypes through UCHL1-Hif-1α-mediated regulation of PTPRZ1.
Collapse
Affiliation(s)
- Min Chen
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Parvanee A. Karimpour
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Andrew Elliott
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
| | - Daheng He
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Teresa Knifley
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Kathleen L. O’Connor
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
2
|
Ding L, Li Y, Liu H, You L, Zhang Y, Lin X, Qu S, Yao J, Yang L. Effects of pleiotrophin (PTN) on the FAK inhibitor Y15 in breast cancer cells. Int J Biol Macromol 2024; 280:135962. [PMID: 39322128 DOI: 10.1016/j.ijbiomac.2024.135962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Overexpression of PTN (Pleiotrophin) in breast cancer cells stimulates breast cell proliferation and anti-apoptosis via the FAK/Src signaling pathway.1,2,4,5-Benzenetetramine tetrahydrochloride (C6H14Cl4N4) known as Y15 is an inhibitor that specifically blocks phosphorylation of Y397-FAK and total FAK phosphorylation. The exogenous PTN protein was induced to be expressed by a prokaryotic expression strain. The addition of PTN protein decreased the sensitivity of breast cancer cells to Y15, as shown by both MTT and flow cytometry assays. Breast cancer cells transfected with sh-RNA knockdown PTN were analyzed by real-time fluorescence quantitative PCR reaction (RT-PCR) and protein immunoblotting 24 h after transfection. MTT assay data showed a significant increase in the IC50 value of Y15 against breast cancer cells in the presence of PTN protein. Flow cytometry data confirmed the dose-dependent anti-apoptotic effect of PTN protein in Y15-treated breast cancer cells. After transfection with sh-RNA, Y15 further inhibited the FAK pathway, greatly reducing cell survival and promoting apoptosis. Western blotting analysis showed that knockdown of PTN protein with sh-RNA resulted in increased apoptosis and elevated levels of apoptotic proteins, such as cleaved PARP and cleaved caspase-3 in Y15-induced breast cancer cells. Finally, it was hypothesized that PTN and Y15 were associated with a significant increase in the IC50 value of PTN and Y15 in breast cancer cells by western blotting analysis. It was hypothesized that PTN and Y15 regulate the proliferation and apoptosis of breast cancer cells through the AKT/PI3K pathway. The results demonstrated that PTN affects the sensitivity of the kinase inhibitor Y15, and PTN silencing and Y15 may inhibit the survival of breast cancer cells through the AKT/PI3K pathway, which lays the foundation for subsequent in-depth research on the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Linlin Ding
- The Center for Combinatorial Chemistry and Drug Discovery, The School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Yunfei Li
- The Center for Combinatorial Chemistry and Drug Discovery, The School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Huali Liu
- The Center for Combinatorial Chemistry and Drug Discovery, The School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Liwei You
- The Center for Combinatorial Chemistry and Drug Discovery, The School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Yuqiang Zhang
- The Center for Combinatorial Chemistry and Drug Discovery, The School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Xueyuan Lin
- The Center for Combinatorial Chemistry and Drug Discovery, The School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Siyang Qu
- The Center for Combinatorial Chemistry and Drug Discovery, The School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Jiaxin Yao
- The Center for Combinatorial Chemistry and Drug Discovery, The School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Liquan Yang
- The Center for Combinatorial Chemistry and Drug Discovery, The School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
3
|
Ganguly D, Schmidt MO, Coleman M, Ngo TVC, Sorrelle N, Dominguez AT, Murimwa GZ, Toombs JE, Lewis C, Fang YV, Valdes-Mora F, Gallego-Ortega D, Wellstein A, Brekken RA. Pleiotrophin drives a prometastatic immune niche in breast cancer. J Exp Med 2023; 220:e20220610. [PMID: 36828390 PMCID: PMC9998964 DOI: 10.1084/jem.20220610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 11/21/2022] [Accepted: 01/09/2023] [Indexed: 11/04/2022] Open
Abstract
Metastatic cancer cells adapt to thrive in secondary organs. To investigate metastatic adaptation, we performed transcriptomic analysis of metastatic and non-metastatic murine breast cancer cells. We found that pleiotrophin (PTN), a neurotrophic cytokine, is a metastasis-associated factor that is expressed highly by aggressive breast cancers. Moreover, elevated PTN in plasma correlated significantly with metastasis and reduced survival of breast cancer patients. Mechanistically, we find that PTN activates NF-κB in cancer cells leading to altered cytokine production, subsequent neutrophil recruitment, and an immune suppressive microenvironment. Consequently, inhibition of PTN, pharmacologically or genetically, reduces the accumulation of tumor-associated neutrophils and reverts local immune suppression, resulting in increased T cell activation and attenuated metastasis. Furthermore, inhibition of PTN significantly enhanced the efficacy of immune checkpoint blockade and chemotherapy in reducing metastatic burden in mice. These findings establish PTN as a previously unrecognized driver of a prometastatic immune niche and thus represents a promising therapeutic target for the treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Debolina Ganguly
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marcel O. Schmidt
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Morgan Coleman
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tuong-Vi Cindy Ngo
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Noah Sorrelle
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adrian T.A. Dominguez
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gilbert Z. Murimwa
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jason E. Toombs
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheryl Lewis
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yisheng V. Fang
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fatima Valdes-Mora
- Cancer Epigenetic Biology and Therapeutics group, Precision Medicine Theme, Children’s Cancer Institute, Sydney, Australia
- School of Clinical Medicine, University of NSW Sydney, Sydney, Australia
| | - David Gallego-Ortega
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, Australia
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Anton Wellstein
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Rolf A. Brekken
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
4
|
Papadimitriou E, Kanellopoulou VK. Protein Tyrosine Phosphatase Receptor Zeta 1 as a Potential Target in Cancer Therapy and Diagnosis. Int J Mol Sci 2023; 24:ijms24098093. [PMID: 37175798 PMCID: PMC10178973 DOI: 10.3390/ijms24098093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) is a type V transmembrane tyrosine phosphatase that is highly expressed during embryonic development, while its expression during adulthood is limited. PTPRZ1 is highly detected in the central nervous system, affecting oligodendrocytes' survival and maturation. In gliomas, PTPRZ1 expression is significantly upregulated and is being studied as a potential cancer driver and as a target for therapy. PTPRZ1 expression is also increased in other cancer types, but there are no data on the potential functional significance of this finding. On the other hand, low PTPRZ1 expression seems to be related to a worse prognosis in some cancer types, suggesting that in some cases, it may act as a tumor-suppressor gene. These discrepancies may be due to our limited understanding of PTPRZ1 signaling and tumor microenvironments. In this review, we present evidence on the role of PTPRZ1 in angiogenesis and cancer and discuss the phenomenal differences among the different types of cancer, depending on the regulation of its tyrosine phosphatase activity or ligand binding. Clarifying the involved signaling pathways will lead to its efficient exploitation as a novel therapeutic target or as a biomarker, and the development of proper therapeutic approaches.
