1
|
Vidyadharan A, Jyothi Puthiya Veettil A, Pulickal Santhosh A, Lalitha KV, Joseph TC. Prevalence of toxigenic Clostridium botulinum in food products sold in Indian retail markets. Anaerobe 2025; 93:102954. [PMID: 40118335 DOI: 10.1016/j.anaerobe.2025.102954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/19/2025] [Accepted: 03/12/2025] [Indexed: 03/23/2025]
Abstract
INTRODUCTION Clostridium botulinum and botulinum neurotoxins have been recognized as an important food safety hazard. The objective of this study was to screen the prevalence of C. botulinum and botulinum toxin in various food products sold in the retail markets of India. MATERIAL AND METHODS A total of 236 food products collected from Indian retail markets were screened for preformed botulinum toxin using a mouse bioassay. This was followed by enrichment and isolation and further testing of isolates for botulinum toxin production using an additional mouse bioassay. A toxin neutralization test with type specific antitoxins, 16S rRNA gene sequencing and BoNT (botulinum neurotoxin) gene amplification confirmed the presence of C. botulinum and its toxin production potential. RESULTS AND DISCUSSION Preformed botulinum toxin was not detected in any of the products. The overall prevalence of C. botulinum in the products was 11 %, but pure cultures of C. botulinum could be isolated only from 10 samples. The isolates were identified as C. botulinum type A, type B and type E based on toxin typing with type specific antitoxins and amplification of the botulinum neurotoxin (BoNT) gene. One of the isolates was designated as C. botulinum subtype A1B. This is the first report of isolation of C. botulinum type E and subtype A1B in seafood from India. The presence of C. botulinum in the products tested can be a significant public health hazard since the organism can grow when exposed to favourable conditions and can produce neurotoxin in the food.
Collapse
Affiliation(s)
- Athira Vidyadharan
- Microbiology Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Matsyapuri P.O., Cochin, 682 029, Kerala, India
| | - Arun Jyothi Puthiya Veettil
- Microbiology Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Matsyapuri P.O., Cochin, 682 029, Kerala, India
| | - Athira Pulickal Santhosh
- Microbiology Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Matsyapuri P.O., Cochin, 682 029, Kerala, India
| | - Kuttanapilly Velayudhan Lalitha
- Microbiology Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Matsyapuri P.O., Cochin, 682 029, Kerala, India
| | - Toms Cheriyath Joseph
- Microbiology Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Matsyapuri P.O., Cochin, 682 029, Kerala, India.
| |
Collapse
|
2
|
Rawson AM, Dempster AW, Humphreys CM, Minton NP. Pathogenicity and virulence of Clostridium botulinum. Virulence 2023; 14:2205251. [PMID: 37157163 PMCID: PMC10171130 DOI: 10.1080/21505594.2023.2205251] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Clostridium botulinum, a polyphyletic Gram-positive taxon of bacteria, is classified purely by their ability to produce botulinum neurotoxin (BoNT). BoNT is the primary virulence factor and the causative agent of botulism. A potentially fatal disease, botulism is classically characterized by a symmetrical descending flaccid paralysis, which is left untreated can lead to respiratory failure and death. Botulism cases are classified into three main forms dependent on the nature of intoxication; foodborne, wound and infant. The BoNT, regarded as the most potent biological substance known, is a zinc metalloprotease that specifically cleaves SNARE proteins at neuromuscular junctions, preventing exocytosis of neurotransmitters, leading to muscle paralysis. The BoNT is now used to treat numerous medical conditions caused by overactive or spastic muscles and is extensively used in the cosmetic industry due to its high specificity and the exceedingly small doses needed to exert long-lasting pharmacological effects. Additionally, the ability to form endospores is critical to the pathogenicity of the bacteria. Disease transmission is often facilitated via the metabolically dormant spores that are highly resistant to environment stresses, allowing persistence in the environment in unfavourable conditions. Infant and wound botulism infections are initiated upon germination of the spores into neurotoxin producing vegetative cells, whereas foodborne botulism is attributed to ingestion of preformed BoNT. C. botulinum is a saprophytic bacterium, thought to have evolved its potent neurotoxin to establish a source of nutrients by killing its host.
Collapse
Affiliation(s)
- Alexander M Rawson
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The Biodiscovery Institute, The University of Nottingham, Nottingham, UK
| | - Andrew W Dempster
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The Biodiscovery Institute, The University of Nottingham, Nottingham, UK
| | - Christopher M Humphreys
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The Biodiscovery Institute, The University of Nottingham, Nottingham, UK
| | | |
Collapse
|
3
|
Roja B, Saranya S, Chellapandi P. Discovery of novel virulence mechanisms in Clostridium botulinum type A3 using genome-wide analysis. Gene 2023; 869:147402. [PMID: 36972858 DOI: 10.1016/j.gene.2023.147402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/01/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVE Clostridium botulinum type A is a neurotoxin-producing, spore-forming anaerobic bacterium that causes botulism in humans. The evolutionary genomic context of this organism is not yet known to understand its molecular virulence mechanisms in the human intestinal tract. Hence, this study aimed to investigate the mechanisms underlying virulence and pathogenesis by comparing the genomic contexts across species, serotypes, and subtypes. METHODS A comparative genomic approach was used to analyze evolutionary genomic relationships, intergenomic distances, syntenic blocks, replication origins, and gene abundance with phylogenomic neighbors. RESULTS Type A strains have shown genomic proximity to group I strains with distinct accessory genes and vary even within subtypes. Phylogenomic data showed that type C and D strains were distantly related to a group I and group II strains. Synthetic plots indicated that orthologous genes might have evolved from Clostridial ancestry to subtype A3 strains, whereas syntonic out-paralogs might have emerged between subtypes A3 and A1 through α-events. Gene abundance analysis revealed the key roles of genes involved in biofilm formation, cell-cell communication, human diseases, and drug resistance compared to the pathogenic Clostridia. Moreover, we identified 43 unique genes in the type A3 genome, of which 29 were involved in the pathophysiological processes and other genes contributed to amino acid metabolism. The C. botulinum type A3 genome contains 14 new virulence proteins that can provide the ability to confer antibiotic resistance, virulence exertion and adherence to host cells, the host immune system, and mobility of extrachromosomal genetic elements. CONCLUSION The results of our study provide insight into the understanding of new virulence mechanisms to discover new therapeutics for the treatment of human diseases caused by type A3 strains.
Collapse
Affiliation(s)
- B Roja
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli-620024, Tamil Nadu, India
| | - S Saranya
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli-620024, Tamil Nadu, India
| | - P Chellapandi
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli-620024, Tamil Nadu, India.
| |
Collapse
|
4
|
Thomas P, Abdel-Glil MY, Eichhorn I, Semmler T, Werckenthin C, Baumbach C, Murmann W, Bodenthin-Drauschke A, Zimmermann P, Schotte U, Galante D, Slavic D, Wagner M, Wieler LH, Neubauer H, Seyboldt C. Genome Sequence Analysis of Clostridium chauvoei Strains of European Origin and Evaluation of Typing Options for Outbreak Investigations. Front Microbiol 2021; 12:732106. [PMID: 34659160 PMCID: PMC8513740 DOI: 10.3389/fmicb.2021.732106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023] Open
Abstract
Black quarter caused by Clostridium (C.) chauvoei is an important bacterial disease that affects cattle and sheep with high mortality. A comparative genomics analysis of 64 C. chauvoei strains, most of European origin and a few of non-European and unknown origin, was performed. The pangenome analysis showed limited new gene acquisition for the species. The accessory genome involved prophages and genomic islands, with variations in gene composition observed in a few strains. This limited accessory genome may indicate that the species replicates only in the host or that an active CRISPR/Cas system provides immunity to foreign genetic elements. All strains contained a CRISPR type I-B system and it was confirmed that the unique spacer sequences therein can be used to differentiate strains. Homologous recombination events, which may have contributed to the evolution of this pathogen, were less frequent compared to other related species from the genus. Pangenome single nucleotide polymorphism (SNP) based phylogeny and clustering indicate diverse clusters related to geographical origin. Interestingly the identified SNPs were mostly non-synonymous. The study demonstrates the possibility of the existence of polymorphic populations in one host, based on strain variability observed for strains from the same animal and strains from different animals of one outbreak. The study also demonstrates that new outbreak strains are mostly related to earlier outbreak strains from the same farm/region. This indicates the last common ancestor strain from one farm can be crucial to understand the genetic changes and epidemiology occurring at farm level. Known virulence factors for the species were highly conserved among the strains. Genetic elements involved in Nicotinamide adenine dinucleotide (NAD) precursor synthesis (via nadA, nadB, and nadC metabolic pathway) which are known as potential anti-virulence loci are completely absent in C. chauvoei compared to the partial inactivation in C. septicum. A novel core-genome MLST based typing method was compared to sequence typing based on CRISPR spacers to evaluate the usefulness of the methods for outbreak investigations.
