1
|
Bielska B, Wrońska N, Kołodziejczyk-Czepas J, Mignani S, Majoral JP, Waczulikova I, Lisowska K, Bryszewska M, Miłowska K. Biocompatibility of Phosphorus Dendrimers and Their Antibacterial Properties as Potential Agents for Supporting Wound Healing. Mol Pharm 2025; 22:927-939. [PMID: 39797813 PMCID: PMC11795522 DOI: 10.1021/acs.molpharmaceut.4c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Dendrimers are a wide range of nanoparticles with desirable properties that can be used in many areas of medicine. However, little is known about their potential use in wound healing. This study examined the properties of phosphorus dendrimers that were built on a cyclotriphosphazene core and pyrrolidinium (DPP) or piperidinium (DPH) terminated groups, to be used as potential factors that support wound healing (in vitro). Therefore, the degree of toxicity of the tested compounds for human erythrocytes and the human fibroblast cell line (BJ) was determined, and it was found that at low concentrations, the tested compounds are compatible with blood. The influence of phosphorus dendrimers on plasma proteins (human serum albumin (HSA) and fibrinogen) was examined, with a lack of conformational changes in the structure of these proteins, suggesting that their physiological function was not disturbed. The effects on plasma coagulation cascade and fibrinolysis were also assessed, and it was found that phosphorus dendrimers in low concentrations are blood compatible and interfere neither with coagulation processes nor in clot breakdown. Skin injuries, especially chronic wounds, are also susceptible to infection; therefore, the antimicrobial potential of dendrimers was tested, and it was found that these dendrimers had antibacterial activity against both Gram-negative and Gram-positive bacteria. The highest activity of the tested compounds was found for higher applied concentrations.
Collapse
Affiliation(s)
- Beata Bielska
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
- Doctoral
School of Exact and Natural Sciences, University
of Lodz, 21/23 Jana Matejki
Street, 90-237 Lodz, Poland
| | - Natalia Wrońska
- Department
of Industrial Microbiology and Biotechnology, Faculty of Biology and
Environmental Protection, University of
Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Joanna Kołodziejczyk-Czepas
- Department
of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Serge Mignani
- CQM-Centro
de Química da Madeira, Universidade
da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- Centre d’Etudes
et de Recherche sur le Medicament de Normandie (CERMN), Université de Caen Normandie, Caen 14032, France
| | - Jean-Pierre Majoral
- Laboratoire
de Chimie de Coordination CNRS, 205 Route de Narbonne, Toulouse 31077, France
| | - Iveta Waczulikova
- Department
of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics
and Informatics, Comenius University, Mlynska Dolina F1, 84248 Bratislava, Slovakia
| | - Katarzyna Lisowska
- Department
of Industrial Microbiology and Biotechnology, Faculty of Biology and
Environmental Protection, University of
Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Maria Bryszewska
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Katarzyna Miłowska
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| |
Collapse
|
2
|
Muronets VI, Kudryavtseva SS, Kurochkina LP, Leisi EV, Stroylova YY, Schmalhausen EV. Factors Affecting Pathological Amyloid Protein Transformation: From Post-Translational Modifications to Chaperones. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S164-S192. [PMID: 40164158 DOI: 10.1134/s0006297924604003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/30/2024] [Indexed: 04/02/2025]
Abstract
The review discusses the influence of various factors (e.g., post-translational modifications and chaperones) on the pathological transformation of amyloidogenic proteins involved in the onset and development of neurodegenerative diseases (Alzheimer's and Parkinson's diseases) and spongiform encephalopathies of various origin with special focus on the role of α-synuclein, prion protein, and, to a lesser extent, beta-amyloid peptide. The factors investigated by the authors of this review are discussed in more detail, including posttranslational modifications (glycation and S-nitrosylation), cinnamic acid derivatives and dendrimers, and chaperonins (eukaryotic, bacterial, and phage). A special section is devoted to the role of the gastrointestinal microbiota in the pathogenesis of amyloid neurodegenerative diseases, in particular, its involvement in the transformation of infectious prions and possibly other proteins capable of prion-like transmission of amyloidogenic diseases.
Collapse
Affiliation(s)
- Vladimir I Muronets
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, Kazan, 420008, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Sofiya S Kudryavtseva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Lidia P Kurochkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Evgeniia V Leisi
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Yulia Yu Stroylova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena V Schmalhausen
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
3
|
Mroziak M, Kozłowski G, Kołodziejczyk W, Pszczołowska M, Walczak K, Beszłej JA, Leszek J. Dendrimers-Novel Therapeutic Approaches for Alzheimer's Disease. Biomedicines 2024; 12:1899. [PMID: 39200363 PMCID: PMC11351976 DOI: 10.3390/biomedicines12081899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Dendrimers are covalently bonded globular nanostructures that may be used in the treatment of Alzheimer's disease (AD). Nowadays, AD therapies are focused on improving cognitive functioning and not causal treatment. However, this may change with the use of dendrimers, which are being investigated as a drug-delivery system or as a drug per se. With their ability to inhibit amyloid formation and their anti-tau properties, they are a promising therapeutic option for AD patients. Studies have shown that dendrimers may inhibit amyloid formation in at least two ways: by blocking fibril growth and by breaking already existing fibrils. Neurofibrillary tangles (NFTs) are abnormal filaments built by tau proteins that can be accumulated in the cell, which leads to the loss of cytoskeletal microtubules and tubulin-associated proteins. Cationic phosphorus dendrimers, with their anti-tau properties, can induce the aggregation of tau into amorphous structures. Drug delivery to mitochondria is difficult due to poor transport across biological barriers, such as the inner mitochondrial membrane, which is highly negatively polarized. Dendrimers may be potential nanocarriers and increase mitochondria targeting. Another considered use of dendrimers in AD treatment is as a drug-delivery system, for example, carbamazepine (CBZ) or tacrine. They can also be used to transport siRNA into neuronal tissue and to carry antioxidants and anti-inflammatory drugs to act protectively on the nervous system.