Collapse
Affiliation(s)
- Evangelia Papadimitriou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - Vasiliki K Kanellopoulou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| |
Collapse
|
5
|
Ryan EO, Jiang Z, Nguyen H, Wang X. Interactions of Pleiotrophin with a Structurally Defined Heparin Hexasaccharide. Biomolecules 2021; 12:biom12010050. [PMID: 35053198 PMCID: PMC8773689 DOI: 10.3390/biom12010050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 11/21/2022] Open
Abstract
Pleiotrophin (PTN) is a potent cytokine that plays an important role in neural generation, angiogenesis, inflammation, and cancers. Its interactions with the polysaccharide glycosaminoglycan (GAG) are crucial to PTN’s biological activities. In this study, we investigated the interaction of selectively protonated PTN with the heparin hexasaccharide ΔUA2S-(GlcNS6S-IdoA2S)2-GlcNS6S using solution NMR. The use of a structurally defined oligosaccharide and selectively protonated PTN enabled us to obtain intermolecular contacts using unfiltered NOESY experiments, significantly increasing the amount of high-resolution structural information obtainable. Our data showed that PTN’s arginines, lysines, and tryptophans in the two structured domains have strong interactions with the 2-O-sulfated uronate protons in the heparin hexasaccharide. Consistent with the NMR data is the observation that 2-O-desulfation and N-desulfation/N-acetylation significantly decreased heparin hexasaccharides’ affinity for PTN, while 6-O-desulfation only modestly affected the interactions with PTN. These results allowed us to hypothesize that PTN has a preference for sulfate clusters centered on the GlcNS6S-IdoA2S disaccharide. Using these data and the fact that PTN domains mostly bind heparin hexasaccharides independently, models of the PTN-heparin complex were constructed.
Collapse
Affiliation(s)
| | | | | | - Xu Wang
- Correspondence: ; Tel.: +1-480-7278256
| |
Collapse
|
6
|
Xia Z, Ouyang D, Li Q, Li M, Zou Q, Li L, Yi W, Zhou E. The Expression, Functions, Interactions and Prognostic Values of PTPRZ1: A Review and Bioinformatic Analysis. J Cancer 2019; 10:1663-1674. [PMID: 31205522 PMCID: PMC6548002 DOI: 10.7150/jca.28231] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023] Open
Abstract
Available studies demonstrate that receptor-type tyrosine-protein phosphatase zeta (PTPRZ1) is expressed in different tumor tissues, and functions in cell proliferation, cell adhesion and migration, epithelial-to-mesenchymal transition, cancer stem cells and treatment resistance by interacting with or binding to several molecules. These included pleiotrophin (PTN), midkine, interleukin-34, β-catenin, VEGF, NF-κB, HIF-2, PSD-95, MAGI-3, contactin and ErbB4. PTPRZ1 was involved in survival signaling and could predict the prognosis of several tumors. This review discusses: the current knowledge about PTPRZ1, its expression, co-receptors, ligands, functions, signaling pathway, prognostic values and therapeutic agents that target PTPRZ1.
Collapse
Affiliation(s)
- Zhenkun Xia
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dengjie Ouyang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qianying Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Moyun Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiongyan Zou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lun Li
- Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Enxiang Zhou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Huang P, Ouyang DJ, Chang S, Li MY, Li L, Li QY, Zeng R, Zou QY, Su J, Zhao P, Pei L, Yi WJ. Chemotherapy-driven increases in the CDKN1A/PTN/PTPRZ1 axis promote chemoresistance by activating the NF-κB pathway in breast cancer cells. Cell Commun Signal 2018; 16:92. [PMID: 30497491 PMCID: PMC6267809 DOI: 10.1186/s12964-018-0304-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/15/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chemotherapy is the primary established systemic treatment for patients with breast cancer, especially those with the triple-negative subtype. Simultaneously, the resistance of triple-negative breast cancer (TNBC) to chemotherapy remains a major clinical problem. Our previous study demonstrated that the expression levels of PTN and its receptor PTPRZ1 were upregulated in recurrent TNBC tissue after chemotherapy, and this increase was closely related to poor prognosis in those patients. However, the mechanism and function of chemotherapy-driven increases in PTN/PTPRZ1 expression are still unclear. METHODS We compared the expression of PTN and PTPRZ1 between normal breast and cancer tissues as well as before and after chemotherapy in cancer tissue using the microarray analysis data from the GEPIA database and GEO database. The role of chemotherapy-driven increases in PTN/PTPRZ1 expression was examined with a CCK-8 assay, colony formation efficiency assay and apoptosis analysis with TNBC cells. The potential upstream pathways involved in the chemotherapy-driven increases in PTN/PTPRZ1 expression in TNBC cells were explored using microarray analysis, and the downstream mechanism was dissected with siRNA. RESULTS We demonstrated that the expression of PTN and PTPRZ1 was upregulated by chemotherapy, and this change in expression decreased chemosensitivity by promoting tumour proliferation and inhibiting apoptosis. CDKN1A was the critical switch that regulated the expression of PTN/PTPRZ1 in TNBC cells receiving chemotherapy. We further demonstrated that the mechanism of chemoresistance by chemotherapy-driven increases in the CDKN1A/PTN/PTPRZ1 axis depended on the NF-κB pathway. CONCLUSIONS Our studies indicated that chemotherapy-driven increases in the CDKN1A/PTN/PTPRZ1 axis play a critical role in chemoresistance, which suggests a novel strategy to enhance chemosensitivity in breast cancer cells, especially in those of the triple-negative subtype.