Collapse
Affiliation(s)
- Prasad Thomas
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Mostafa Y Abdel-Glil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Inga Eichhorn
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | | | - Christiane Werckenthin
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Oldenburg, Oldenburg, Germany
| | - Christina Baumbach
- State Office for Agriculture, Food Safety and Fisheries Mecklenburg-Western Pomerania, Rostock, Germany
| | - Wybke Murmann
- Chemical and Veterinary Investigations Office, Freiburg, Germany
| | | | - Pia Zimmermann
- Bavarian Health and Food Safety Authority (LGL), Laboratory of Food Microbiology, Oberschleißheim, Germany
| | - Ulrich Schotte
- Department A-Veterinary Medicine, Central Institute of the Bundeswehr Medical Service Kiel, Kronshagen, Germany
| | - Domenico Galante
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Durda Slavic
- Animal Health Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON, Canada
| | - Martin Wagner
- Unit for Food Microbiology, Institute for Food Safety, Technology and Veterinary Public Health, University for Veterinary Medicine, Vienna, Austria
| | | | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Christian Seyboldt
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
5
|
Smith TJ, Tian R, Imanian B, Williamson CHD, Johnson SL, Daligault HE, Schill KM. Integration of Complete Plasmids Containing Bont Genes into Chromosomes of Clostridium parabotulinum, Clostridium sporogenes, and Clostridium argentinense. Toxins (Basel) 2021; 13:473. [PMID: 34357945 PMCID: PMC8310154 DOI: 10.3390/toxins13070473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
At least 40 toxin subtypes of botulinum neurotoxins (BoNTs), a heterogenous group of bacterial proteins, are produced by seven different clostridial species. A key factor that drives the diversity of neurotoxigenic clostridia is the association of bont gene clusters with various genomic locations including plasmids, phages and the chromosome. Analysis of Clostridium sporogenes BoNT/B1 strain CDC 1632, C. argentinense BoNT/G strain CDC 2741, and Clostridium parabotulinum BoNT/B1 strain DFPST0006 genomes revealed bont gene clusters within plasmid-like sequences within the chromosome or nested in large contigs, with no evidence of extrachromosomal elements. A nucleotide sequence (255,474 bp) identified in CDC 1632 shared 99.5% identity (88% coverage) with bont/B1-containing plasmid pNPD7 of C. sporogenes CDC 67071; CDC 2741 contig AYSO01000020 (1.1 MB) contained a ~140 kb region which shared 99.99% identity (100% coverage) with plasmid pRSJ17_1 of C. argentinense BoNT/G strain 89G; and DFPST0006 contig JACBDK0100002 (573 kb) contained a region that shared 100% identity (99%) coverage with the bont/B1-containing plasmid pCLD of C. parabotulinum Okra. This is the first report of full-length plasmid DNA-carrying complete neurotoxin gene clusters integrated in three distinct neurotoxigenic species: C. parabotulinum, C. sporogenes and C. argentinense.
Collapse
Affiliation(s)
- Theresa J. Smith
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA; (T.J.S.); (C.H.D.W.)
| | - Renmao Tian
- Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL 60501, USA; (R.T.); (B.I.)
| | - Behzad Imanian
- Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL 60501, USA; (R.T.); (B.I.)
- Food Science and Nutrition, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Charles H. D. Williamson
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA; (T.J.S.); (C.H.D.W.)
| | - Shannon L. Johnson
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (S.L.J.); (H.E.D.)
| | | | - Kristin M. Schill
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Bedford Park, IL 60501, USA
| |
Collapse
|
6
|
|
7
|
Revitt-Mills SA, Vidor CJ, Watts TD, Lyras D, Rood JI, Adams V. Virulence Plasmids of the Pathogenic Clostridia. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0034-2018. [PMID: 31111816 PMCID: PMC11257192 DOI: 10.1128/microbiolspec.gpp3-0034-2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Indexed: 12/12/2022] Open
Abstract
The clostridia cause a spectrum of diseases in humans and animals ranging from life-threatening tetanus and botulism, uterine infections, histotoxic infections and enteric diseases, including antibiotic-associated diarrhea, and food poisoning. The symptoms of all these diseases are the result of potent protein toxins produced by these organisms. These toxins are diverse, ranging from a multitude of pore-forming toxins to phospholipases, metalloproteases, ADP-ribosyltransferases and large glycosyltransferases. The location of the toxin genes is the unifying theme of this review because with one or two exceptions they are all located on plasmids or on bacteriophage that replicate using a plasmid-like intermediate. Some of these plasmids are distantly related whilst others share little or no similarity. Many of these toxin plasmids have been shown to be conjugative. The mobile nature of these toxin genes gives a ready explanation of how clostridial toxin genes have been so widely disseminated both within the clostridial genera as well as in the wider bacterial community.
Collapse
Affiliation(s)
- Sarah A Revitt-Mills
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Callum J Vidor
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Thomas D Watts
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Dena Lyras
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Julian I Rood
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Vicki Adams
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
8
|
Nawrocki EM, Bradshaw M, Johnson EA. Botulinum neurotoxin-encoding plasmids can be conjugatively transferred to diverse clostridial strains. Sci Rep 2018; 8:3100. [PMID: 29449580 PMCID: PMC5814558 DOI: 10.1038/s41598-018-21342-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/02/2018] [Indexed: 02/07/2023] Open
Abstract
Most Group I Clostridium botulinum strains harbor botulinum neurotoxin (bont) genes on their chromosome, while some carry these genes (including bont/a, bont/b, and bont/f) on large plasmids. Prior work in our laboratory demonstrated that Group I BoNT plasmids were mobilized to C. botulinum recipient strains containing the Tn916 transposon. Here, we show that Tn916 is nonessential for plasmid transfer. Relying on an auxotrophic donor phenotype and a plasmid-borne selectable marker, we observed the transfer of pCLJ, a 270 kb plasmid harboring two bont genes, from its host strain to various clostridia. Transfer frequency was greatest to other Group I C. botulinum strains, but the plasmid was also transferred into traditionally nontoxigenic species, namely C. sporogenes and C. butyricum. Expression and toxicity of BoNT/A4 was confirmed in transconjugants by immunoblot and mouse bioassay. These data indicate that conjugation within the genus Clostridium can occur across physiological Groups of C. botulinum, supporting horizontal gene transfer via bont-bearing plasmids. The transfer of plasmids possessing bont genes to resistant Clostridium spp. such as C. sporogenes could impact biological safety for animals and humans. These plasmids may play an environmental role in initiating death in vertebrates, leading to decomposition and nutrient recycling of animal biomass.
Collapse
Affiliation(s)
- Erin M Nawrocki
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Marite Bradshaw
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eric A Johnson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
9
|
Discovery of novel bacterial toxins by genomics and computational biology. Toxicon 2018; 147:2-12. [PMID: 29438679 DOI: 10.1016/j.toxicon.2018.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/23/2017] [Accepted: 02/07/2018] [Indexed: 12/13/2022]
Abstract
Hundreds and hundreds of bacterial protein toxins are presently known. Traditionally, toxin identification begins with pathological studies of bacterial infectious disease. Following identification and cultivation of a bacterial pathogen, the protein toxin is purified from the culture medium and its pathogenic activity is studied using the methods of biochemistry and structural biology, cell biology, tissue and organ biology, and appropriate animal models, supplemented by bioimaging techniques. The ongoing and explosive development of high-throughput DNA sequencing and bioinformatic approaches have set in motion a revolution in many fields of biology, including microbiology. One consequence is that genes encoding novel bacterial toxins can be identified by bioinformatic and computational methods based on previous knowledge accumulated from studies of the biology and pathology of thousands of known bacterial protein toxins. Starting from the paradigmatic cases of diphtheria toxin, tetanus and botulinum neurotoxins, this review discusses traditional experimental approaches as well as bioinformatics and genomics-driven approaches that facilitate the discovery of novel bacterial toxins. We discuss recent work on the identification of novel botulinum-like toxins from genera such as Weissella, Chryseobacterium, and Enteroccocus, and the implications of these computationally identified toxins in the field. Finally, we discuss the promise of metagenomics in the discovery of novel toxins and their ecological niches, and present data suggesting the existence of uncharacterized, botulinum-like toxin genes in insect gut metagenomes.
Collapse
|
10
|
Identification and characterization of a novel botulinum neurotoxin. Nat Commun 2017; 8:14130. [PMID: 28770820 PMCID: PMC5543303 DOI: 10.1038/ncomms14130] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/02/2016] [Indexed: 12/19/2022] Open
Abstract
Botulinum neurotoxins are known to have seven serotypes (BoNT/A-G). Here we report a new BoNT serotype, tentatively named BoNT/X, which has the lowest sequence identity with other BoNTs and is not recognized by antisera against known BoNTs. Similar to BoNT/B/D/F/G, BoNT/X cleaves vesicle-associated membrane proteins (VAMP) 1, 2 and 3, but at a novel site (Arg66-Ala67 in VAMP2). Remarkably, BoNT/X is the only toxin that also cleaves non-canonical substrates VAMP4, VAMP5 and Ykt6. To validate its activity, a small amount of full-length BoNT/X was assembled by linking two non-toxic fragments using a transpeptidase (sortase). Assembled BoNT/X cleaves VAMP2 and VAMP4 in cultured neurons and causes flaccid paralysis in mice. Thus, BoNT/X is a novel BoNT with a unique substrate profile. Its discovery posts a challenge to develop effective countermeasures, provides a novel tool for studying intracellular membrane trafficking, and presents a new potential therapeutic toxin for modulating secretions in cells.
Collapse
|
11
|
Peck MW, Smith TJ, Anniballi F, Austin JW, Bano L, Bradshaw M, Cuervo P, Cheng LW, Derman Y, Dorner BG, Fisher A, Hill KK, Kalb SR, Korkeala H, Lindström M, Lista F, Lúquez C, Mazuet C, Pirazzini M, Popoff MR, Rossetto O, Rummel A, Sesardic D, Singh BR, Stringer SC. Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature. Toxins (Basel) 2017; 9:toxins9010038. [PMID: 28106761 PMCID: PMC5308270 DOI: 10.3390/toxins9010038] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/04/2017] [Accepted: 01/07/2017] [Indexed: 11/26/2022] Open
Abstract
Botulinum neurotoxins are diverse proteins. They are currently represented by at least seven serotypes and more than 40 subtypes. New clostridial strains that produce novel neurotoxin variants are being identified with increasing frequency, which presents challenges when organizing the nomenclature surrounding these neurotoxins. Worldwide, researchers are faced with the possibility that toxins having identical sequences may be given different designations or novel toxins having unique sequences may be given the same designations on publication. In order to minimize these problems, an ad hoc committee consisting of over 20 researchers in the field of botulinum neurotoxin research was convened to discuss the clarification of the issues involved in botulinum neurotoxin nomenclature. This publication presents a historical overview of the issues and provides guidelines for botulinum neurotoxin subtype nomenclature in the future.