Collapse
Affiliation(s)
- Magdalena Mroziak
- Faculty of Medicine, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Gracjan Kozłowski
- Faculty of Medicine, Wrocław Medical University, 50-367 Wrocław, Poland
| | | | | | - Kamil Walczak
- Faculty of Medicine, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Jan Aleksander Beszłej
- Clinic of Psychiatry, Department of Psychiatry, Medical Department, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Jerzy Leszek
- Clinic of Psychiatry, Department of Psychiatry, Medical Department, Wrocław Medical University, 50-367 Wrocław, Poland
| |
Collapse
|
4
|
Firdaus S, Boye S, Janke A, Friedel P, Janaszewska A, Appelhans D, Müller M, Klajnert-Maculewicz B, Voit B, Lederer A. Advancing Antiamyloidogenic Activity by Fine-Tuning Macromolecular Topology. Biomacromolecules 2023; 24:5797-5806. [PMID: 37939018 DOI: 10.1021/acs.biomac.3c00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Amyloid β peptide can aggregate into thin β-sheet fibrils or plaques deposited on the extracellular matrix, which is the hallmark of Alzheimer's disease. Multifunctional macromolecular structures play an important role in inhibiting the aggregate formation of amyloidogenic materials and thus are promising candidates with antiamyloidogenic characteristics for the development of next-generation therapeutics. In this study, we evaluate how small differences in the dendritic topology of these structures influence their antiamyloidogenic activity by the comparison of "perfectly dendritic" and "pseudodendritic" macromolecules, both decorated with mannose units. Their compactness, the position of surface units, and the size of glyco-architectures influence their antiamyloidogenic activity against Aβ 40, a major component of amyloid plaques. For the advanced analysis of the aggregation of the Aβ peptide, we introduce asymmetric flow field flow fractionation as a suitable method for the quantification of large and delicate structures. This alternative method focuses on the quantification of complex aggregates of Aβ 40 and glycodendrimer/glyco-pseudodendrimer over different time intervals of incubation, showing a good correlation to ThT assay and CD spectroscopy results. Kinetic studies of the second-generation glyco-pseudodendrimer revealed maximum inhibition of Aβ 40 aggregates, verified with atomic force microscopy. The second-generation glyco-pseudodendrimer shows the best antiamyloidogenic properties confirming that macromolecular conformation in combination with optimal functional group distribution is the key to its performance. These molecular properties were validated and confirmed by molecular dynamics simulation.
Collapse
Affiliation(s)
- Shamila Firdaus
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Andreas Janke
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Peter Friedel
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Anna Janaszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Łódź, Poland
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Martin Müller
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Łódź, Poland
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Albena Lederer
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
- Department Chemistry and Polymer Science, Stellenbosch University, 7602 Matieland, South Africa
| |
Collapse
|
5
|
Moreira DA, Santos SD, Leiro V, Pêgo AP. Dendrimers and Derivatives as Multifunctional Nanotherapeutics for Alzheimer's Disease. Pharmaceutics 2023; 15:pharmaceutics15041054. [PMID: 37111540 PMCID: PMC10140951 DOI: 10.3390/pharmaceutics15041054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. It affects more than 30 million people worldwide and costs over US$ 1.3 trillion annually. AD is characterized by the brain accumulation of amyloid β peptide in fibrillar structures and the accumulation of hyperphosphorylated tau aggregates in neurons, both leading to toxicity and neuronal death. At present, there are only seven drugs approved for the treatment of AD, of which only two can slow down cognitive decline. Moreover, their use is only recommended for the early stages of AD, meaning that the major portion of AD patients still have no disease-modifying treatment options. Therefore, there is an urgent need to develop efficient therapies for AD. In this context, nanobiomaterials, and dendrimers in particular, offer the possibility of developing multifunctional and multitargeted therapies. Due to their intrinsic characteristics, dendrimers are first-in-class macromolecules for drug delivery. They have a globular, well-defined, and hyperbranched structure, controllable nanosize and multivalency, which allows them to act as efficient and versatile nanocarriers of different therapeutic molecules. In addition, different types of dendrimers display antioxidant, anti-inflammatory, anti-bacterial, anti-viral, anti-prion, and most importantly for the AD field, anti-amyloidogenic properties. Therefore, dendrimers can not only be excellent nanocarriers, but also be used as drugs per se. Here, the outstanding properties of dendrimers and derivatives that make them excellent AD nanotherapeutics are reviewed and critically discussed. The biological properties of several dendritic structures (dendrimers, derivatives, and dendrimer-like polymers) that enable them to be used as drugs for AD treatment will be pointed out and the chemical and structural characteristics behind those properties will be analysed. The reported use of these nanomaterials as nanocarriers in AD preclinical research is also presented. Finally, future perspectives and challenges that need to be overcome to make their use in the clinic a reality are discussed.
Collapse
Affiliation(s)
- Débora A Moreira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP-Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sofia D Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Victoria Leiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana P Pêgo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
6
|
Palan F, Chatterjee B. Dendrimers in the context of targeting central nervous system disorders. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Sorokina SA, Shifrina ZB. Dendrimers as Antiamyloid Agents. Pharmaceutics 2022; 14:760. [PMID: 35456594 PMCID: PMC9031116 DOI: 10.3390/pharmaceutics14040760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
Dendrimer-protein conjugates have significant prospects for biological applications. The complexation changes the biophysical behavior of both proteins and dendrimers. The dendrimers could influence the secondary structure of proteins, zeta-potential, distribution of charged regions on the surface, the protein-protein interactions, etc. These changes offer significant possibilities for the application of these features in nanotheranostics and biomedicine. Based on the dendrimer-protein interactions, several therapeutic applications of dendrimers have emerged. Thus, the formation of stable complexes retains the disordered proteins on the aggregation, which is especially important in neurodegenerative diseases. To clarify the origin of these properties and assess the efficiency of action, the mechanism of protein-dendrimer interaction and the nature and driving force of binding are considered in this review. The review outlines the antiamyloid activity of dendrimers and discusses the effect of dendrimer structures and external factors on their antiamyloid properties.
Collapse
Affiliation(s)
| | - Zinaida B. Shifrina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia;
| |
Collapse
|
8
|
Ferrer-Lorente R, Lozano-Cruz T, Fernández-Carasa I, Miłowska K, de la Mata FJ, Bryszewska M, Consiglio A, Ortega P, Gómez R, Raya A. Cationic Carbosilane Dendrimers Prevent Abnormal α-Synuclein Accumulation in Parkinson's Disease Patient-Specific Dopamine Neurons. Biomacromolecules 2021; 22:4582-4591. [PMID: 34613701 PMCID: PMC8906628 DOI: 10.1021/acs.biomac.1c00884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Accumulation
of misfolded α-synuclein (α-syn) is a
hallmark of Parkinson’s disease (PD) thought to play important
roles in the pathophysiology of the disease. Dendritic systems, able
to modulate the folding of proteins, have emerged as promising new
therapeutic strategies for PD treatment. Dendrimers have been shown
to be effective at inhibiting α-syn aggregation in cell-free
systems and in cell lines. Here, we set out to investigate the effects
of dendrimers on endogenous α-syn accumulation in disease-relevant
cell types from PD patients. For this purpose, we chose cationic carbosilane
dendrimers of bow-tie topology based on their performance at inhibiting
α-syn aggregation in vitro. Dopamine neurons
were differentiated from induced pluripotent stem cell (iPSC) lines
generated from PD patients carrying the LRRK2G2019S mutation, which reportedly display
abnormal accumulation of α-syn, and from healthy individuals
as controls. Treatment of PD dopamine neurons with non-cytotoxic concentrations
of dendrimers was effective at preventing abnormal accumulation and
aggregation of α-syn. Our results in a genuinely human experimental
model of PD highlight the therapeutic potential of dendritic systems
and open the way to developing safe and efficient therapies for delaying
or even halting PD progression.