Collapse
Affiliation(s)
- Peng Huang
- Department of General Surgery, the Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, China.,Department of General Surgery, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, China
| | - Deng-Jie Ouyang
- Department of General Surgery, the Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, China
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, China
| | - Mo-Yun Li
- Department of General Surgery, the Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, China
| | - Lun Li
- Department of General Surgery, the Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, China
| | - Qian-Ying Li
- Department of General Surgery, the Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, China
| | - Rong Zeng
- Department of General Surgery, the Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, China
| | - Qiong-Yan Zou
- Department of General Surgery, the Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, China
| | - Juan Su
- Department of General Surgery, the Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, China
| | - Piao Zhao
- Department of General Surgery, the Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, China
| | - Lei Pei
- Department of General Surgery, the Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, China
| | - Wen-Jun Yi
- Department of General Surgery, the Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, China.
| |
Collapse
|
8
|
Portelius E, Brinkmalm G, Pannee J, Zetterberg H, Blennow K, Dahlén R, Brinkmalm A, Gobom J. Proteomic studies of cerebrospinal fluid biomarkers of Alzheimer's disease: an update. Expert Rev Proteomics 2017; 14:1007-1020. [PMID: 28942688 DOI: 10.1080/14789450.2017.1384697] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a neurodegenerative disease affecting the brain. Today there are three cerebrospinal fluid (CSF) biomarkers, amyloid-β consisting of 42 amino acids (Aβ42), total-tau (t-tau) and phosphorylated-tau (p-tau), which combined have sensitivity and specificity figures around 80%. However, pathological studies have shown that comorbidity is a common feature in AD and that the three currently used CSF biomarkers do not optimally reflect the activity of the disease process. Thus, additional markers are needed. Areas covered: In the present review, we screened PubMed for articles published the last five years (2012-2017) for proteomic studies in CSF with the criteria that AD had to be included as one of the diagnostic groups. Based on inclusion criteria, 28 papers were included reporting in total 224 biomarker-data that were altered in AD compared to control. Both mass spectrometry and multi-panel immunoassays were considered as proteomic studies. Expert commentary: A large number of pilot studies have been reported but so far there is a lack of replicated findings and to date no CSF biomarker discovered in proteomic studies has reached the clinic to aid in the diagnostic work-up of patients with cognitive impairment.
Collapse
Affiliation(s)
- Erik Portelius
- a Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , The Sahlgrenska Academy at the University of Gothenburg , Mölndal , Sweden.,b Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Mölndal , Sweden
| | - Gunnar Brinkmalm
- a Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , The Sahlgrenska Academy at the University of Gothenburg , Mölndal , Sweden.,b Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Mölndal , Sweden
| | - Josef Pannee
- a Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , The Sahlgrenska Academy at the University of Gothenburg , Mölndal , Sweden.,b Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Mölndal , Sweden
| | - Henrik Zetterberg
- a Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , The Sahlgrenska Academy at the University of Gothenburg , Mölndal , Sweden.,b Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Mölndal , Sweden.,c Department of Molecular Neuroscience , UCL Institute of Neurology , London , UK
| | - Kaj Blennow
- a Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , The Sahlgrenska Academy at the University of Gothenburg , Mölndal , Sweden.,b Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Mölndal , Sweden
| | - Rahil Dahlén
- a Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , The Sahlgrenska Academy at the University of Gothenburg , Mölndal , Sweden.,b Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Mölndal , Sweden
| | - Ann Brinkmalm
- a Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , The Sahlgrenska Academy at the University of Gothenburg , Mölndal , Sweden.,b Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Mölndal , Sweden
| | - Johan Gobom
- a Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , The Sahlgrenska Academy at the University of Gothenburg , Mölndal , Sweden.,b Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Mölndal , Sweden
| |
Collapse
|
9
|
Elson A. Stepping out of the shadows: Oncogenic and tumor-promoting protein tyrosine phosphatases. Int J Biochem Cell Biol 2017; 96:135-147. [PMID: 28941747 DOI: 10.1016/j.biocel.2017.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 12/18/2022]
Abstract
Protein tyrosine phosphorylation is critical for proper function of cells and organisms. Phosphorylation is regulated by the concerted but generically opposing activities of tyrosine kinases (PTKs) and tyrosine phosphatases (PTPs), which ensure its proper regulation, reversibility, and ability to respond to changing physiological situations. Historically, PTKs have been associated mainly with oncogenic and pro-tumorigenic activities, leading to the generalization that protein dephosphorylation is anti-oncogenic and hence that PTPs are tumor-suppressors. In many cases PTPs do suppress tumorigenesis. However, a growing body of evidence indicates that PTPs act as dominant oncogenes and drive cell transformation in a number of contexts, while in others PTPs support transformation that is driven by other oncogenes. This review summarizes the known transforming and tumor-promoting activities of the classical, tyrosine specific PTPs and highlights their potential as drug targets for cancer therapy.