Collapse
Affiliation(s)
| | - Theresa J Smith
- Molecular and Translational Sciences Division, United States Army Medical Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| | - Fabrizio Anniballi
- National Reference Centre for Botulism, Istituto Superiore di Sanita, Rome 299-00161, Italy.
| | - John W Austin
- Bureau of Microbial Hazards, Health Canada, Ottawa, ON K1A 0K9, Canada.
| | - Luca Bano
- Istituto Zooprofilattico Sperimentale delle Venezie, Treviso 31020, Italy.
| | - Marite Bradshaw
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA.
| | - Paula Cuervo
- Área de Microbiología, Departamento de Patología, Universidad Nacional de Cuyo, Mendoza 450001, Argentina.
| | - Luisa W Cheng
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, U.S. Department of Agriculture, Albany, CA 94710, USA.
| | - Yagmur Derman
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki 00014, Finland.
| | | | - Audrey Fisher
- Applied Physics Laboratory, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Karen K Hill
- Los Alamos National Laboratories, Los Alamos, NM 87545, USA.
| | - Suzanne R Kalb
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA.
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki 00014, Finland.
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki 00014, Finland.
| | - Florigio Lista
- Army Medical and Veterinary Research Center, Rome 00184, Italy.
| | - Carolina Lúquez
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.
| | - Christelle Mazuet
- Institut Pasteur, Bactéries anaérobies et Toxines, Paris 75015, France.
| | - Marco Pirazzini
- Biomedical Sciences Department, University of Padova, Padova 35131, Italy.
| | - Michel R Popoff
- Institut Pasteur, Bactéries anaérobies et Toxines, Paris 75015, France.
| | - Ornella Rossetto
- Biomedical Sciences Department, University of Padova, Padova 35131, Italy.
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover 30623, Germany.
| | - Dorothea Sesardic
- National Institute for Biological Standards and Control, a Centre of Medicines and Healthcare Products Regulatory Agency, Hertfordshire EN6 3QG, UK.
| | - Bal Ram Singh
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA.
| | | |
Collapse
|
12
|
Abstract
C. botulinum Groups I and II form botulinum neurotoxin and cause foodborne botulism. Increased knowledge of C. botulinum Group I and II genomes and neurotoxin diversity. Impact on food safety via improved surveillance and tracing/tracking during outbreaks. New insights into C. botulinum biology, food chain transmission, evolution.
The deadly botulinum neurotoxin formed by Clostridium botulinum is the causative agent of foodborne botulism. The increasing availability of C. botulinum genome sequences is starting to allow the genomic diversity of C. botulinum Groups I and II and their neurotoxins to be characterised. This information will impact on microbiological food safety through improved surveillance and tracing/tracking during outbreaks, and a better characterisation of C. botulinum Groups I and II, including the risk presented, and new insights into their biology, food chain transmission, and evolution.
Collapse
|
13
|
Carter AT, Austin JW, Weedmark KA, Peck MW. Evolution of Chromosomal Clostridium botulinum Type E Neurotoxin Gene Clusters: Evidence Provided by Their Rare Plasmid-Borne Counterparts. Genome Biol Evol 2016; 8:540-55. [PMID: 26936890 PMCID: PMC4824171 DOI: 10.1093/gbe/evw017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Analysis of more than 150 Clostridium botulinum Group II type E genomes identified a small fraction (6%) where neurotoxin-encoding genes were located on plasmids. Seven closely related (134–144 kb) neurotoxigenic plasmids of subtypes E1, E3, and E10 were characterized; all carried genes associated with plasmid mobility via conjugation. Each plasmid contained the same 24-kb neurotoxin cluster cassette (six neurotoxin cluster and six flanking genes) that had split a helicase gene, rather than the more common chromosomal rarA. The neurotoxin cluster cassettes had evolved as separate genetic units which had either exited their chromosomal rarA locus in a series of parallel events, inserting into the plasmid-borne helicase gene, or vice versa. A single intact version of the helicase gene was discovered on a nonneurotoxigenic form of this plasmid. The observed low frequency for the plasmid location may reflect one or more of the following: 1) Less efficient recombination mechanism for the helicase gene target, 2) lack of suitable target plasmids, and 3) loss of neurotoxigenic plasmids. Type E1 and E10 plasmids possessed a Clustered Regularly Interspaced Short Palindromic Repeats locus with spacers that recognized C. botulinum Group II plasmids, but not C. botulinum Group I plasmids, demonstrating their long-term separation. Clostridium botulinum Group II type E strains also carry nonneurotoxigenic plasmids closely related to C. botulinum Group II types B and F plasmids. Here, the absence of neurotoxin cassettes may be because recombination requires both a specific mechanism and specific target sequence, which are rarely found together.
Collapse
Affiliation(s)
- Andrew T Carter
- Gut Health and Food Safety, Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | - John W Austin
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Kelly A Weedmark
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Michael W Peck
- Gut Health and Food Safety, Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
14
|
Implications of Genome-Based Discrimination between Clostridium botulinum Group I and Clostridium sporogenes Strains for Bacterial Taxonomy. Appl Environ Microbiol 2015; 81:5420-9. [PMID: 26048939 DOI: 10.1128/aem.01159-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/26/2015] [Indexed: 01/08/2023] Open
Abstract
Taxonomic classification of Clostridium botulinum is based on the production of botulinum neurotoxin (BoNT), while closely related, nontoxic organisms are classified as Clostridium sporogenes. However, this taxonomic organization does not accurately mirror phylogenetic relationships between these species. A phylogenetic reconstruction using 2,016 orthologous genes shared among strains of C. botulinum group I and C. sporogenes clearly separated these two species into discrete clades which showed ∼93% average nucleotide identity (ANI) between them. Clustering of strains based on the presence of variable orthologs revealed 143 C. sporogenes clade-specific genetic signatures, a subset of which were further evaluated for their ability to correctly classify a panel of presumptive C. sporogenes strains by PCR. Genome sequencing of several C. sporogenes strains lacking these signatures confirmed that they clustered with C. botulinum strains in a core genome phylogenetic tree. Our analysis also identified C. botulinum strains that contained C. sporogenes clade-specific signatures and phylogenetically clustered with C. sporogenes strains. The genome sequences of two bont/B2-containing strains belonging to the C. sporogenes clade contained regions with similarity to a bont-bearing plasmid (pCLD), while two different strains belonging to the C. botulinum clade carried bont/B2 on the chromosome. These results indicate that bont/B2 was likely acquired by C. sporogenes strains through horizontal gene transfer. The genome-based classification of these species used to identify candidate genes for the development of rapid assays for molecular identification may be applicable to additional bacterial species that are challenging with respect to their classification.
Collapse
|
15
|
Carter AT, Austin JW, Weedmark KA, Corbett C, Peck MW. Three classes of plasmid (47-63 kb) carry the type B neurotoxin gene cluster of group II Clostridium botulinum. Genome Biol Evol 2015; 6:2076-87. [PMID: 25079343 PMCID: PMC4231633 DOI: 10.1093/gbe/evu164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pulsed-field gel electrophoresis and DNA sequence analysis of 26 strains of Group II (nonproteolytic) Clostridium botulinum type B4 showed that 23 strains carried their neurotoxin gene cluster on a 47–63 kb plasmid (three strains lacked any hybridization signal for the neurotoxin gene, presumably having lost their plasmid). Unexpectedly, no neurotoxin genes were found on the chromosome. This apparent constraint on neurotoxin gene transfer to the chromosome stands in marked contrast to Group I C. botulinum, in which neurotoxin gene clusters are routinely found in both locations. The three main classes of type B4 plasmid identified in this study shared different regions of homology, but were unrelated to any Group I or Group III plasmid. An important evolutionary aspect firmly links plasmid class to geographical origin, with one class apparently dominant in marine environments, whereas a second class is dominant in European terrestrial environments. A third class of plasmid is a hybrid between the other two other classes, providing evidence for contact between these seemingly geographically separated populations. Mobility via conjugation has been previously demonstrated for the type B4 plasmid of strain Eklund 17B, and similar genes associated with conjugation are present in all type B4 plasmids now described. A plasmid toxin–antitoxin system pemI gene located close to the neurotoxin gene cluster and conserved in each type B4 plasmid class may be important in understanding the mechanism which regulates this unique and unexpected bias toward plasmid-borne neurotoxin genes in Group II C. botulinum type B4.
Collapse
Affiliation(s)
- Andrew T Carter
- Gut Health and Food Safety, Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | - John W Austin
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Kelly A Weedmark
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Cindi Corbett
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Michael W Peck
- Gut Health and Food Safety, Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
16
|
Marshall KM, Nowaczyk L, Raphael BH, Skinner GE, Rukma Reddy N. Identification and genetic characterization of Clostridium botulinum serotype A strains from commercially pasteurized carrot juice. Food Microbiol 2014; 44:149-55. [PMID: 25084657 PMCID: PMC11302426 DOI: 10.1016/j.fm.2014.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/23/2014] [Accepted: 05/23/2014] [Indexed: 12/29/2022]
Abstract
Clostridium botulinum is an important foodborne pathogen capable of forming heat resistant endospores and producing deadly botulinum neurotoxins (BoNTs). In 2006, C. botulinum was responsible for an international outbreak of botulism attributed to the consumption of commercially pasteurized carrot juice. The purpose of this study was to isolate and characterize strains of C. botulinum from the adulterated product. Carrot juice bottles retrieved from the manufacturing facility were analyzed for the presence of BoNT and BoNT-producing isolates using DIG-ELISA. Toxigenic isolates from the carrot juice were analyzed using pulsed-field gel electrophoresis (PFGE) and DNA microarray analysis to determine their genetic relatedness to the original outbreak strains CDC51348 and CDC51303. PFGE revealed that isolates CJ4-1 and CJ10-1 shared an identical pulsotype with strain CDC51303, whereas isolate CJ5-1 displayed a unique restriction banding pattern. DNA microarray analysis identified several phage related genes unique to strain CJ5-1, and Southern hybridization analysis of XhoI digested and nondigested DNA showed their chromosomal location, while a homolog to pCLI_A009 of plasmid pCLI of C. botulinum serotype Langeland F, was located on a small plasmid. The acquisition or loss of bacteriophages and other mobile genetic elements among C. botulinum strains has epidemiological and evolutionary implications.