Collapse
Affiliation(s)
- Raquel Ferrer-Lorente
- Regenerative Medicine Program, and Program for Clinical Translation of Regenerative Medicine in Catalonia─P-CMR[C], L'Hospitalet de Llobregat (Barcelona), Institut d'Investigació Biomèdica de Bellvitge─IDIBELL, Barcelona 08907, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Tania Lozano-Cruz
- University of Alcalá, Department of Organic Chemistry and Inorganic Chemistry and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid 28805, Spain
| | - Irene Fernández-Carasa
- Department of Pathology and Experimental Therapeutics, Hospitalet de Llobregat (Barcelona), Universitat de Barcelona and Institut d'Investigació Biomèdica de Bellvitge─IDIBELL, Barcelona 08907, Spain
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Francisco Javier de la Mata
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.,University of Alcalá, Department of Organic Chemistry and Inorganic Chemistry and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid 28805, Spain
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Antonella Consiglio
- Department of Pathology and Experimental Therapeutics, Hospitalet de Llobregat (Barcelona), Universitat de Barcelona and Institut d'Investigació Biomèdica de Bellvitge─IDIBELL, Barcelona 08907, Spain.,Department of Molecular and Translational Medicine, University of Brescia, Brescia 25121, Italy
| | - Paula Ortega
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.,University of Alcalá, Department of Organic Chemistry and Inorganic Chemistry and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid 28805, Spain
| | - Rafael Gómez
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.,University of Alcalá, Department of Organic Chemistry and Inorganic Chemistry and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid 28805, Spain
| | - Angel Raya
- Regenerative Medicine Program, and Program for Clinical Translation of Regenerative Medicine in Catalonia─P-CMR[C], L'Hospitalet de Llobregat (Barcelona), Institut d'Investigació Biomèdica de Bellvitge─IDIBELL, Barcelona 08907, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08907, Spain
| |
Collapse
|
9
|
Milowska K, Rodacka A, Melikishvili S, Buczkowski A, Pałecz B, Waczulikova I, Hianik T, Majoral JP, Ionov M, Bryszewska M. Dendrimeric HIV-peptide delivery nanosystem affects lipid membranes structure. Sci Rep 2021; 11:16810. [PMID: 34413368 PMCID: PMC8376938 DOI: 10.1038/s41598-021-96194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/03/2021] [Indexed: 11/08/2022] Open
Abstract
The aim of this study was to evaluate the nature and mechanisms of interaction between HIV peptide/dendrimer complexes (dendriplex) and artificial lipid membranes, such as large unilayered vesicles (LUV) and lipid monolayers in the air-water interface. Dendriplexes were combined as one of three HIV-derived peptides (Gp160, P24 and Nef) and one of two cationic phosphorus dendrimers (CPD-G3 and CPD-G4). LUVs were formed of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) or of a mixture of DMPC and dipalmitoyl-phosphatidylglycerol (DPPG). Interactions between dendriplexes and vesicles were characterized by dynamic light scattering (DLS), fluorescence anisotropy, differential scanning calorimetry (DSC) and Langmuir-Blodgett methods. The morphology of formed systems was examined by transmission electron microscopy (TEM). The results suggest that dendriplexes interact with both hydrophobic and hydrophilic regions of lipid bilayers. The interactions between dendriplexes and negatively charged lipids (DMPC-DPPG) were stronger than those between dendriplexes and liposomes composed of zwitterionic lipids (DMPC). The former were primarily of electrostatic nature due to the positive charge of dendriplexes and the negative charge of the membrane, whereas the latter can be attributed to disturbances in the hydrophobic domain of the membrane. Obtained results provide new information about mechanisms of interaction between lipid membranes and nanocomplexes formed with HIV-derived peptides and phosphorus dendrimers. These data could be important for the choosing the appropriate antigen delivery vehicle in the new vaccines against HIV infection.
Collapse
Affiliation(s)
- Katarzyna Milowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Aleksandra Rodacka
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Sophie Melikishvili
- Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina, 842 48, Bratislava, Slovakia
| | - Adam Buczkowski
- Unit of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, 165 Pomorska St., 90-236, University of Lodz, Lodz, Poland
| | - Bartlomiej Pałecz
- Unit of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, 165 Pomorska St., 90-236, University of Lodz, Lodz, Poland
| | - Iveta Waczulikova
- Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina, 842 48, Bratislava, Slovakia
| | - Tibor Hianik
- Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina, 842 48, Bratislava, Slovakia
| | - Jean Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS (LCC), 205 Route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| |
Collapse
|
10
|
Chen C, Dong X. Therapeutic implications of prion diseases. BIOSAFETY AND HEALTH 2021. [DOI: 10.1016/j.bsheal.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
11
|
Qiu J, Chen L, Zhan M, Laurent R, Bignon J, Mignani S, Shi X, Caminade AM, Majoral JP. Facile Synthesis of Amphiphilic Fluorescent Phosphorus Dendron-Based Micelles as Antiproliferative Agents: First Investigations. Bioconjug Chem 2021; 32:339-349. [PMID: 33522223 DOI: 10.1021/acs.bioconjchem.0c00716] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We designed and synthesized several families of novel amphiphilic fluorescent phosphorus dendron-based micelles showing relevant antiproliferative activities for use in the field of theranostic nanomedicine. Based on straightforward synthesis pathways, 12 amphiphilic phosphorus dendrons bearing 10 protonated cyclic amino groups (generation one), or 20 protonated amino groups (generation two), and 1 hydrophobic chain carrying 1 fluorophore moiety were created. The amphiphilic dendron micelles had the capacity to aggregate in solution using hydrophilic/hydrophobic interactions, which promoted the formation of polymeric micelles. These dendron-based micelles showed moderate to high antiproliferative activities against a panel of tumor cell lines. This paper presents for the first time the synthesis and our first investigations of new phosphorus dendron-based micelles for cancer therapy applications.