Collapse
Affiliation(s)
- Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
10
|
Ma J, Kong Y, Nan H, Qu S, Fu X, Jiang L, Wang W, Guo H, Zhao S, He J, Nan K. Pleiotrophin as a potential biomarker in breast cancer patients. Clin Chim Acta 2016; 466:6-12. [PMID: 28041942 DOI: 10.1016/j.cca.2016.12.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 12/06/2016] [Accepted: 12/28/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Pleiotrophin (PTN), a multifunctional growth factor, is up-regulated in many tumors. PTN is reported to play an important role in the regulation of several cellular processes. The objective of this study is to evaluate the clinical significance of PTN as a tumor marker in breast cancer (BC). METHODS Serum PTN levels were detected in 105 BC patients and 40 healthy volunteers using ELISA. In addition, PTN expression was examined in 80 BC tissues in a nested case-control study by immunohistochemistry. RESULTS Serum PTN levels were elevated in BC patients compared to healthy controls. Area under receiver operating characteristic (ROC) curve was 0.878 (95% CI: 0.824-0.932). The sensitivity of serum PTN was superior to CEA and CA15-3. High serum PTN levels were associated with TNM stage, histology grade, and distant metastasis. Moreover, serum PTN levels decreased significantly after surgical treatment. In BC tissues, PTN expression was significantly higher in BC tissues relative to paired paracancerous tissues. Tissue PTN expression proved to be a prognostic factor for breast cancer according to multivariable logistic regression analysis. CONCLUSION PTN could be considered as a potential biomarker for the presence of breast cancer.
Collapse
Affiliation(s)
- Jiequn Ma
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Ying Kong
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Haocheng Nan
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Shengyang Qu
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Xiao Fu
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Lili Jiang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Wenjuan Wang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Hui Guo
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Shounian Zhao
- Xi'an Institute for Health Education, Xi'an, Shaanxi 710004, PR China
| | - Jianjun He
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| | - Kejun Nan
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
11
|
Papadimitriou E, Pantazaka E, Castana P, Tsalios T, Polyzos A, Beis D. Pleiotrophin and its receptor protein tyrosine phosphatase beta/zeta as regulators of angiogenesis and cancer. Biochim Biophys Acta Rev Cancer 2016; 1866:252-265. [DOI: 10.1016/j.bbcan.2016.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 02/06/2023]
|
12
|
Khoonsari PE, Häggmark A, Lönnberg M, Mikus M, Kilander L, Lannfelt L, Bergquist J, Ingelsson M, Nilsson P, Kultima K, Shevchenko G. Analysis of the Cerebrospinal Fluid Proteome in Alzheimer's Disease. PLoS One 2016; 11:e0150672. [PMID: 26950848 PMCID: PMC4780771 DOI: 10.1371/journal.pone.0150672] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/16/2016] [Indexed: 12/24/2022] Open
Abstract
Alzheimer’s disease is a neurodegenerative disorder accounting for more than 50% of cases of dementia. Diagnosis of Alzheimer’s disease relies on cognitive tests and analysis of amyloid beta, protein tau, and hyperphosphorylated tau in cerebrospinal fluid. Although these markers provide relatively high sensitivity and specificity for early disease detection, they are not suitable for monitor of disease progression. In the present study, we used label-free shotgun mass spectrometry to analyse the cerebrospinal fluid proteome of Alzheimer’s disease patients and non-demented controls to identify potential biomarkers for Alzheimer’s disease. We processed the data using five programs (DecyderMS, Maxquant, OpenMS, PEAKS, and Sieve) and compared their results by means of reproducibility and peptide identification, including three different normalization methods. After depletion of high abundant proteins we found that Alzheimer’s disease patients had lower fraction of low-abundance proteins in cerebrospinal fluid compared to healthy controls (p<0.05). Consequently, global normalization was found to be less accurate compared to using spiked-in chicken ovalbumin for normalization. In addition, we determined that Sieve and OpenMS resulted in the highest reproducibility and PEAKS was the programs with the highest identification performance. Finally, we successfully verified significantly lower levels (p<0.05) of eight proteins (A2GL, APOM, C1QB, C1QC, C1S, FBLN3, PTPRZ, and SEZ6) in Alzheimer’s disease compared to controls using an antibody-based detection method. These proteins are involved in different biological roles spanning from cell adhesion and migration, to regulation of the synapse and the immune system.
Collapse
Affiliation(s)
- Payam Emami Khoonsari
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Anna Häggmark
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Maria Lönnberg
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Maria Mikus
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Lena Kilander
- Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Lars Lannfelt
- Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Jonas Bergquist
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Peter Nilsson
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Kim Kultima
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Ganna Shevchenko
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Sethi G, Kwon Y, Burkhalter RJ, Pathak HB, Madan R, McHugh S, Atay S, Murthy S, Tawfik OW, Godwin AK. PTN signaling: Components and mechanistic insights in human ovarian cancer. Mol Carcinog 2014; 54:1772-85. [PMID: 25418856 DOI: 10.1002/mc.22249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/30/2014] [Accepted: 10/10/2014] [Indexed: 12/13/2022]
Abstract
Molecular vulnerabilities represent promising candidates for the development of targeted therapies that hold the promise to overcome the challenges encountered with non-targeted chemotherapy for the treatment of ovarian cancer. Through a synthetic lethality screen, we previously identified pleiotrophin (PTN) as a molecular vulnerability in ovarian cancer and showed that siRNA-mediated PTN knockdown induced apoptotic cell death in epithelial ovarian cancer (EOC) cells. Although, it is well known that PTN elicits its pro-tumorigenic effects through its receptor, protein tyrosine phosphatase receptor Z1 (PTPRZ1), little is known about the potential importance of this pathway in the pathogenesis of ovarian cancer. In this study, we show that PTN is expressed, produced, and secreted in a panel of EOC cell lines. PTN levels in serous ovarian tumor tissues are on average 3.5-fold higher relative to normal tissue and PTN is detectable in serum samples of patients with EOC. PTPRZ1 is also expressed and produced by EOC cells and is found to be up-regulated in serous ovarian tumor tissue relative to normal ovarian surface epithelial tissue (P < 0.05). Gene silencing of PTPRZ1 in EOC cell lines using siRNA-mediated knockdown shows that PTPRZ1 is essential for viability and results in significant apoptosis with no effect on the cell cycle phase distribution. In order to determine how PTN mediates survival, we silenced the gene using siRNA mediated knockdown and performed expression profiling of 36 survival-related genes. Through computational mapping of the differentially expressed genes, members of the MAPK (mitogen-activated protein kinase) family were found to be likely effectors of PTN signaling in EOC cells. Our results provide the first experimental evidence that PTN and its signaling components may be of significance in the pathogenesis of epithelial ovarian cancer and provide a rationale for clinical evaluation of MAPK inhibitors in PTN and/or PTPRZ1 expressing ovarian tumors.