Collapse
Affiliation(s)
- Kristin M Marshall
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, 6502 South Archer Road, Bedford Park, IL 60501, USA.
| | - Louis Nowaczyk
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, 6502 South Archer Road, Bedford Park, IL 60501, USA.
| | - Brian H Raphael
- Centers for Disease Control and Prevention, 1600 Clifton Road, NE, Atlanta, GA 30329, USA.
| | - Guy E Skinner
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, 6502 South Archer Road, Bedford Park, IL 60501, USA.
| | - N Rukma Reddy
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, 6502 South Archer Road, Bedford Park, IL 60501, USA.
| |
Collapse
|
17
|
Abstract
Plasmid-encoded virulence factors are important in the pathogenesis of diseases caused by spore-forming bacteria. Unlike many other bacteria, the most common virulence factors encoded by plasmids in Clostridium and Bacillus species are protein toxins. Clostridium perfringens causes several histotoxic and enterotoxin diseases in both humans and animals and produces a broad range of toxins, including many pore-forming toxins such as C. perfringens enterotoxin, epsilon-toxin, beta-toxin, and NetB. Genetic studies have led to the determination of the role of these toxins in disease pathogenesis. The genes for these toxins are generally carried on large conjugative plasmids that have common core replication, maintenance, and conjugation regions. There is considerable functional information available about the unique tcp conjugation locus carried by these plasmids, but less is known about plasmid maintenance. The latter is intriguing because many C. perfringens isolates stably maintain up to four different, but closely related, toxin plasmids. Toxin genes may also be plasmid-encoded in the neurotoxic clostridia. The tetanus toxin gene is located on a plasmid in Clostridium tetani, but the botulinum toxin genes may be chromosomal, plasmid-determined, or located on bacteriophages in Clostridium botulinum. In Bacillus anthracis it is well established that virulence is plasmid determined, with anthrax toxin genes located on pXO1 and capsule genes on a separate plasmid, pXO2. Orthologs of these plasmids are also found in other members of the Bacillus cereus group such as B. cereus and Bacillus thuringiensis. In B. thuringiensis these plasmids may carry genes encoding one or more insecticidal toxins.
Collapse
|
18
|
Skarin H, Segerman B. Plasmidome interchange between Clostridium botulinum, Clostridium novyi and Clostridium haemolyticum converts strains of independent lineages into distinctly different pathogens. PLoS One 2014; 9:e107777. [PMID: 25254374 PMCID: PMC4177856 DOI: 10.1371/journal.pone.0107777] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 08/15/2014] [Indexed: 01/26/2023] Open
Abstract
Clostridium botulinum (group III), Clostridium novyi and Clostridium haemolyticum are well-known pathogens causing animal botulism, gas gangrene/black disease, and bacillary hemoglobinuria, respectively. A close genetic relationship exists between the species, which has resulted in the collective term C. novyi sensu lato. The pathogenic traits in these species, e.g., the botulinum neurotoxin and the novyi alpha toxin, are mainly linked to a large plasmidome consisting of plasmids and circular prophages. The plasmidome of C. novyi sensu lato has so far been poorly characterized. In this study we explored the genomic relationship of a wide range of strains of C. novyi sensu lato with a special focus on the dynamics of the plasmidome. Twenty-four genomes were sequenced from strains selected to represent as much as possible the genetic diversity in C. novyi sensu lato. Sixty-one plasmids were identified in these genomes and 28 of them were completed. The genomic comparisons revealed four separate lineages, which did not strictly correlate with the species designations. The plasmids were categorized into 13 different plasmid groups on the basis of their similarity and conservation of plasmid replication or partitioning genes. The plasmid groups, lineages and species were to a large extent entwined because plasmids and toxin genes had moved across the lineage boundaries. This dynamic process appears to be primarily driven by phages. We here present a comprehensive characterization of the complex species group C. novyi sensu lato, explaining the intermixed genetic properties. This study also provides examples how the reorganization of the botulinum toxin and the novyi alpha toxin genes within the plasmidome has affected the pathogenesis of the strains.
Collapse
Affiliation(s)
- Hanna Skarin
- Department of Bacteriology, National Veterinary Institute (SVA), Uppsala, Sweden
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Bo Segerman
- Department of Bacteriology, National Veterinary Institute (SVA), Uppsala, Sweden
- * E-mail:
| |
Collapse
|
19
|
Genetic characterization and comparison of Clostridium botulinum isolates from botulism cases in Japan between 2006 and 2011. Appl Environ Microbiol 2014; 80:6954-64. [PMID: 25192986 DOI: 10.1128/aem.02134-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic characterization was performed for 10 group I Clostridium botulinum strains isolated from botulism cases in Japan between 2006 and 2011. Of these, 1 was type A, 2 were type B, and 7 were type A(B) {carrying a silent bont/B [bont/(B)] gene} serotype strains, based on botulinum neurotoxin (BoNT) production. The type A strain harbored the subtype A1 BoNT gene (bont/A1), which is associated with the ha gene cluster. The type B strains carried bont/B5 or bont/B6 subtype genes. The type A(B) strains carried bont/A1 identical to that of type A(B) strain NCTC2916. However, bont/(B) genes in these strains showed single-nucleotide polymorphisms (SNPs) among strains. SNPs at 2 nucleotide positions of bont/(B) enabled classification of the type A(B) strains into 3 groups. Pulsed-field gel electrophoresis (PFGE) and multiple-locus variable-number tandem-repeat analysis (MLVA) also provided consistent separation results. In addition, the type A(B) strains were separated into 2 lineages based on their plasmid profiles. One lineage carried a small plasmid (5.9 kb), and another harbored 21-kb plasmids. To obtain more detailed genetic information about the 10 strains, we sequenced their genomes and compared them with 13 group I C. botulinum genomes in a database using whole-genome SNP analysis. This analysis provided high-resolution strain discrimination and enabled us to generate a refined phylogenetic tree that provides effective traceability of botulism cases, as well as bioterrorism materials. In the phylogenetic tree, the subtype B6 strains, Okayama2011 and Osaka05, were distantly separated from the other strains, indicating genomic divergence of subtype B6 strains among group I strains.
Collapse
|
20
|
Raphael BH, Bradshaw M, Kalb SR, Joseph LA, Lúquez C, Barr JR, Johnson EA, Maslanka SE. Clostridium botulinum strains producing BoNT/F4 or BoNT/F5. Appl Environ Microbiol 2014; 80:3250-7. [PMID: 24632257 PMCID: PMC4018930 DOI: 10.1128/aem.00284-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/10/2014] [Indexed: 11/20/2022] Open
Abstract
Botulinum neurotoxin type F (BoNT/F) may be produced by Clostridium botulinum alone or in combination with another toxin type such as BoNT/A or BoNT/B. Type F neurotoxin gene sequences have been further classified into seven toxin subtypes. Recently, the genome sequence of one strain of C. botulinum (Af84) was shown to contain three neurotoxin genes (bont/F4, bont/F5, and bont/A2). In this study, eight strains containing bont/F4 and seven strains containing bont/F5 were examined. Culture supernatants produced by these strains were incubated with BoNT/F-specific peptide substrates. Cleavage products of these peptides were subjected to mass spectral analysis, allowing detection of the BoNT/F subtypes present in the culture supernatants. PCR analysis demonstrated that a plasmid-specific marker (PL-6) was observed only among strains containing bont/F5. Among these strains, Southern hybridization revealed the presence of an approximately 242-kb plasmid harboring bont/F5. Genome sequencing of four of these strains revealed that the genomic backgrounds of strains harboring either bont/F4 or bont/F5 are diverse. None of the strains analyzed in this study were shown to produce BoNT/F4 and BoNT/F5 simultaneously, suggesting that strain Af84 is unusual. Finally, these data support a role for the mobility of a bont/F5-carrying plasmid among strains of diverse genomic backgrounds.
Collapse
Affiliation(s)
- Brian H. Raphael
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Marite Bradshaw
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Suzanne R. Kalb
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lavin A. Joseph
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Carolina Lúquez
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - John R. Barr
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Eric A. Johnson
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | | |
Collapse
|
21
|
|
22
|
Whole-genome single-nucleotide-polymorphism analysis for discrimination of Clostridium botulinum group I strains. Appl Environ Microbiol 2014; 80:2125-32. [PMID: 24463972 DOI: 10.1128/aem.03934-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium botulinum is a genetically diverse Gram-positive bacterium producing extremely potent neurotoxins (botulinum neurotoxins A through G [BoNT/A-G]). The complete genome sequences of three strains harboring only the BoNT/A1 nucleotide sequence are publicly available. Although these strains contain a toxin cluster (HA(+) OrfX(-)) associated with hemagglutinin genes, little is known about the genomes of subtype A1 strains (termed HA(-) OrfX(+)) that lack hemagglutinin genes in the toxin gene cluster. We sequenced the genomes of three BoNT/A1-producing C. botulinum strains: two strains with the HA(+) OrfX(-) cluster (69A and 32A) and one strain with the HA(-) OrfX(+) cluster (CDC297). Whole-genome phylogenic single-nucleotide-polymorphism (SNP) analysis of these strains along with other publicly available C. botulinum group I strains revealed five distinct lineages. Strains 69A and 32A clustered with the C. botulinum type A1 Hall group, and strain CDC297 clustered with the C. botulinum type Ba4 strain 657. This study reports the use of whole-genome SNP sequence analysis for discrimination of C. botulinum group I strains and demonstrates the utility of this analysis in quickly differentiating C. botulinum strains harboring identical toxin gene subtypes. This analysis further supports previous work showing that strains CDC297 and 657 likely evolved from a common ancestor and independently acquired separate BoNT/A1 toxin gene clusters at distinct genomic locations.