Collapse
Affiliation(s)
- Jieru Qiu
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France.,College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Liang Chen
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France.,College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Mengsi Zhan
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Régis Laurent
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| | - Jérôme Bignon
- Institut de Chimie des Substances Naturelles du CNRS, 1, avenue de la Terrasse, 91198 Paris, Gif-sur-Yvette Cedex, France
| | - Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006, Paris, France.,CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Xiangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.,CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| |
Collapse
|
12
|
Ghosh P, Bera A, De P. Current status, challenges and future directions in the treatment of neurodegenerative diseases by polymeric materials. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Mandal S, Panja P, Debnath K, Jana NR, Jana NR. Small-Molecule-Functionalized Hyperbranched Polyglycerol Dendrimers for Inhibiting Protein Aggregation. Biomacromolecules 2020; 21:3270-3278. [DOI: 10.1021/acs.biomac.0c00713] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Suman Mandal
- School of Material Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Prasanta Panja
- School of Material Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Koushik Debnath
- School of Material Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Nihar R. Jana
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Nikhil R. Jana
- School of Material Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
14
|
Dias AP, da Silva Santos S, da Silva JV, Parise-Filho R, Igne Ferreira E, Seoud OE, Giarolla J. Dendrimers in the context of nanomedicine. Int J Pharm 2019; 573:118814. [PMID: 31759101 DOI: 10.1016/j.ijpharm.2019.118814] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/23/2023]
Abstract
Dendrimers are globular structures, presenting an initiator core, repetitive layers starting radially from the core and terminal groups on the surface, resembling tree architecture. These structures have been studied in many biological applications, as drug, DNA, RNA and proteins delivery, as well as imaging and radiocontrast agents. With reference to that, this review focused in providing examples of dendrimers used in nanomedicine. Although most studies emphasize cancer, there are others which reveal action in the neurosystem, reducing either neuroinflammation or protein aggregation. Dendrimers can carry bioactive compounds by covalent bond (dendrimer prodrug), or by ionic interaction or adsortion in the internal space of the nanostructure. Additionally, dendrimers can be associated with other polymers, as PEG (polyethylene glycol), and with targeting structures as aptamers, antibodies, folic acid and carbohydrates. Their products in preclinical/clinical trial and those in the market are also discussed, with a total of six derivatives in clinical trials and seven products available in the market.
Collapse
Affiliation(s)
- Ana Paula Dias
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - Soraya da Silva Santos
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - João Vitor da Silva
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - Roberto Parise-Filho
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - Elizabeth Igne Ferreira
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - Omar El Seoud
- Department of Organic Chemistry, Institute of Chemistry, University of São Paulo - USP, São Paulo, SP, Brazil
| | - Jeanine Giarolla
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil.
| |
Collapse
|
15
|
Pedziwiatr-Werbicka E, Milowska K, Dzmitruk V, Ionov M, Shcharbin D, Bryszewska M. Dendrimers and hyperbranched structures for biomedical applications. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Sorokina SA, Stroylova YY, Tishina SA, Shifrina ZB, Muronetz VI. Promising anti-amyloid behavior of cationic pyridylphenylene dendrimers: Role of structural features and mechanism of action. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Caminade A. Inorganic Dendrimers and Their Applications. SMART INORGANIC POLYMERS 2019:277-315. [DOI: 10.1002/9783527819140.ch10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Majoral J, Caminade A. Phosphorhydrazones as Useful Building Blocks for Special Architectures: Macrocycles and Dendrimers. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201801184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jean‐Pierre Majoral
- Laboratoire de Chimie de Coordination CNRS 205, route de Narbonne 31077 Toulouse Cedex 04 France
- LCC‐CNRS Université de Toulouse CNRS Toulouse France
| | - Anne‐Marie Caminade
- Laboratoire de Chimie de Coordination CNRS 205, route de Narbonne 31077 Toulouse Cedex 04 France
- LCC‐CNRS Université de Toulouse CNRS Toulouse France
| |
Collapse
|
19
|
Khan MV, Zakariya SM, Khan RH. Protein folding, misfolding and aggregation: A tale of constructive to destructive assembly. Int J Biol Macromol 2018; 112:217-229. [DOI: 10.1016/j.ijbiomac.2018.01.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/04/2018] [Accepted: 01/14/2018] [Indexed: 12/20/2022]
|
20
|
Abstract
From biomaterials to imaging, and from drug delivery to drugs by themselves, phosphorus-containing dendrimers offer a large palette of biological properties, depending essentially on their types of terminal functions. The most salient examples of phosphorus dendrimers used for the elaboration of bio-chips and of supports for cell cultures, for imaging biological events, and for carrying and delivering drugs or biomacromolecules are presented in this feature article. Several phosphorus dendrimers can be considered also as drugs per se (by themselves) in particular to fight against cancers, neurodegenerative diseases, and inflammation, both in vitro and in vivo. Toxicity assays are also reported.
Collapse
Affiliation(s)
- Anne-Marie Caminade
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, F-31077 Toulouse, France.
| |
Collapse
|
21
|
Interactions gold/phosphorus dendrimers. Versatile ways to hybrid organic–metallic macromolecules. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Affiliation(s)
- Jancy Nixon Abraham
- Polymer Science and Engineering Division; CSIR National Chemical Laboratory; Pune India
| | - Corinne Nardin
- Université de Pau et des Pays de l'Adour (UPPA), Institut des sciences analytiques et de physico-chimie pour l'environnement et les matériaux (IPREM); Equipe Physique et Chimie des Polymères (EPCP); Pau France
| |
Collapse
|
23
|
Abstract
Three decades after the discovery of prions as the cause of Creutzfeldt-Jakob disease and other transmissible spongiform encephalopathies, we are still nowhere close to finding an effective therapy. Numerous pharmacological interventions have attempted to target various stages of disease progression, yet none has significantly ameliorated the course of disease. We still lack a mechanistic understanding of how the prions damage the brain, and this situation results in a dearth of validated pharmacological targets. In this review, we discuss the attempts to interfere with the replication of prions and to enhance their clearance. We also trace some of the possibilities to identify novel targets that may arise with increasing insights into prion biology.
Collapse
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, CH-8091 Zürich, Switzerland;
| | - Asvin K K Lakkaraju
- Institute of Neuropathology, University of Zurich, CH-8091 Zürich, Switzerland;
| | - Karl Frontzek
- Institute of Neuropathology, University of Zurich, CH-8091 Zürich, Switzerland;
| |
Collapse
|
24
|
Araman C, Thompson RE, Wang S, Hackl S, Payne RJ, Becker CFW. Semisynthetic prion protein (PrP) variants carrying glycan mimics at position 181 and 197 do not form fibrils. Chem Sci 2017; 8:6626-6632. [PMID: 28989689 PMCID: PMC5625290 DOI: 10.1039/c7sc02719b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022] Open
Abstract
Semisynthesis and characterization of homogeneously mono- and di-PEGylated full length PrP variants to study the impact of PEGylation (as N-glycan mimics) on protein folding and aggregation.
The prion protein (PrP) is an N-glycosylated protein attached to the outer leaflet of eukaryotic cell membranes via a glycosylphosphatidylinositol (GPI) anchor. Different prion strains have distinct glycosylation patterns and the extent of glycosylation of potentially pathogenic misfolded prion protein (PrPSc) has a major impact on several prion-related diseases (transmissible spongiform encephalopathies, TSEs). Based on these findings it is hypothesized that posttranslational modifications (PTMs) of PrP influence conversion of cellular prion protein (PrPC) into PrPSc and, as such, modified PrP variants are critical tools needed to investigate the impact of PTMs on the pathogenesis of TSEs. Here we report a semisynthetic approach to generate PrP variants modified with monodisperse polyethyleneglycol (PEG) units as mimics of N-glycans. Incorporating PEG at glycosylation sites 181 and 197 in PrP induced only small changes to the secondary structure when compared to unmodified, wildtype PrP. More importantly, in vitro aggregation was abrogated for all PEGylated PrP variants under conditions at which wildtype PrP aggregated. Furthermore, the addition of PEGylated PrP as low as 10 mol% to wildtype PrP completely blocked aggregation. A similar effect was observed for synthetic PEGylated PrP segments comprising amino acids 179–231 alone if these were added to wildtype PrP in aggregation assays. This behavior raises the question if large N-glycans interfere with aggregation in vivo and if PEGylated PrP peptides could serve as potential therapeutics.