Collapse
Affiliation(s)
- Geetika Sethi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Department of Biochemistry, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Youngjoo Kwon
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Rebecca J Burkhalter
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Harsh B Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas.,University of Kansas Cancer Center, Kansas City, Kansas
| | - Rashna Madan
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Sarah McHugh
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Safinur Atay
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Smruthi Murthy
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Ossama W Tawfik
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas.,University of Kansas Cancer Center, Kansas City, Kansas
| |
Collapse
|
14
|
Minning C, Mokhtar NM, Abdullah N, Muhammad R, Emran NA, Ali SAMD, Harun R, Jamal R. Exploring breast carcinogenesis through integrative genomics and epigenomics analyses. Int J Oncol 2014; 45:1959-68. [PMID: 25175708 DOI: 10.3892/ijo.2014.2625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 07/18/2014] [Indexed: 11/05/2022] Open
Abstract
There have been many DNA methylation studies on breast cancer which showed various methylation patterns involving tumour suppressor genes and oncogenes but only a few of those studies link the methylation data with gene expression. More data are required especially from the Asian region and to analyse how the epigenome data correlate with the transcriptome. DNA methylation profiling was carried out on 76 fresh frozen primary breast tumour tissues and 25 adjacent non-cancerous breast tissues using the Illumina Infinium(®) HumanMethylation27 BeadChip. Validation of methylation results was performed on 7 genes using either MS-MLPA or MS-qPCR. Gene expression profiling was done on 15 breast tumours and 5 adjacent non-cancerous breast tissues using the Affymetrix GeneChip(®) Human Gene 1.0 ST array. The overlapping genes between DNA methylation and gene expression datasets were further mapped to the KEGG database to identify the molecular pathways that linked these genes together. Supervised hierarchical cluster analysis revealed 1,389 hypermethylated CpG sites and 22 hypomethylated CpG sites in cancer compared to the normal samples. Gene expression microarray analysis using a fold-change of at least 1.5 and a false discovery rate (FDR) at p>0.05 identified 404 upregulated and 463 downregulated genes in cancer samples. Integration of both datasets identified 51 genes with hypermethylation with low expression (negative association) and 13 genes with hypermethylation with high expression (positive association). Most of the overlapping genes belong to the focal adhesion and extracellular matrix-receptor interaction that play important roles in breast carcinogenesis. The present study displayed the value of using multiple datasets in the same set of tissues and how the integrative analysis can create a list of well-focused genes as well as to show the correlation between epigenetic changes and gene expression. These gene signatures can help us understand the epigenetic regulation of gene expression and could be potential targets for therapeutic intervention in the future.
Collapse
Affiliation(s)
- Chin Minning
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norfilza Mohd Mokhtar
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norlia Abdullah
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rohaizak Muhammad
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Aina Emran
- Department of Surgery, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Siti Aishah M D Ali
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Roslan Harun
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Bavi P, Jehan Z, Bu R, Prabhakaran S, Al-Sanea N, Al-Dayel F, Al-Assiri M, Al-Halouly T, Sairafi R, Uddin S, Al-Kuraya KS. ALK gene amplification is associated with poor prognosis in colorectal carcinoma. Br J Cancer 2013; 109:2735-2743. [PMID: 24129244 PMCID: PMC3833224 DOI: 10.1038/bjc.2013.641] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 09/14/2013] [Accepted: 09/23/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Recently, the anaplastic lymphoma kinase (ALK) has been found to be altered in several solid and haematological tumours. ALK gene copy number changes and mutations in colorectal cancers (CRCs) are not well characterised. We aimed to study the prevalence of ALK copy number changes, translocations, gene mutations and protein expression in 770 CRC patients, and correlate these findings with molecular and clinico-pathological data. METHODS ALK gene copy number variations and ALK expression were evaluated by fluorescence in situ hybridisation (FISH) and immunohistochemistry, respectively. RESULTS Translocations of the ALK gene were not observed; 3.4% (26 out of 756) of the CRC patients tested had an increase in ALK gene copy number either amplification or gain. Interestingly, increased ALK gene copy number alteration was associated with poor prognosis (P=0.0135) and was an independent prognostic marker in multivariate Cox proportional hazards model. The study reveals a significant impact of ALK gene copy number alterations on the outcome of patients with CRC. CONCLUSION The findings of our study highlight a potential role of targeting ALK in advanced CRCs by using ALK FISH and ALK IHC as a screening tool to detect ALK alterations. Based on these findings, a potential role of ALK inhibitor as a therapeutic agent in a subset of CRC merits further investigation.
Collapse
Affiliation(s)
- P Bavi
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Z Jehan
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - R Bu
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - S Prabhakaran
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - N Al-Sanea
- Colorectal Unit, Department of Surgery, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - F Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - M Al-Assiri
- Department of Surgery, Security Forces Hospital, Riyadh, Saudi Arabia
| | - T Al-Halouly
- Department of Pathology, Security Forces Hospital, Riyadh, Saudi Arabia
| | - R Sairafi
- Department of Surgery, Security Forces Hospital, Riyadh, Saudi Arabia
| | - S Uddin
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - K S Al-Kuraya
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- Department of Pathology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Nunes-Xavier CE, Martín-Pérez J, Elson A, Pulido R. Protein tyrosine phosphatases as novel targets in breast cancer therapy. Biochim Biophys Acta Rev Cancer 2013; 1836:211-26. [PMID: 23756181 DOI: 10.1016/j.bbcan.2013.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 06/01/2013] [Indexed: 02/07/2023]
Abstract
Breast cancer is linked to hyperactivation of protein tyrosine kinases (PTKs), and recent studies have unveiled that selective tyrosine dephosphorylation by protein tyrosine phosphatases (PTPs) of specific substrates, including PTKs, may activate or inactivate oncogenic pathways in human breast cancer cell growth-related processes. Here, we review the current knowledge on the involvement of PTPs in breast cancer, as major regulators of breast cancer therapy-targeted PTKs, such as HER1/EGFR, HER2/Neu, and Src. The functional interplay between PTKs and PTK-activating or -inactivating PTPs, and its implications in novel breast cancer therapies based on targeting of specific PTPs, are discussed.