Collapse
|
23
|
Comparison of assembled Clostridium botulinum A1 genomes revealed their evolutionary relationship. Genomics 2013; 103:94-106. [PMID: 24369123 DOI: 10.1016/j.ygeno.2013.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/08/2013] [Accepted: 12/14/2013] [Indexed: 11/24/2022]
Abstract
Clostridium botulinum encompasses bacteria that produce at least one of the seven serotypes of botulinum neurotoxin (BoNT/A-G). The availability of genome sequences of four closely related Type A1 or A1(B) strains, as well as the A1-specific microarray, allowed the analysis of their genomic organizations and evolutionary relationship. The four genomes share >90% core genes and >96% functional groups. Phylogenetic analysis based on COG shows closer relations of the A1(B) strain, NCTC 2916, to B1 and F1 than A1 strains. Alignment of the genomes of the three A1 strains revealed a highly similar chromosomal structure with three small gaps in the genome of ATCC 19397 and one additional gap in the genome of Hall A, suggesting ATCC 19379 as an evolutionary intermediate between Hall A and ATCC 3502. Analyses of the four gap regions indicated potential horizontal gene transfer and recombination events important for the evolution of A1 strains.
Collapse
|
24
|
Popoff MR, Bouvet P. Genetic characteristics of toxigenic Clostridia and toxin gene evolution. Toxicon 2013; 75:63-89. [DOI: 10.1016/j.toxicon.2013.05.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/30/2013] [Accepted: 05/08/2013] [Indexed: 12/14/2022]
|
25
|
Connan C, Denève C, Mazuet C, Popoff MR. Regulation of toxin synthesis in Clostridium botulinum and Clostridium tetani. Toxicon 2013; 75:90-100. [DOI: 10.1016/j.toxicon.2013.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/25/2013] [Accepted: 06/04/2013] [Indexed: 01/11/2023]
|
26
|
Dover N, Barash JR, Hill KK, Xie G, Arnon SS. Molecular Characterization of a Novel Botulinum Neurotoxin Type H Gene. J Infect Dis 2013; 209:192-202. [DOI: 10.1093/infdis/jit450] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
27
|
Dover N, Barash JR, Hill KK, Davenport KW, Teshima H, Xie G, Arnon SS. Clostridium botulinum strain Af84 contains three neurotoxin gene clusters: bont/A2, bont/F4 and bont/F5. PLoS One 2013; 8:e61205. [PMID: 23637798 PMCID: PMC3625220 DOI: 10.1371/journal.pone.0061205] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/08/2013] [Indexed: 11/18/2022] Open
Abstract
Sanger and shotgun sequencing of Clostridium botulinum strain Af84 type Af and its botulinum neurotoxin gene (bont) clusters identified the presence of three bont gene clusters rather than the expected two. The three toxin gene clusters consisted of bont subtypes A2, F4 and F5. The bont/A2 and bont/F4 gene clusters were located within the chromosome (the latter in a novel location), while the bont/F5 toxin gene cluster was located within a large 246 kb plasmid. These findings are the first identification of a C. botulinum strain that contains three botulinum neurotoxin gene clusters.
Collapse
Affiliation(s)
- Nir Dover
- Infant Botulism Treatment and Prevention Program, California Department of Public Health, Richmond, California, United States of America
| | - Jason R. Barash
- Infant Botulism Treatment and Prevention Program, California Department of Public Health, Richmond, California, United States of America
| | - Karen K. Hill
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Karen W. Davenport
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Hazuki Teshima
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Gary Xie
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Stephen S. Arnon
- Infant Botulism Treatment and Prevention Program, California Department of Public Health, Richmond, California, United States of America
| |
Collapse
|
28
|
Plasmid-borne type E neurotoxin gene clusters in Clostridium botulinum strains. Appl Environ Microbiol 2013; 79:3856-9. [PMID: 23563942 DOI: 10.1128/aem.00080-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A collection of 36 Clostridium botulinum type E strains was examined by pulsed-field gel electrophoresis (PFGE) and Southern hybridization with probes targeted to botE and orfX1 in the neurotoxin gene cluster. Three strains were found to contain neurotoxin subtype E1 gene clusters in large plasmids of about 146 kb in size.
Collapse
|
29
|
Purification and characterization of a novel subtype a3 botulinum neurotoxin. Appl Environ Microbiol 2012; 78:3108-13. [PMID: 22367089 DOI: 10.1128/aem.07967-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) produced by Clostridium botulinum are of considerable importance due to their being the cause of human and animal botulism, their potential as bioterrorism agents, and their utility as important pharmaceuticals. Type A is prominent due to its high toxicity and long duration of action. Five subtypes of type A BoNT are currently recognized; BoNT/A1, -/A2, and -/A5 have been purified, and their properties have been studied. BoNT/A3 is intriguing because it is not effectively neutralized by polyclonal anti-BoNT/A1 antibodies, and thus, it may potentially replace BoNT/A1 for patients who have become refractive to treatment with BoNT/A1 due to antibody formation or other modes of resistance. Purification of BoNT/A3 has been challenging because of its low levels of production in culture and the need for innovative purification procedures. In this study, modified Mueller-Miller medium was used in place of traditional toxin production medium (TPM) to culture C. botulinum A3 (CDC strain) and boost toxin production. BoNT/A3 titers were at least 10-fold higher than those produced in TPM. A purification method was developed to obtain greater than 95% pure BoNT/A3. The specific toxicity of BoNT/A3 as determined by mouse bioassay was 5.8 × 10(7) 50% lethal doses (LD(50))/mg. Neutralization of BoNT/A3 toxicity by a polyclonal anti-BoNT/A1 antibody was approximately 10-fold less than the neutralization of BoNT/A1 toxicity. In addition, differences in symptoms were observed between mice that were injected with BoNT/A3 and those that were injected with BoNT/A1. These results indicate that BoNT/A3 has novel biochemical and pharmacological properties compared to those of other subtype A toxins.
Collapse
|
30
|
Henkel JS, Tepp WH, Przedpelski A, Fritz RB, Johnson EA, Barbieri JT. Subunit vaccine efficacy against Botulinum neurotoxin subtypes. Vaccine 2011; 29:7688-95. [PMID: 21839134 DOI: 10.1016/j.vaccine.2011.07.134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 07/27/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
Abstract
Botulinum neurotoxins (BoNT) are classified into 7 serotypes (A-G) based upon neutralization by serotype-specific anti-sera. Several recombinant serotype-specific subunit BoNT vaccines have been developed, including a subunit vaccine comprising the receptor binding domain (HCR) of the BoNTs. Sequencing of the genes encoding BoNTs has identified variants (subtypes) that possess up to 32% primary amino acid variation among different BoNT serotypes. Studies were conducted to characterize the ability of the HCR of BoNT/A to protect against challenge by heterologous BoNT/A subtypes (A1-A3). High dose vaccination with HCR/A subtypes A1-A4 protected mice from challenge by heterologous BoNT/A subtype A1-A3, while low dose HCR vaccination yielded partial protection to heterologous BoNT/A subtype challenge. Absolute IgG titers to HCRs correlated to the dose of HCR used for vaccination, where HCR/A1 elicited an A1 subtype-specific IgG response, which was not observed with HCR/A2 vaccination. Survival of mice challenged to heterologous BoNT/A2 following low dose HCR/A1 vaccination correlated with elevated IgG titers directed to the denatured C-terminal sub-domain of HCR/A2, while survival of mice to heterologous BoNT/A1 following low dose HCR/A2 vaccination correlated to elevated IgG titers directed to native HCRc/A1. This implies that low dose vaccinations with HCR/A subtypes elicit unique IgG responses, and provides a basis to define how the host develops a neutralizing immune response to BoNT intoxication. These results may provide a reference for the development of pan-BoNT vaccines.