Collapse
Affiliation(s)
- Can Araman
- Institute of Biological Chemistry , Department of Chemistry , University of Vienna , Waehringer Strasse 38 , 1090 , Vienna-AT , Austria .
| | - Robert E Thompson
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Siyao Wang
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Stefanie Hackl
- Institute of Biological Chemistry , Department of Chemistry , University of Vienna , Waehringer Strasse 38 , 1090 , Vienna-AT , Austria .
| | - Richard J Payne
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Christian F W Becker
- Institute of Biological Chemistry , Department of Chemistry , University of Vienna , Waehringer Strasse 38 , 1090 , Vienna-AT , Austria .
| |
Collapse
|
25
|
Shcharbin D, Shcharbina N, Dzmitruk V, Pedziwiatr-Werbicka E, Ionov M, Mignani S, de la Mata FJ, Gómez R, Muñoz-Fernández MA, Majoral JP, Bryszewska M. Dendrimer-protein interactions versus dendrimer-based nanomedicine. Colloids Surf B Biointerfaces 2017; 152:414-422. [PMID: 28167455 DOI: 10.1016/j.colsurfb.2017.01.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
Dendrimers are hyperbranched polymers belonging to the huge class of nanomedical devices. Their wide application in biology and medicine requires understanding of the fundamental mechanisms of their interactions with biological systems. Summarizing, electrostatic force plays the predominant role in dendrimer-protein interactions, especially with charged dendrimers. Other kinds of interactions have been proven, such as H-bonding, van der Waals forces, and even hydrophobic interactions. These interactions depend on the characteristics of both participants: flexibility and surface charge of a dendrimer, rigidity of protein structure and the localization of charged amino acids at its surface. pH and ionic strength of solutions can significantly modulate interactions. Ligands and cofactors attached to a protein can also change dendrimer-protein interactions. Binding of dendrimers to a protein can change its secondary structure, conformation, intramolecular mobility and functional activity. However, this strongly depends on rigidity versus flexibility of a protein's structure. In addition, the potential applications of dendrimers to nanomedicine are reviwed related to dendrimer-protein interactions.
Collapse
Affiliation(s)
- Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus.
| | | | - Volha Dzmitruk
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus
| | - Elzbieta Pedziwiatr-Werbicka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Serge Mignani
- Université Paris Descartes, Laboratoire de Chimie et de Biochimie pharmacologiques et toxicologique, Paris, France
| | - F Javier de la Mata
- Departamento Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Spain
| | - Rafael Gómez
- Departamento Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Spain
| | - Maria Angeles Muñoz-Fernández
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Spain; Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; Spanish HIV-HGM BioBank, Madrid, Spain
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination, CNRS, Toulouse, France; Université de Toulouse, Toulouse, France
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
26
|
Generation-dependent effect of PAMAM dendrimers on human insulin fibrillation and thermal stability. Int J Biol Macromol 2016; 82:54-60. [DOI: 10.1016/j.ijbiomac.2015.10.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 10/07/2015] [Accepted: 10/09/2015] [Indexed: 11/20/2022]
|
27
|
Liu Y, Xu LP, Dai W, Dong H, Wen Y, Zhang X. Graphene quantum dots for the inhibition of β amyloid aggregation. NANOSCALE 2015; 7:19060-5. [PMID: 26515666 DOI: 10.1039/c5nr06282a] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The aggregation of Aβ peptides is a crucial factor leading to Alzheimer's disease (AD). Inhibiting the Aβ peptide aggregation has become one of the most essential strategies to treat AD. In this work, efficient and low-cytotoxicity inhibitors, graphene quantum dots (GQDs) are reported for their application in inhibiting the aggregation of Aβ peptides. Compared to other carbon materials, the low cytotoxicity and great biocompatibility of GQDs give an advantage to the clinical research for AD. In addition, the GQDs may cross the blood-brain barrier (BBB) because of the small size. It is believed that GQDs may be therapeutic agents against AD. This work provides a novel insight into the development of Alzheimer's drugs.
Collapse
Affiliation(s)
- Yibiao Liu
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing 100083, P.R. China.
| | | | | | | | | | | |
Collapse
|
28
|
Sorokina SA, Stroylova YY, Shifrina ZB, Muronetz VI. Disruption of Amyloid Prion Protein Aggregates by Cationic Pyridylphenylene Dendrimers. Macromol Biosci 2015; 16:266-75. [DOI: 10.1002/mabi.201500268] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/16/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Svetlana A. Sorokina
- A. N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Moscow Vavilova str., 28 119991
| | - Yulia Yu. Stroylova
- Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University; Moscow Leninskye gory, 1/40, 119992 Russia
| | - Zinaida B. Shifrina
- A. N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Moscow Vavilova str., 28 119991
| | - Vladimir I. Muronetz
- Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University; Moscow Leninskye gory, 1/40, 119992 Russia
| |
Collapse
|
29
|
Milowska K, Szwed A, Mutrynowska M, Gomez-Ramirez R, de la Mata FJ, Gabryelak T, Bryszewska M. Carbosilane dendrimers inhibit α-synuclein fibrillation and prevent cells from rotenone-induced damage. Int J Pharm 2015; 484:268-75. [PMID: 25735664 DOI: 10.1016/j.ijpharm.2015.02.066] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 02/24/2015] [Accepted: 02/27/2015] [Indexed: 11/17/2022]
Abstract
This study investigates the role of carbosilane dendrimers in fibrillation of α-synuclein and prevention of the mouse hippocampal cell (mHippoE-18) from rotenone-induced damage. Examining the interaction between carbosilane dendrimers and α-synuclein, we found that the dendrimers inhibit fibril formation. We also investigated cell viability, the production of reactive oxygen species (ROS), and mitochondrial membrane potential. mHippoE-18 cells were preincubated with carbosilane dendrimers before rotenone was added. All the dendrimers possess potential protection activity. Preincubation with dendrimers contributed to: increased viability, higher mitochondrial membrane potential, and reduced ROS level in cells. The probable mechanism of cell protection lies in the ability of dendrimers to capture rotenone by encapsulating or binding to its surface groups. The fact that dendrimers have prevention potential is important in the search for new pharmacological strategies against neurodegenerative disorders.
Collapse
Affiliation(s)
- Katarzyna Milowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland.
| | - Aleksandra Szwed
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Marta Mutrynowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Rafael Gomez-Ramirez
- Departamento Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares, Spain. Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)
| | - Francisco Javier de la Mata
- Departamento Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares, Spain. Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)
| | - Teresa Gabryelak
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| |
Collapse
|
30
|
Abstract
Primary/secondary covalent/non-covalent interactions between dendritic polymers and nanomaterials can change the physicochemical properties, such as shape, of the obtained hybrid nanomaterials.