Collapse
Affiliation(s)
- Caroline E Nunes-Xavier
- BioCruces Health Research Institute, Hospital de Cruces, Plaza Cruces s/n, 48903 Barakaldo, Spain
| | | | | | | |
Collapse
|
17
|
Rosenfield SM, Bowden ET, Cohen-Missner S, Gibby KA, Ory V, Henke RT, Riegel AT, Wellstein A. Pleiotrophin (PTN) expression and function and in the mouse mammary gland and mammary epithelial cells. PLoS One 2012; 7:e47876. [PMID: 23077670 PMCID: PMC3471873 DOI: 10.1371/journal.pone.0047876] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 09/24/2012] [Indexed: 11/19/2022] Open
Abstract
Expression of the heparin-binding growth factor, pleiotrophin (PTN) in the mammary gland has been reported but its function during mammary gland development is not known. We examined the expression of PTN and its receptor ALK (Anaplastic Lymphoma Kinase) at various stages of mouse mammary gland development and found that their expression in epithelial cells is regulated in parallel during pregnancy. A 30-fold downregulation of PTN mRNA expression was observed during mid-pregnancy when the mammary gland undergoes lobular-alveolar differentiation. After weaning of pups, PTN expression was restored although baseline expression of PTN was reduced significantly in mammary glands of mice that had undergone multiple pregnancies. We found PTN expressed in epithelial cells of the mammary gland and thus used a monoclonal anti-PTN blocking antibody to elucidate its function in cultured mammary epithelial cells (MECs) as well as during gland development. Real-time impedance monitoring of MECs growth, migration and invasion during anti-PTN blocking antibody treatment showed that MECs motility and invasion but not proliferation depend on the activity of endogenous PTN. Increased number of mammospheres with laminin deposition after anti-PTN blocking antibody treatment of MECs in 3D culture and expression of progenitor markers suggest that the endogenously expressed PTN inhibits the expansion and differentiation of epithelial progenitor cells by disrupting cell-matrix adhesion. In vivo, PTN activity was found to inhibit ductal outgrowth and branching via the inhibition of phospho ERK1/2 signaling in the mammary epithelial cells. We conclude that PTN delays the maturation of the mammary gland by maintaining mammary epithelial cells in a progenitor phenotype and by inhibiting their differentiation during mammary gland development.
Collapse
Affiliation(s)
- Sonia M. Rosenfield
- Lombardi Cancer Center, Georgetown University, Washington, District of Columbia, United States of America
| | - Emma T. Bowden
- MedImmune, Gaithersburg, Maryland, United States of America
| | - Shani Cohen-Missner
- Lombardi Cancer Center, Georgetown University, Washington, District of Columbia, United States of America
| | - Krissa A. Gibby
- Lombardi Cancer Center, Georgetown University, Washington, District of Columbia, United States of America
| | - Virginie Ory
- Lombardi Cancer Center, Georgetown University, Washington, District of Columbia, United States of America
| | - Ralf T. Henke
- Lombardi Cancer Center, Georgetown University, Washington, District of Columbia, United States of America
| | - Anna T. Riegel
- Lombardi Cancer Center, Georgetown University, Washington, District of Columbia, United States of America
| | - Anton Wellstein
- Lombardi Cancer Center, Georgetown University, Washington, District of Columbia, United States of America
- * E-mail:
| |
Collapse
|
18
|
Yan Q, Huang HL, Yao X, Li J, Li LQ, Zhong J, Min LS, Dai LC, Zheng SS. Novel functional proteins interact with midkine in hepatic cancer cells. Hepatobiliary Pancreat Dis Int 2012; 11:272-7. [PMID: 22672821 DOI: 10.1016/s1499-3872(12)60160-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Midkine is a heparin-binding growth factor that promotes the proliferation, survival, migration and differentiation of various target cells. Midkine plays an important role in tumorigenesis and tumor progression, and is overexpressed in many human malignant tumors. Patients with high tumor midkine expression frequently have a worse prognosis than those with low expression. The present study was designed to investigate the interaction network of midkine in hepatic cancer cells, and to elucidate its role in hepatocellular carcinoma. METHODS DNA encoding full-length midkine was cloned into pDBLeu vector to serve as bait in yeast two-hybrid screening to identify interacting proteins. Candidate proteins were examined on SC-Leu-Trp-His+3-AT (20 mmol/L) plates and assayed for X-gal activity, then sequenced and classified according to the GenBank. Finally, identified proteins were expressed by the in vitro expression system pCMVTnT, and protein interactions were confirmed by co-immunoprecipitation. RESULTS Using the yeast two-hybrid system, we found 6 proteins that interacted with midkine: NK-kappa-B inhibitor alpha (I-κ-B-alpha), Dvl-binding protein naked cuticle 2, granulin, latent active TGF-beta binding protein 3, latent active TGF-beta binding protein 4, and phospholipid scramblase 1. In vitro co-immunoprecipitation demonstrated that all identified proteins directly interacted with midkine. CONCLUSION The identification of midkine-interacting proteins in hepatic cancer cells indicates that midkine is a multifunctional factor that may participate in cell migration, differentiation, and proliferation, and is also associated with the multicellular response feedback during the development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Qiang Yan
- Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Marzan CV, Kupumbati TS, Bertran SP, Samuels T, Leibovitch B, Mira-y-Lopez R, Ossowski L, Farias EF. Adipocyte derived paracrine mediators of mammary ductal morphogenesis controlled by retinoic acid receptors. Dev Biol 2010; 349:125-36. [PMID: 20974122 DOI: 10.1016/j.ydbio.2010.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 10/14/2010] [Accepted: 10/18/2010] [Indexed: 10/18/2022]
Abstract