Collapse
Affiliation(s)
- James S Henkel
- Medical College of Wisconsin, Microbiology and Molecular Genetics, Milwaukee, WI, USA
| | | | | | | | | | | |
Collapse
|
31
|
Franciosa G, Scalfaro C, Di Bonito P, Vitale M, Aureli P. Identification of novel linear megaplasmids carrying a ß-lactamase gene in neurotoxigenic Clostridium butyricum type E strains. PLoS One 2011; 6:e21706. [PMID: 21738770 PMCID: PMC3125338 DOI: 10.1371/journal.pone.0021706] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 06/06/2011] [Indexed: 11/21/2022] Open
Abstract
Since the first isolation of type E botulinum toxin-producing Clostridium butyricum from two infant botulism cases in Italy in 1984, this peculiar microorganism has been implicated in different forms of botulism worldwide. By applying particular pulsed-field gel electrophoresis run conditions, we were able to show for the first time that ten neurotoxigenic C. butyricum type E strains originated from Italy and China have linear megaplasmids in their genomes. At least four different megaplasmid sizes were identified among the ten neurotoxigenic C. butyricum type E strains. Each isolate displayed a single sized megaplasmid that was shown to possess a linear structure by ATP-dependent exonuclease digestion. Some of the neurotoxigenic C. butyricum type E strains possessed additional smaller circular plasmids. In order to investigate the genetic content of the newly identified megaplasmids, selected gene probes were designed and used in Southern hybridization experiments. Our results revealed that the type E botulinum neurotoxin gene was chromosome-located in all neurotoxigenic C. butyricum type E strains. Similar results were obtained with the 16S rRNA, the tetracycline tet(P) and the lincomycin resistance protein lmrB gene probes. A specific mobA gene probe only hybridized to the smaller plasmids of the Italian C. butyricum type E strains. Of note, a ß-lactamase gene probe hybridized to the megaplasmids of eight neurotoxigenic C. butyricum type E strains, of which seven from clinical sources and the remaining one from a food implicated in foodborne botulism, whereas this ß-lactam antibiotic resistance gene was absent form the megaplasmids of the two soil strains examined. The widespread occurrence among C. butyricum type E strains associated to human disease of linear megaplasmids harboring an antibiotic resistance gene strongly suggests that the megaplasmids could have played an important role in the emergence of C. butyricum type E as a human pathogen.
Collapse
Affiliation(s)
- Giovanna Franciosa
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | |
Collapse
|
32
|
Towards new uses of botulinum toxin as a novel therapeutic tool. Toxins (Basel) 2011; 3:63-81. [PMID: 22069690 PMCID: PMC3210455 DOI: 10.3390/toxins3010063] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/03/2011] [Accepted: 01/04/2011] [Indexed: 12/31/2022] Open
Abstract
The uses of botulinum toxin in the fields of neurology, ophthalmology, urology, rehabilitation medicine and aesthetic applications have been revolutionary for the treatment of patients. This non-invasive therapeutic has continually been developed since first discovered in the 1970s as a new approach to what were previously surgical treatments. As these applications develop, so also the molecules are developing into tools with new therapeutic properties in specific clinical areas. This review examines how the botulinum toxin molecule is being adapted to new therapeutic uses and also how new areas of use for the existing molecules are being identified. Prospects for future developments are also considered.
Collapse
|
33
|
Gurjar A, Li J, McClane BA. Characterization of toxin plasmids in Clostridium perfringens type C isolates. Infect Immun 2010; 78:4860-9. [PMID: 20823204 PMCID: PMC2976353 DOI: 10.1128/iai.00715-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/03/2010] [Accepted: 08/27/2010] [Indexed: 01/22/2023] Open
Abstract
Clostridium perfringens type C isolates cause enteritis necroticans in humans or necrotizing enteritis and enterotoxemia in domestic animals. Type C isolates always produce alpha toxin and beta toxin but often produce additional toxins, e.g., beta2 toxin or enterotoxin. Since plasmid carriage of toxin-encoding genes has not been systematically investigated for type C isolates, the current study used Southern blot hybridization of pulsed-field gels to test whether several toxin genes are plasmid borne among a collection of type C isolates. Those analyses revealed that the surveyed type C isolates carry their beta toxin-encoding gene (cpb) on plasmids ranging in size from ∼65 to ∼110 kb. When present in these type C isolates, the beta2 toxin gene localized to plasmids distinct from the cpb plasmid. However, some enterotoxin-positive type C isolates appeared to carry their enterotoxin-encoding cpe gene on a cpb plasmid. The tpeL gene encoding the large clostridial cytotoxin was localized to the cpb plasmids of some cpe-negative type C isolates. The cpb plasmids in most surveyed isolates were found to carry both IS1151 sequences and the tcp genes, which can mediate conjugative C. perfringens plasmid transfer. A dcm gene, which is often present near C. perfringens plasmid-borne toxin genes, was identified upstream of the cpb gene in many type C isolates. Overlapping PCR analyses suggested that the toxin-encoding plasmids of the surveyed type C isolates differ from the cpe plasmids of type A isolates. These findings provide new insight into plasmids of proven or potential importance for type C virulence.
Collapse
Affiliation(s)
- Abhijit Gurjar
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, Australian Research Council Centre of Excellence in Structural and Functional Microbial Genetics, Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, Australian Research Council Centre of Excellence in Structural and Functional Microbial Genetics, Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, Australian Research Council Centre of Excellence in Structural and Functional Microbial Genetics, Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
34
|
Marshall KM, Bradshaw M, Johnson EA. Conjugative botulinum neurotoxin-encoding plasmids in Clostridium botulinum. PLoS One 2010; 5:e11087. [PMID: 20552020 PMCID: PMC2884020 DOI: 10.1371/journal.pone.0011087] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 05/17/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Clostridium botulinum produces seven distinct serotypes of botulinum neurotoxins (BoNTs). The genes encoding different subtype neurotoxins of serotypes A, B, F and several dual neurotoxin-producing strains have been shown to reside on plasmids, suggesting that intra- and interspecies transfer of BoNT-encoding plasmids may occur. The objective of the present study was to determine whether these C. botulinum BoNT-encoding plasmids are conjugative. METHODOLOGY/PRINCIPAL FINDINGS C. botulinum BoNT-encoding plasmids pBotCDC-A3 (strain CDC-A3), pCLJ (strain 657Ba) and pCLL (strain Eklund 17B) were tagged with the erythromycin resistance marker (Erm) using the ClosTron mutagenesis system by inserting a group II intron into the neurotoxin genes carried on these plasmids. Transfer of the tagged plasmids from the donor strains CDC-A3, 657Ba and Eklund 17B to tetracycline-resistant recipient C. botulinum strains was evaluated in mating experiments. Erythromycin and tetracycline resistant transconjugants were isolated from donor:recipient mating pairs tested. Transfer of the plasmids to the transconjugants was confirmed by pulsed-field gel electrophoresis (PFGE) and Southern hybridizations. Transfer required cell-to-cell contact and was DNase resistant. This indicates that transfer of these plasmids occurs via a conjugation mechanism. CONCLUSIONS/SIGNIFICANCE This is the first evidence supporting conjugal transfer of native botulinum neurotoxin-encoding plasmids in C. botulinum, and provides a probable mechanism for the lateral distribution of BoNT-encoding plasmids to other C. botulinum strains. The potential transfer of C. botulinum BoNT-encoding plasmids to other bacterial hosts in the environment or within the human intestine is of great concern for human pathogenicity and necessitates further characterization of these plasmids.
Collapse
Affiliation(s)
| | | | - Eric A. Johnson
- Department of Bacteriology, College of Agriculture and Life Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
35
|
Abstract
Botulinum neurotoxin (BoNT) is the most toxic substance known to man and the causative agent of botulism. Due to its high toxicity and the availability of the producing organism Clostridium botulinum, BoNT is regarded as a potential biological warfare agent. Because of the mild pasteurization process, as well as rapid product distribution and consumption, the milk supply chain has long been considered a potential target of a bioterrorist attack. Since, to our knowledge, no empirical data on the inactivation of BoNT in milk during pasteurization are available at this time, we investigated the activities of BoNT type A (BoNT/A) and BoNT/B, as well as their respective complexes, during a laboratory-scale pasteurization process. When we monitored milk alkaline phosphatase activity, which is an industry-accepted parameter of successfully completed pasteurization, our method proved comparable to the industrial process. After heating raw milk spiked with a set amount of BoNT/A or BoNT/B or one of their respective complexes, the structural integrity of the toxin was determined by enzyme-linked immunosorbent assay (ELISA) and its functional activity by mouse bioassay. We demonstrated that standard pasteurization at 72 degrees C for 15 s inactivates at least 99.99% of BoNT/A and BoNT/B and at least 99.5% of their respective complexes. Our results suggest that if BoNTs or their complexes were deliberately released into the milk supply chain, standard pasteurization conditions would reduce their activity much more dramatically than originally anticipated and thus lower the threat level of the widely discussed "BoNT in milk" scenario.
Collapse
|
36
|
Peck MW, Stringer SC, Carter AT. Clostridium botulinum in the post-genomic era. Food Microbiol 2010; 28:183-91. [PMID: 21315972 DOI: 10.1016/j.fm.2010.03.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 03/11/2010] [Accepted: 03/12/2010] [Indexed: 01/11/2023]
Abstract
Foodborne botulism is a severe neuroparalytic disease caused by consumption of botulinum neurotoxin formed by strains of proteolytic Clostridium botulinum and non-proteolytic C. botulinum during their growth in food. The botulinum neurotoxin is the most potent substance known, with as little as 30-100 ng potentially fatal, and consumption of just a few milligrams of neurotoxin-containing food is likely to be sufficient to cause illness and potentially death. In order to minimise the foodborne botulism hazard, it is necessary to extend understanding of the biology of these bacteria. This process has been recently advanced by genome sequencing and subsequent analysis. In addition to neurotoxin formation, endospore formation is also critical to the success of proteolytic C. botulinum and non-proteolytic C. botulinum as foodborne pathogens. The endospores are highly resistant, and enable survival of adverse treatments such as heating. To better control the botulinum neurotoxin-forming clostridia, it is important to understand spore resistance mechanisms, and the physiological processes involved in germination and lag phase during recovery from this dormant state.