Collapse
Affiliation(s)
- R. Soleyman
- Polymer Science and Technology Division
- Research Institute of Petroleum Industry (RIPI)
- Tehran
- Iran
| | - M. Adeli
- Department of Chemistry
- Faculty of Science
- Lorestan University
- Khorramabad
- Iran
| |
Collapse
|
31
|
McCarthy JM, Appelhans D, Tatzelt J, Rogers MS. Nanomedicine for prion disease treatment: new insights into the role of dendrimers. Prion 2014; 7:198-202. [PMID: 23764833 DOI: 10.4161/pri.24431] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Despite their devastating impact, no effective therapeutic yet exists for prion diseases at the symptomatic stage in humans or animals. Progress is hampered by the difficulty in identifying compounds that affect PrP (Sc) and the necessity of any potential therapeutic to gain access to the CNS. Synthetic polymers known as dendrimers are a particularly promising candidate in this area. Studies with cell culture models of prion disease and prion infected brain homogenate have demonstrated that numerous species of dendrimers eliminate PrP (Sc) in a dose and time dependent fashion and specific glycodendrimers are capable of crossing the CNS. However, despite their potential a number of important questions remained unanswered such as what makes an effective dendrimer and how dendrimers eliminate prions intracellularly. In a number of recent studies we have tackled these questions and revealed for the first time that a specific dendrimer can inhibit the intracellular conversion of PrP (C) to PrP (Sc) and that a high density of surface reactive groups is a necessity for dendrimers in vitro anti-prion activity. Understanding how a therapeutic works is a vital component in maximising its activity and these studies therefore represent a significant development in the race to find effective treatments for prion diseases.
Collapse
Affiliation(s)
- James M McCarthy
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
| | | | | | | |
Collapse
|
32
|
Zhang M, Mao X, Yu Y, Wang CX, Yang YL, Wang C. Nanomaterials for reducing amyloid cytotoxicity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:3780-801. [PMID: 23722464 DOI: 10.1002/adma.201301210] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 05/20/2023]
Abstract
This review is intended to reflect the recent progress on therapeutic applications of nanomaterials in amyloid diseases. The progress on anti-amyloid functions of various nanomaterials including inorganic nanoparticles, polymeric nanoparticles, carbon nanomaterials and biomolecular aggregates, is reviewed and discussed. The main functionalization strategies for general nanoparticle modifications are reviewed for potential applications of targeted therapeutics. The interaction mechanisms between amyloid peptides and nanomaterials are discussed from the perspectives of dominant interactions and kinetics. The encapsulation of anti-amyloid drugs, targeted drug delivery, controlled drug release and drug delivery crossing blood brain barrier by application of nanomaterials would also improve the therapeutics of amyloid diseases.
Collapse
Affiliation(s)
- Min Zhang
- National Center for Nanoscience and Technology, Beijing 100190, China
| | | | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Natallia Shcharbina
- Republican Research and Practical Center of Neurology and Neurosurgery, Minsk, Belarus
| | | | | |
Collapse
|
34
|
Milowska K, Grochowina J, Katir N, El Kadib A, Majoral JP, Bryszewska M, Gabryelak T. Viologen-Phosphorus Dendrimers Inhibit α-Synuclein Fibrillation. Mol Pharm 2013; 10:1131-7. [PMID: 23379345 DOI: 10.1021/mp300636h] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inhibition of α-synuclein (ASN) fibril formation is a potential therapeutic strategy in Parkinson's disease and other synucleinopathies. The aim of this study was to examine the role of viologen-phosphorus dendrimers in the α-synuclein fibrillation process and to assess the structural changes in α-synuclein under the influence of dendrimers. ASN interactions with phosphonate and pegylated surface-reactive viologen-phosphorus dendrimers were examined by measuring the zeta potential, which allowed determining the number of dendrimer molecules that bind to the ASN molecule. The fibrillation kinetics and the structural changes were examined using ThT fluorescence and CD spectroscopy. Depending on the concentration of the used dendrimer and the nature of the reactive groups located on the surface, ASN fibrillation kinetics can be significantly reduced, and even, in the specific case of phosphonate dendrimers, the fibrillation can be totally inhibited at low concentrations. The presented results indicate that viologen-phosphorus dendrimers are able to inhibit ASN fibril formation and may be used as fibrillar regulating agents in neurodegenerative disorders.
Collapse
Affiliation(s)
- Katarzyna Milowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland.
| | | | | | | | | | | | | |
Collapse
|
35
|
McCarthy JM, Franke M, Resenberger UK, Waldron S, Simpson JC, Tatzelt J, Appelhans D, Rogers MS. Anti-prion drug mPPIg5 inhibits PrP(C) conversion to PrP(Sc). PLoS One 2013; 8:e55282. [PMID: 23383136 PMCID: PMC3557256 DOI: 10.1371/journal.pone.0055282] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 12/29/2012] [Indexed: 11/18/2022] Open
Abstract
Prion diseases, also known as transmissible spongiform encephalopathies, are a group of fatal neurodegenerative diseases that include scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle and Creutzfeldt-Jakob disease (CJD) in humans. The ‘protein only hypothesis’ advocates that PrPSc, an abnormal isoform of the cellular protein PrPC, is the main and possibly sole component of prion infectious agents. Currently, no effective therapy exists for these diseases at the symptomatic phase for either humans or animals, though a number of compounds have demonstrated the ability to eliminate PrPSc in cell culture models. Of particular interest are synthetic polymers known as dendrimers which possess the unique ability to eliminate PrPSc in both an intracellular and in vitro setting. The efficacy and mode of action of the novel anti-prion dendrimer mPPIg5 was investigated through the creation of a number of innovative bio-assays based upon the scrapie cell assay. These assays were used to demonstrate that mPPIg5 is a highly effective anti-prion drug which acts, at least in part, through the inhibition of PrPC to PrPSc conversion. Understanding how a drug works is a vital component in maximising its performance. By establishing the efficacy and method of action of mPPIg5, this study will help determine which drugs are most likely to enhance this effect and also aid the design of dendrimers with anti-prion capabilities for the future.
Collapse
Affiliation(s)
- James M McCarthy
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Caminade AM, Turrin CO, Majoral JP. Biological properties of water-soluble phosphorhydrazone dendrimers. BRAZ J PHARM SCI 2013. [DOI: 10.1590/s1984-82502013000700004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dendrimers are hyperbranched and perfectly defined macromolecules, constituted of branches emanating from a central core in an iterative fashion. Phosphorhydrazone dendrimers constitute a special family of dendrimers, possessing one phosphorus atom at each branching point. The internal structure of these dendrimers is hydrophobic, but hydrophilic terminal groups can induce the solubility of the whole structure in water. Indeed, the properties of these compounds are mainly driven by the type of terminal groups their bear; this is especially true for the biological properties. For instance, positively charged terminal groups are efficient for transfection experiments, as drug carriers, as anti-prion agents, and as inhibitor of the aggregation of Alzheimer's peptides, whereas negatively charged dendrimers have anti-HIV properties and can influence the human immune system, leading to anti-inflammatory properties usable against rheumatoid arthritis. This review will give the most representative examples of the biological properties of water-soluble phosphorhydrazone dendrimers, organized depending on the type of terminal groups they bear.