We generated a transgenic (Tg)-mouse model expressing a dominant negative-(DN)-RARα, (RARαG303E) under adipocytes-specific promoter to explore the paracrine role of adipocyte retinoic acid receptors (RARs) in mammary morphogenesis. Transgenic adipocytes had reduced level of RARα, β and γ, which coincided with a severely underdeveloped pubertal and mature ductal tree with profoundly decreased epithelial cell proliferation. Transplantation experiments of mammary epithelium and of whole mammary glands implicated a fat-pad dependent paracrine mechanism in the stunted phenotype of the epithelial ductal tree. Co-cultures of primary adipocytes, or in vitro differentiated adipocyte cell line, with mammary epithelium showed that when activated, adipocyte-RARs contribute to generation of secreted proliferative and pro-migratory factors. Gene expression microarrays revealed a large number of genes regulated by adipocyte-RARs. Among them, pleiotrophin (PTN) was identified as the paracrine effectors of epithelial cell migration. Its expression was found to be strongly inhibited by DN-RARα, an inhibition relieved by pharmacological doses of all-trans retinoic acid (atRA) in culture and in vivo. Moreover, adipocyte-PTHR, another atRA responsive gene, was found to be an up-stream regulator of PTN. Overall, these results support the existence of a novel paracrine loop controlled by adipocyte-RAR that regulates the mammary ductal tree morphogenesis.
Collapse
Affiliation(s)
- Christine V Marzan
- Department of Medicine, Division of Hematology/Oncology, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ma Y, Ye F, Xie X, Zhou C, Lu W. Significance of PTPRZ1 and CIN85 expression in cervical carcinoma. Arch Gynecol Obstet 2010; 284:699-704. [PMID: 20882291 DOI: 10.1007/s00404-010-1693-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 09/13/2010] [Indexed: 11/29/2022]
Abstract
PURPOSE To investigate PTPRZ1 and CIN85 expression and their significance in cervical carcinoma. METHODS The expression of PTPRZ1 and CIN85 was detected by immunohistochemistry and the association between PTPRZ1 and CIN85 expression and clinical pathological variables were analyzed. RESULTS The expression of PTPRZ1 and CIN85 were significantly higher in cervical carcinoma than those in normal cervical epithelium. CIN85 expression was significantly higher in patients with deeper cervical invasion when compared with that with superficial invasion, while PTPRZ1 expression was significantly higher in patients with smaller tumor size (≤2 cm) than that with larger size (>2 cm). The expression of PTPRZ1 and CIN85 were higher in squamous cell carcinoma than those in adenocarcinoma. CONCLUSIONS There exist increased PTPRZ1 and CIN85 expression in cervical carcinoma and they are probably associated with tumor growth or invasion. PTPRZ1 and CIN85 expression were higher in squamous cell carcinoma than those in adenocarcinoma.
Collapse
Affiliation(s)
- Yaxi Ma
- Department of Gynecology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | | | | | | | | |
Collapse
|
21
|
Weng T, Liu L. The role of pleiotrophin and beta-catenin in fetal lung development. Respir Res 2010; 11:80. [PMID: 20565841 PMCID: PMC2901351 DOI: 10.1186/1465-9921-11-80] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 06/18/2010] [Indexed: 12/21/2022] Open
Abstract
Mammalian lung development is a complex biological process, which is temporally and spatially regulated by growth factors, hormones, and extracellular matrix proteins. Abnormal changes of these molecules often lead to impaired lung development, and thus pulmonary diseases. Epithelial-mesenchymal interactions are crucial for fetal lung development. This paper reviews two interconnected pathways, pleiotrophin and Wnt/β-catenin, which are involved in fibroblast and epithelial cell communication during fetal lung development.
Collapse
Affiliation(s)
- Tingting Weng
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | |
Collapse
|
22
|
Wang V, Davis DA, Veeranna RP, Haque M, Yarchoan R. Characterization of the activation of protein tyrosine phosphatase, receptor-type, Z polypeptide 1 (PTPRZ1) by hypoxia inducible factor-2 alpha. PLoS One 2010; 5:e9641. [PMID: 20224786 PMCID: PMC2835759 DOI: 10.1371/journal.pone.0009641] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 02/16/2010] [Indexed: 11/19/2022] Open
Abstract
Background Hypoxia inducible factors (HIFs) are the principal means by which cells upregulate genes in response to hypoxia and certain other stresses. There are two major HIFs, HIF-1 and HIF-2. We previously found that certain genes are preferentially activated by HIF-2. One was protein tyrosine phosphatase, receptor-type, Z polypeptide 1 (PTPRZ1). PTPRZ1 is overexpressed in a number of tumors and has been implicated in glioblastoma pathogenesis. Methodology/Principal Findings To understand the preferential activation of PTPRZ1 by HIF-2, we studied the PTPRZ1 promoter in HEK293T cells and Hep3B cells. Through deletion and mutational analysis, we identified the principal hypoxia response element. This element bound to both HIF-1 and HIF-2. We further identified a role for ELK1, an E26 transformation-specific (Ets) factor that can bind to HIF-2α but not HIF-1α, in the HIF-2 responsiveness. Knock-down experiments using siRNA to ELK1 decreased HIF-2 activation by over 50%. Also, a deletion mutation of one of the two Ets binding motifs located near the principal hypoxia response element similarly decreased activation of the PTPRZ1 promoter by HIF-2. Finally, chromatin immunoprecipitation assays showed binding of HIF and ELK1 to the PTPRZ1 promoter region. Conclusions/Significance These results identify HIF-binding and Ets-binding motifs on the PTPRZ1 promoter and provide evidence that preferential activation of PTPRZ1 by HIF-2 results at least in part from cooperative binding of HIF-2 and ELK1 to nearby sites on the PTPRZ1 promoter region. These results may have implications in tumor pathogenesis and in understanding neurobiology, and may help inform the development of novel tumor therapy.