Collapse
Affiliation(s)
- Michael W Peck
- Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA, UK.
| | | | | |
Collapse
|
37
|
Hill KK, Xie G, Foley BT, Smith TJ, Munk AC, Bruce D, Smith LA, Brettin TS, Detter JC. Recombination and insertion events involving the botulinum neurotoxin complex genes in Clostridium botulinum types A, B, E and F and Clostridium butyricum type E strains. BMC Biol 2009; 7:66. [PMID: 19804621 PMCID: PMC2764570 DOI: 10.1186/1741-7007-7-66] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 10/05/2009] [Indexed: 12/04/2022] Open
Abstract
Background Clostridium botulinum is a taxonomic designation for at least four diverse species that are defined by the expression of one (monovalent) or two (bivalent) of seven different C. botulinum neurotoxins (BoNTs, A-G). The four species have been classified as C. botulinum Groups I-IV. The presence of bont genes in strains representing the different Groups is probably the result of horizontal transfer of the toxin operons between the species. Results Chromosome and plasmid sequences of several C. botulinum strains representing A, B, E and F serotypes and a C. butyricum type E strain were compared to examine their genomic organization, or synteny, and the location of the botulinum toxin complex genes. These comparisons identified synteny among proteolytic (Group I) strains or nonproteolytic (Group II) strains but not between the two Groups. The bont complex genes within the strains examined were not randomly located but found within three regions of the chromosome or in two specific sites within plasmids. A comparison of sequences from a Bf strain revealed homology to the plasmid pCLJ with similar locations for the bont/bv b genes but with the bont/a4 gene replaced by the bont/f gene. An analysis of the toxin cluster genes showed that many recombination events have occurred, including several events within the ntnh gene. One such recombination event resulted in the integration of the bont/a1 gene into the serotype toxin B ha cluster, resulting in a successful lineage commonly associated with food borne botulism outbreaks. In C. botulinum type E and C. butyricum type E strains the location of the bont/e gene cluster appears to be the result of insertion events that split a rarA, recombination-associated gene, independently at the same location in both species. Conclusion The analysis of the genomic sequences representing different strains reveals the presence of insertion sequence (IS) elements and other transposon-associated proteins such as recombinases that could facilitate the horizontal transfer of the bonts; these events, in addition to recombination among the toxin complex genes, have led to the lineages observed today within the neurotoxin-producing clostridia.
Collapse
Affiliation(s)
- Karen K Hill
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Genetic characterization of Clostridium botulinum associated with type B infant botulism in Japan. J Clin Microbiol 2009; 47:2720-8. [PMID: 19571018 DOI: 10.1128/jcm.00077-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 15 proteolytic Clostridium botulinum type B strains, including 3 isolates associated with infant botulism in Japan, were genetically characterized by phylogenetic analysis of boNT/B gene sequences, genotyping, and determination of the boNT/B gene location by using pulsed-field gel electrophoresis (PFGE) for molecular epidemiological analysis of infant botulism in Japan. Strain Osaka05, isolated from a case in 2005, showed a unique boNT/B gene sequence and was considered to be a new BoNT/B subtype by phylogenetic analysis. Strain Osaka06, isolated from a case in 2006, was classified as the B2 subtype, the same as strain 111, isolated from a case in 1995. The five isolates associated with infant botulism in the United States were classified into the B1 subtype. Isolates from food samples in Japan were divided into the B1 and the B2 subtypes, although no relation with infant botulism was shown by PFGE genotyping. The results of PFGE and Southern blot hybridization with undigested DNA suggested that the boNT/B gene is located on large plasmids (approximately 150 kbp, 260 kbp, 275 kbp, or 280 kbp) in five strains belonging to three BoNT/B subtypes from various sources. The botulinum neurotoxin (BoNT) of Osaka05 was suggested to have an antigenicity different from the antigenicities of BoNT/B1 and BoNT/B2 by a sandwich enzyme-linked immunosorbent assay with the recombinant BoNT/B-C-terminal domain. We established a multiplex PCR assay for BoNT/B subtyping which will be useful for epidemiological studies of type B strains and the infectious diseases that they cause.
Collapse
|
39
|
Carter AT, Paul CJ, Mason DR, Twine SM, Alston MJ, Logan SM, Austin JW, Peck MW. Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum. BMC Genomics 2009; 10:115. [PMID: 19298644 PMCID: PMC2674064 DOI: 10.1186/1471-2164-10-115] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 03/19/2009] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Proteolytic Clostridium botulinum is the causative agent of botulism, a severe neuroparalytic illness. Given the severity of botulism, surprisingly little is known of the population structure, biology, phylogeny or evolution of C. botulinum. The recent determination of the genome sequence of C. botulinum has allowed comparative genomic indexing using a DNA microarray. RESULTS Whole genome microarray analysis revealed that 63% of the coding sequences (CDSs) present in reference strain ATCC 3502 were common to all 61 widely-representative strains of proteolytic C. botulinum and the closely related C. sporogenes tested. This indicates a relatively stable genome. There was, however, evidence for recombination and genetic exchange, in particular within the neurotoxin gene and cluster (including transfer of neurotoxin genes to C. sporogenes), and the flagellar glycosylation island (FGI). These two loci appear to have evolved independently from each other, and from the remainder of the genetic complement. A number of strains were atypical; for example, while 10 out of 14 strains that formed type A1 toxin gave almost identical profiles in whole genome, neurotoxin cluster and FGI analyses, the other four strains showed divergent properties. Furthermore, a new neurotoxin sub-type (A5) has been discovered in strains from heroin-associated wound botulism cases. For the first time, differences in glycosylation profiles of the flagella could be linked to differences in the gene content of the FGI. CONCLUSION Proteolytic C. botulinum has a stable genome backbone containing specific regions of genetic heterogeneity. These include the neurotoxin gene cluster and the FGI, each having evolved independently of each other and the remainder of the genetic complement. Analysis of these genetic components provides a high degree of discrimination of strains of proteolytic C. botulinum, and is suitable for clinical and forensic investigations of botulism outbreaks.
Collapse
Affiliation(s)
| | - Catherine J Paul
- Bureau of Microbial Hazards, HPFB, Health Canada, Ottawa, Canada
- NRC Institute for Biological Sciences, Ottawa, Canada
- Centre for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | | | - Susan M Twine
- NRC Institute for Biological Sciences, Ottawa, Canada
| | | | - Susan M Logan
- NRC Institute for Biological Sciences, Ottawa, Canada
| | - John W Austin
- Bureau of Microbial Hazards, HPFB, Health Canada, Ottawa, Canada
| | | |
Collapse
|
40
|
Franciosa G, Maugliani A, Scalfaro C, Aureli P. Evidence that plasmid-borne botulinum neurotoxin type B genes are widespread among Clostridium botulinum serotype B strains. PLoS One 2009; 4:e4829. [PMID: 19287483 PMCID: PMC2653641 DOI: 10.1371/journal.pone.0004829] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 01/18/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Plasmids that encode certain subtypes of the botulinum neurotoxin type B have recently been detected in some Clostridium botulinum strains. The objective of the present study was to investigate the frequency with which plasmid carriage of the botulinum neurotoxin type B gene (bont/B) occurs in strains of C. botulinum type B, Ab, and A(B), and whether plasmid carriage is bont/B subtype-related. METHODOLOGY/PRINCIPAL FINDINGS PCR-Restriction fragment length polymorphism was employed to identify subtypes of the bont/B gene. Pulsed-field gel electrophoresis and Southern blot hybridization with specific probes were performed to analyze the genomic location of the bont/B subtype genes. All five known bont/B subtype genes were detected among the strains; the most frequently detected subtype genes were bont/B1 and /B2. Surprisingly, the bont/B subtype gene was shown to be plasmid-borne in >50% of the total strains. The same bont/B subtype gene was associated with the chromosome in some strains, whereas it was associated with a plasmid in others. All five known bont/B subtype genes were in some cases found to reside on plasmids, though with varying frequency (e.g., most of the bont/B1 subtype genes were located on plasmids, whereas all but one of the bont/B2 subtypes were chromosomally-located). Three bivalent isolates carried both bont/A and /B genes on the same plasmid. The plasmids carrying the bont gene were five different sizes, ranging from approximately 55 kb to approximately 245 kb. CONCLUSIONS/SIGNIFICANCE The unexpected finding of the widespread distribution of plasmids harboring the bont/B gene among C. botulinum serotype B strains provides a chance to examine their contribution to the dissemination of the bont genes among heterogeneous clostridia, with potential implications on issues related to pathogenesis and food safety.
Collapse
Affiliation(s)
- Giovanna Franciosa
- Department of Food Safety and Veterinary Public Health, Unit of Microorganisms and Food Technologies, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | |
Collapse
|
41
|
Comparative genomic hybridization analysis of two predominant Nordic group I (proteolytic) Clostridium botulinum type B clusters. Appl Environ Microbiol 2009; 75:2643-51. [PMID: 19270141 DOI: 10.1128/aem.02557-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comparative genomic hybridization analysis of 32 Nordic group I Clostridium botulinum type B strains isolated from various sources revealed two homogeneous clusters, clusters BI and BII. The type B strains differed from reference strain ATCC 3502 by 413 coding sequence (CDS) probes, sharing 88% of all the ATCC 3502 genes represented on the microarray. The two Nordic type B clusters differed from each other by their response to 145 CDS probes related mainly to transport and binding, adaptive mechanisms, fatty acid biosynthesis, the cell membranes, bacteriophages, and transposon-related elements. The most prominent differences between the two clusters were related to resistance to toxic compounds frequently found in the environment, such as arsenic and cadmium, reflecting different adaptive responses in the evolution of the two clusters. Other relatively variable CDS groups were related to surface structures and the gram-positive cell wall, suggesting that the two clusters possess different antigenic properties. All the type B strains carried CDSs putatively related to capsule formation, which may play a role in adaptation to different environmental and clinical niches. Sequencing showed that representative strains of the two type B clusters both carried subtype B2 neurotoxin genes. As many of the type B strains studied have been isolated from foods or associated with botulism, it is expected that the two group I C. botulinum type B clusters present a public health hazard in Nordic countries. Knowing the genetic and physiological markers of these clusters will assist in targeting control measures against these pathogens.