Collapse
Affiliation(s)
- Anne-Marie Caminade
- Centre National de la Recherche Scientifique, France; Université de Toulouse, France
| | - Cédric-Olivier Turrin
- Centre National de la Recherche Scientifique, France; Université de Toulouse, France
| | - Jean-Pierre Majoral
- Centre National de la Recherche Scientifique, France; Université de Toulouse, France
| |
Collapse
|
37
|
Caminade AM, Majoral JP. Positively charged phosphorus dendrimers. An overview of their properties. NEW J CHEM 2013. [DOI: 10.1039/c3nj00583f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Quadir MA, Haag R. Biofunctional nanosystems based on dendritic polymers. J Control Release 2012; 161:484-95. [DOI: 10.1016/j.jconrel.2011.12.040] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/28/2011] [Accepted: 12/29/2011] [Indexed: 11/30/2022]
|
39
|
Phosphorus-containing dendrimers against α-synuclein fibril formation. Int J Biol Macromol 2012; 50:1138-43. [DOI: 10.1016/j.ijbiomac.2012.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/03/2012] [Accepted: 02/06/2012] [Indexed: 11/17/2022]
|
40
|
Wasiak T, Ionov M, Nieznanski K, Nieznanska H, Klementieva O, Granell M, Cladera J, Majoral JP, Caminade AM, Klajnert B. Phosphorus Dendrimers Affect Alzheimer’s (Aβ1–28) Peptide and MAP-Tau Protein Aggregation. Mol Pharm 2012; 9:458-69. [DOI: 10.1021/mp2005627] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tomasz Wasiak
- Department of General Biophysics, University of Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, University of Lodz, Poland
| | - Krzysztof Nieznanski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Hanna Nieznanska
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Oxana Klementieva
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Spain
| | - Maritxell Granell
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Spain
| | - Josep Cladera
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Spain
| | | | | | | |
Collapse
|
41
|
Benseny-Cases N, Klementieva O, Cladera J. Dendrimers antiamyloidogenic potential in neurodegenerative diseases. NEW J CHEM 2012. [DOI: 10.1039/c1nj20469f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
42
|
Klementieva O, Benseny-Cases N, Gella A, Appelhans D, Voit B, Cladera J. Dense Shell Glycodendrimers as Potential Nontoxic Anti-amyloidogenic Agents in Alzheimer’s Disease. Amyloid–Dendrimer Aggregates Morphology and Cell Toxicity. Biomacromolecules 2011; 12:3903-9. [DOI: 10.1021/bm2008636] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Oxana Klementieva
- Biophysics Unit and Center of Studies in Biophysics, Department of
Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
- Faculty of Health Sciences, International University of Catalonia, Barcelona, Spain
| | - Núria Benseny-Cases
- Biophysics Unit and Center of Studies in Biophysics, Department of
Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Alejandro Gella
- Faculty of Health Sciences, International University of Catalonia, Barcelona, Spain
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research, Hohe Strasse 6, D-01069 Dresden,
Germany
| | - Brigitte Voit
- Leibniz Institute of Polymer Research, Hohe Strasse 6, D-01069 Dresden,
Germany
| | - Josep Cladera
- Biophysics Unit and Center of Studies in Biophysics, Department of
Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| |
Collapse
|
43
|
PAMAM G4 dendrimers affect the aggregation of α-synuclein. Int J Biol Macromol 2011; 48:742-6. [DOI: 10.1016/j.ijbiomac.2011.02.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 02/24/2011] [Accepted: 02/24/2011] [Indexed: 11/19/2022]
|
44
|
Monge S, Canniccioni B, Graillot A, Robin JJ. Phosphorus-Containing Polymers: A Great Opportunity for the Biomedical Field. Biomacromolecules 2011; 12:1973-82. [DOI: 10.1021/bm2004803] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sophie Monge
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM2-ENSCM-UM1 - Equipe Ingénierie et Architectures Macromoléculaires, Université Montpellier II cc1702, Place Eugène Bataillon 34095 Montpellier Cedex 5
| | - Benjamin Canniccioni
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM2-ENSCM-UM1 - Equipe Ingénierie et Architectures Macromoléculaires, Université Montpellier II cc1702, Place Eugène Bataillon 34095 Montpellier Cedex 5
| | - Alain Graillot
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM2-ENSCM-UM1 - Equipe Ingénierie et Architectures Macromoléculaires, Université Montpellier II cc1702, Place Eugène Bataillon 34095 Montpellier Cedex 5
| | - Jean-Jacques Robin
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM2-ENSCM-UM1 - Equipe Ingénierie et Architectures Macromoléculaires, Université Montpellier II cc1702, Place Eugène Bataillon 34095 Montpellier Cedex 5
| |
Collapse
|
45
|
Ottaviani MF, Mazzeo R, Cangiotti M, Fiorani L, Majoral JP, Caminade AM, Pedziwiatr E, Bryszewska M, Klajnert B. Time Evolution of the Aggregation Process of Peptides Involved in Neurodegenerative Diseases and Preventing Aggregation Effect of Phosphorus Dendrimers Studied by EPR. Biomacromolecules 2010; 11:3014-21. [DOI: 10.1021/bm100824z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. Francesca Ottaviani
- Department of Geological Sciences, Chemical and Environmental Technologies, University of Urbino, Loc. Crocicchia, 61029 Urbino, Italy, Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 Toulouse, Cedex 04, France, and Department of General Biophysics, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Roberto Mazzeo
- Department of Geological Sciences, Chemical and Environmental Technologies, University of Urbino, Loc. Crocicchia, 61029 Urbino, Italy, Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 Toulouse, Cedex 04, France, and Department of General Biophysics, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Michela Cangiotti
- Department of Geological Sciences, Chemical and Environmental Technologies, University of Urbino, Loc. Crocicchia, 61029 Urbino, Italy, Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 Toulouse, Cedex 04, France, and Department of General Biophysics, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Luigi Fiorani
- Department of Geological Sciences, Chemical and Environmental Technologies, University of Urbino, Loc. Crocicchia, 61029 Urbino, Italy, Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 Toulouse, Cedex 04, France, and Department of General Biophysics, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Jean Pierre Majoral
- Department of Geological Sciences, Chemical and Environmental Technologies, University of Urbino, Loc. Crocicchia, 61029 Urbino, Italy, Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 Toulouse, Cedex 04, France, and Department of General Biophysics, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Anne Marie Caminade
- Department of Geological Sciences, Chemical and Environmental Technologies, University of Urbino, Loc. Crocicchia, 61029 Urbino, Italy, Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 Toulouse, Cedex 04, France, and Department of General Biophysics, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Elzbieta Pedziwiatr
- Department of Geological Sciences, Chemical and Environmental Technologies, University of Urbino, Loc. Crocicchia, 61029 Urbino, Italy, Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 Toulouse, Cedex 04, France, and Department of General Biophysics, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Maria Bryszewska
- Department of Geological Sciences, Chemical and Environmental Technologies, University of Urbino, Loc. Crocicchia, 61029 Urbino, Italy, Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 Toulouse, Cedex 04, France, and Department of General Biophysics, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Barbara Klajnert