Collapse
Affiliation(s)
- Victoria Wang
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David A. Davis
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ravindra P. Veeranna
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Muzammel Haque
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
23
|
Besser M, Horvat-Bröcker A, Eysel UT, Faissner A. Differential expression of receptor protein tyrosine phosphatases accompanies the reorganisation of the retina upon laser lesion. Exp Brain Res 2009; 198:37-47. [PMID: 19639307 DOI: 10.1007/s00221-009-1932-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Accepted: 06/29/2009] [Indexed: 12/14/2022]
Abstract
The regulation of protein phosphorylation plays an essential role in virtually all aspects of eukaryotic development. Beginning with the regulation of the cell cycle to cellular proliferation and differentiation, the delicate balance between the phosphorylating activity of kinases and the dephosphorylation by phosphatases controls the outcome of many signal transduction cascades. The generation of cellular diversity occurs in an environment that is structured by the extracellular matrix (ECM) which forms a surrounding niche for stem and progenitor cells. Cell-cell and cell-matrix interactions elicit specific signaling pathways that control cellular behavior. In pathological situations such as neural degenerating diseases, gene expression patterns and finally the composition of the ECM change dramatically. This leads to changes of cell behavior and finally results in the failure of regeneration and functional restoration in the adult central nervous system. In order to study the roles of tyrosine phosphatases and ECM in this context, we analyzed the effects of laser-induced retinal injury on the regulation of the receptor protein tyrosine phosphatases (RPTP) RPTPBr7, Phogrin and RPTPbeta/zeta. The latter occurs in several isoforms, including the soluble released chondroitin sulfate proteoglycan phosphacan that is expressed in the developing retina. The receptor variants RPTPbeta/zeta(long) and RPTPbeta/zeta(short) may serve as receptors of tenascin-proteins and serve as modulators of cell intrinsic signaling in response to the ECM. Using quantitative real-time RT-PCR analysis, we show here a time-dependent pattern of gene expression of these molecules following laser lesions of the retina.
Collapse
Affiliation(s)
- Manuela Besser
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstr. 150, 44780 Bochum, Germany
| | | | | | | |
Collapse
|
24
|
Webb TR, Slavish J, George RE, Look AT, Xue L, Jiang Q, Cui X, Rentrop WB, Morris SW. Anaplastic lymphoma kinase: role in cancer pathogenesis and small-molecule inhibitor development for therapy. Expert Rev Anticancer Ther 2009; 9:331-56. [PMID: 19275511 DOI: 10.1586/14737140.9.3.331] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase in the insulin receptor superfamily, was initially identified in constitutively activated oncogenic fusion forms - the most common being nucleophosmin-ALK - in anaplastic large-cell lymphomas, and subsequent studies have identified ALK fusions in diffuse large B-cell lymphomas, systemic histiocytosis, inflammatory myofibroblastic tumors, esophageal squamous cell carcinomas and non-small-cell lung carcinomas. More recently, genomic DNA amplification and protein overexpression, as well as activating point mutations, of ALK have been described in neuroblastomas. In addition to those cancers for which a causative role for aberrant ALK activity is well validated, more circumstantial links implicate the full-length, normal ALK receptor in the genesis of other malignancies - including glioblastoma and breast cancer - via a mechanism of receptor activation involving autocrine and/or paracrine growth loops with the reported ALK ligands, pleiotrophin and midkine. This review summarizes normal ALK biology, the confirmed and putative roles of ALK in the development of human cancers and efforts to target ALK using small-molecule kinase inhibitors.
Collapse
Affiliation(s)
- Thomas R Webb
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, 332 North Lauderdale Street, Mail Stop 1000, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abbott KL, Matthews RT, Pierce M. Receptor tyrosine phosphatase beta (RPTPbeta) activity and signaling are attenuated by glycosylation and subsequent cell surface galectin-1 binding. J Biol Chem 2008; 283:33026-35. [PMID: 18838383 DOI: 10.1074/jbc.m803646200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
O-Mannosyl-linked glycosylation is abundant within the central nervous system, yet very few glycoproteins with this glycan modification have been identified. Congenital diseases with significant neurological defects arise from inactivating mutations found within the glycosyltransferases that act early in the O-mannosyl glycosylation pathway. The N-acetylglucosaminyltransferase known as GnT-Vb or -IX is highly expressed in brain and branches O-mannosyl-linked glycans. Our results using SH-SY5Y neuroblastoma cells indicate that GnT-Vb activity promotes the addition of the O-mannosyl-linked HNK-1 modification found on the developmentally regulated and neuron-specific receptor protein-tyrosine phosphatase beta (RPTPbeta). These changes in glycosylation accompany decreased cell-cell adhesion and increased rates of migration on laminin. In addition, we show that expression of GnT-Vb promotes its dimerization and inhibits RPTPbeta intrinsic phosphatase activity, resulting in higher levels of phosphorylated beta-catenin, suggesting a mechanism by which GnT-Vb glycosylation couples to changes in cell adhesion. GnT-Vb-mediated glycosylation of RPTPbeta promotes galectin-1 binding and RPTPbeta levels of retention on the cell surface. N-Acetyllactosamine, but not sucrose, treatment of cells results in decreased RPTP retention, showing that galectin-1 binding contributes to the increased retention after GnT-Vb expression. These results place GnT-Vb as a regulator of RPTPbeta signaling that influences cell-cell and cell-matrix interactions in the developing nervous system.
Collapse
Affiliation(s)
- Karen L Abbott
- Department of Biochemistry, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA.
| | | | | |
Collapse
|