Collapse
|
42
|
Affiliation(s)
- Michael W Peck
- Institute of Food Research, Norwich Research Park, Colney, Norwich, UK
| |
Collapse
|
43
|
Doxey AC, Lynch MDJ, Müller KM, Meiering EM, McConkey BJ. Insights into the evolutionary origins of clostridial neurotoxins from analysis of the Clostridium botulinum strain A neurotoxin gene cluster. BMC Evol Biol 2008; 8:316. [PMID: 19014598 PMCID: PMC2605760 DOI: 10.1186/1471-2148-8-316] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 11/14/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clostridial neurotoxins (CNTs) are the most deadly toxins known and causal agents of botulism and tetanus neuroparalytic diseases. Despite considerable progress in understanding CNT structure and function, the evolutionary origins of CNTs remain a mystery as they are unique to Clostridium and possess a sequence and structural architecture distinct from other protein families. Uncovering the origins of CNTs would be a significant contribution to our understanding of how pathogens evolve and generate novel toxin families. RESULTS The C. botulinum strain A genome was examined for potential homologues of CNTs. A key link was identified between the neurotoxin and the flagellin gene (CBO0798) located immediately upstream of the BoNT/A neurotoxin gene cluster. This flagellin sequence displayed the strongest sequence similarity to the neurotoxin and NTNH homologue out of all proteins encoded within C. botulinum strain A. The CBO0798 gene contains a unique hypervariable region, which in closely related flagellins encodes a collagenase-like domain. Remarkably, these collagenase-containing flagellins were found to possess the characteristic HEXXH zinc-protease motif responsible for the neurotoxin's endopeptidase activity. Additional links to collagenase-related sequences and functions were detected by further analysis of CNTs and surrounding genes, including sequence similarities to collagen-adhesion domains and collagenases. Furthermore, the neurotoxin's HCRn domain was found to exhibit both structural and sequence similarity to eukaryotic collagen jelly-roll domains. CONCLUSION Multiple lines of evidence suggest that the neurotoxin and adjacent genes evolved from an ancestral collagenase-like gene cluster, linking CNTs to another major family of clostridial proteolytic toxins. Duplication, reshuffling and assembly of neighboring genes within the BoNT/A neurotoxin gene cluster may have lead to the neurotoxin's unique architecture. This work provides new insights into the evolution of C. botulinum neurotoxins and the evolutionary mechanisms underlying the origins of virulent genes.
Collapse
Affiliation(s)
- Andrew C Doxey
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| | | | | | | | | |
Collapse
|
44
|
Genetic homogeneity of Clostridium botulinum type A1 strains with unique toxin gene clusters. Appl Environ Microbiol 2008; 74:4390-7. [PMID: 18502928 DOI: 10.1128/aem.00260-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A group of five clonally related Clostridium botulinum type A strains isolated from different sources over a period of nearly 40 years harbored several conserved genetic properties. These strains contained a variant bont/A1 with five nucleotide polymorphisms compared to the gene in C. botulinum strain ATCC 3502. The strains also had a common toxin gene cluster composition (ha-/orfX+) similar to that associated with bont/A in type A strains containing an unexpressed bont/B [termed A(B) strains]. However, bont/B was not identified in the strains examined. Comparative genomic hybridization demonstrated identical genomic content among the strains relative to C. botulinum strain ATCC 3502. In addition, microarray data demonstrated the absence of several genes flanking the toxin gene cluster among the ha-/orfX+ A1 strains, suggesting the presence of genomic rearrangements with respect to this region compared to the C. botulinum ATCC 3502 strain. All five strains were shown to have identical flaA variable region nucleotide sequences. The pulsed-field gel electrophoresis patterns of the strains were indistinguishable when digested with SmaI, and a shift in the size of at least one band was observed in a single strain when digested with XhoI. These results demonstrate surprising genomic homogeneity among a cluster of unique C. botulinum type A strains of diverse origin.
Collapse
|
45
|
Analysis of neurotoxin cluster genes in Clostridium botulinum strains producing botulinum neurotoxin serotype A subtypes. Appl Environ Microbiol 2008; 74:2778-86. [PMID: 18326685 DOI: 10.1128/aem.02828-07] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurotoxin cluster gene sequences and arrangements were elucidated for strains of Clostridium botulinum encoding botulinum neurotoxin (BoNT) subtypes A3, A4, and a unique A1-producing strain (HA(-) Orfx(+) A1). These sequences were compared to the known neurotoxin cluster sequences of C. botulinum strains that produce BoNT/A1 and BoNT/A2 and possess either a hemagglutinin (HA) or an Orfx cluster, respectively. The A3 and HA(-) Orfx(+) A1 strains demonstrated a neurotoxin cluster arrangement similar to that found in A2. The A4 strain analyzed possessed two sets of neurotoxin clusters that were similar to what has been found in the A(B) strains: an HA cluster associated with the BoNT/B gene and an Orfx cluster associated with the BoNT/A4 gene. The nucleotide and amino acid sequences of the neurotoxin cluster-specific genes were determined for each neurotoxin cluster and compared among strains. Additionally, the ntnh gene of each strain was compared on both the nucleotide and amino acid levels. The degree of similarity of the sequences of the ntnh genes and corresponding amino acid sequences correlated with the neurotoxin cluster type to which the ntnh gene was assigned.
Collapse
|
46
|
Differentiation of Clostridium botulinum serotype A strains by multiple-locus variable-number tandem-repeat analysis. Appl Environ Microbiol 2007; 74:875-82. [PMID: 18083878 DOI: 10.1128/aem.01539-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ten variable-number tandem-repeat (VNTR) regions identified within the complete genomic sequence of Clostridium botulinum strain ATCC 3502 were used to characterize 59 C. botulinum strains of the botulism neurotoxin A1 (BoNT/A1) to BoNT/A4 (BoNT/A1-A4) subtypes to determine their ability to discriminate among the serotype A strains. Two strains representing each of the C. botulinum serotypes B to G, including five bivalent strains, and two strains of the closely related species Clostridium sporogenes were also tested. Amplified fragment length polymorphism analyses revealed the genetic diversity among the serotypes and the high degree of similarity among many of the BoNT/A1 strains. The 10 VNTR markers amplified fragments within all of the serotype A strains but were less successful with strains of other serotypes. The composite multiple-locus VNTR analysis of the 59 BoNT/A1-A4 strains and 3 bivalent B strains identified 38 different genotypes. Thirty genotypes were identified among the 53 BoNT/A1 and BoNT/A1(B) strains, demonstrating discrimination below the subtype level. Contaminating DNA within crude toxin preparations of three BoNT/A subtypes (BoNT/A1 to BoNT/A3) also supported amplification of all of the VNTR regions. These markers provide clinical and forensics laboratories with a rapid, highly discriminatory tool to distinguish among C. botulinum BoNT/A1 strains for investigations of botulism outbreaks.
Collapse
|
47
|
Smith TJ, Hill KK, Foley BT, Detter JC, Munk AC, Bruce DC, Doggett NA, Smith LA, Marks JD, Xie G, Brettin TS. Analysis of the neurotoxin complex genes in Clostridium botulinum A1-A4 and B1 strains: BoNT/A3, /Ba4 and /B1 clusters are located within plasmids. PLoS One 2007; 2:e1271. [PMID: 18060065 PMCID: PMC2092393 DOI: 10.1371/journal.pone.0001271] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 11/06/2007] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Clostridium botulinum and related clostridial species express extremely potent neurotoxins known as botulinum neurotoxins (BoNTs) that cause long-lasting, potentially fatal intoxications in humans and other mammals. The amino acid variation within the BoNT is used to categorize the species into seven immunologically distinct BoNT serotypes (A-G) which are further divided into subtypes. The BoNTs are located within two generally conserved gene arrangements known as botulinum progenitor complexes which encode toxin-associated proteins involved in toxin stability and expression. METHODOLOGY/PRINCIPAL FINDINGS Because serotype A and B strains are responsible for the vast majority of human botulism cases worldwide, the location, arrangement and sequences of genes from eight different toxin complexes representing four different BoNT/A subtypes (BoNT/A1-Ba4) and one BoNT/B1 strain were examined. The bivalent Ba4 strain contained both the BoNT/A4 and BoNT/bvB toxin clusters. The arrangements of the BoNT/A3 and BoNT/A4 subtypes differed from the BoNT/A1 strains and were similar to those of BoNT/A2. However, unlike the BoNT/A2 subtype, the toxin complex genes of BoNT/A3 and BoNT/A4 were found within large plasmids and not within the chromosome. In the Ba4 strain, both BoNT toxin clusters (A4 and bivalent B) were located within the same 270 kb plasmid, separated by 97 kb. Complete genomic sequencing of the BoNT/B1 strain also revealed that its toxin complex genes were located within a 149 kb plasmid and the BoNT/A3 complex is within a 267 kb plasmid. CONCLUSIONS/SIGNIFICANCE Despite their size differences and the BoNT genes they contain, the three plasmids containing these toxin cluster genes share significant sequence identity. The presence of partial insertion sequence (IS) elements, evidence of recombination/gene duplication events, and the discovery of the BoNT/A3, BoNT/Ba4 and BoNT/B1 toxin complex genes within plasmids illustrate the different mechanisms by which these genes move among diverse genetic backgrounds of C. botulinum.
Collapse
Affiliation(s)
- Theresa J. Smith
- Integrated Toxicology Division, United States Army Medical Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Karen K. Hill
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Brian T. Foley
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - John C. Detter
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - A. Christine Munk
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - David C. Bruce
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Norman A. Doggett
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Leonard A. Smith
- Integrated Toxicology Division, United States Army Medical Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - James D. Marks
- Department of Anesthesia and Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California, United States of America
| | - Gary Xie
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Thomas S. Brettin
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| |
Collapse
|