- Department of Geological Sciences, Chemical and Environmental Technologies, University of Urbino, Loc. Crocicchia, 61029 Urbino, Italy, Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 Toulouse, Cedex 04, France, and Department of General Biophysics, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| |
Collapse
|
46
|
Peptide and glycopeptide dendrimers and analogous dendrimeric structures and their biomedical applications. Amino Acids 2010; 40:301-70. [DOI: 10.1007/s00726-010-0707-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/15/2010] [Indexed: 02/08/2023]
|
47
|
Doménech R, Abian O, Bocanegra R, Correa J, Sousa-Herves A, Riguera R, Mateu MG, Fernandez-Megia E, Velázquez-Campoy A, Neira JL. Dendrimers as Potential Inhibitors of the Dimerization of the Capsid Protein of HIV-1. Biomacromolecules 2010; 11:2069-78. [DOI: 10.1021/bm100432x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rosa Doménech
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Alicante, Spain, Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, Spain, I+CS (Aragon Health Sciences Institute), CIBERehd, Zaragoza, Spain, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain, Departamento de Quimica Orgánica, Facultad de Química, and Unidad de RMN de Biomoléculas Asociada al CSIC, Universidad de Santiago de
| | - Olga Abian
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Alicante, Spain, Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, Spain, I+CS (Aragon Health Sciences Institute), CIBERehd, Zaragoza, Spain, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain, Departamento de Quimica Orgánica, Facultad de Química, and Unidad de RMN de Biomoléculas Asociada al CSIC, Universidad de Santiago de
| | - Rebeca Bocanegra
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Alicante, Spain, Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, Spain, I+CS (Aragon Health Sciences Institute), CIBERehd, Zaragoza, Spain, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain, Departamento de Quimica Orgánica, Facultad de Química, and Unidad de RMN de Biomoléculas Asociada al CSIC, Universidad de Santiago de
| | - Juan Correa
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Alicante, Spain, Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, Spain, I+CS (Aragon Health Sciences Institute), CIBERehd, Zaragoza, Spain, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain, Departamento de Quimica Orgánica, Facultad de Química, and Unidad de RMN de Biomoléculas Asociada al CSIC, Universidad de Santiago de
| | - Ana Sousa-Herves
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Alicante, Spain, Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, Spain, I+CS (Aragon Health Sciences Institute), CIBERehd, Zaragoza, Spain, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain, Departamento de Quimica Orgánica, Facultad de Química, and Unidad de RMN de Biomoléculas Asociada al CSIC, Universidad de Santiago de
| | - Ricardo Riguera
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Alicante, Spain, Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, Spain, I+CS (Aragon Health Sciences Institute), CIBERehd, Zaragoza, Spain, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain, Departamento de Quimica Orgánica, Facultad de Química, and Unidad de RMN de Biomoléculas Asociada al CSIC, Universidad de Santiago de
| | - Mauricio G. Mateu
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Alicante, Spain, Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, Spain, I+CS (Aragon Health Sciences Institute), CIBERehd, Zaragoza, Spain, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain, Departamento de Quimica Orgánica, Facultad de Química, and Unidad de RMN de Biomoléculas Asociada al CSIC, Universidad de Santiago de
| | - Eduardo Fernandez-Megia
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Alicante, Spain, Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, Spain, I+CS (Aragon Health Sciences Institute), CIBERehd, Zaragoza, Spain, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain, Departamento de Quimica Orgánica, Facultad de Química, and Unidad de RMN de Biomoléculas Asociada al CSIC, Universidad de Santiago de
| | - Adrián Velázquez-Campoy
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Alicante, Spain, Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, Spain, I+CS (Aragon Health Sciences Institute), CIBERehd, Zaragoza, Spain, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain, Departamento de Quimica Orgánica, Facultad de Química, and Unidad de RMN de Biomoléculas Asociada al CSIC, Universidad de Santiago de
| | - José L. Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Alicante, Spain, Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, Spain, I+CS (Aragon Health Sciences Institute), CIBERehd, Zaragoza, Spain, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain, Departamento de Quimica Orgánica, Facultad de Química, and Unidad de RMN de Biomoléculas Asociada al CSIC, Universidad de Santiago de
| |
Collapse
|
48
|
Fischer M, Appelhans D, Schwarz S, Klajnert B, Bryszewska M, Voit B, Rogers M. Influence of Surface Functionality of Poly(propylene imine) Dendrimers on Protease Resistance and Propagation of the Scrapie Prion Protein. Biomacromolecules 2010; 11:1314-25. [DOI: 10.1021/bm100101s] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Marlies Fischer
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany, and Department of General Biophysics, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Dietmar Appelhans
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany, and Department of General Biophysics, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Simona Schwarz
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany, and Department of General Biophysics, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Barbara Klajnert
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany, and Department of General Biophysics, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Maria Bryszewska
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany, and Department of General Biophysics, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Brigitte Voit
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany, and Department of General Biophysics, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Mark Rogers
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany, and Department of General Biophysics, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| |
Collapse
|
49
|
|
50
|
Spataro G, Malecaze F, Turrin CO, Soler V, Duhayon C, Elena PP, Majoral JP, Caminade AM. Designing dendrimers for ocular drug delivery. Eur J Med Chem 2009; 45:326-34. [PMID: 19889480 DOI: 10.1016/j.ejmech.2009.10.017] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 09/07/2009] [Accepted: 10/08/2009] [Indexed: 12/16/2022]
Abstract
New series of phosphorus-containing dendrimers, having one quaternary ammonium salt as core and carboxylic acid terminal groups have been synthesized from generation 0 (3 carboxylic acid terminal groups) to generation 2 (12 carboxylic acid terminal groups). These dendrimers react with the neutral form of carteolol (an ocular anti-hypertensive drug used to treat glaucoma) to afford ion pair (saline) species. The solubility in water of these charged dendrimers depends on the generation considered: generation 0 (3 carteolol) is well soluble, whereas generation 1 (6 carteolol) and generation 2 (12 carteolol) are poorly soluble. These dendrimers have been tested in vivo, as vehicle for ocular drug delivery of carteolol to rabbits.
Collapse
Affiliation(s)
- Grégory Spataro
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, F-31077 Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|