1
|
Liu Y, Sun Y, Chen A, Chen J, Zhu T, Wang S, Qiao W, Zhou D, Zhang X, Chen S, Shi Y, Yang Y, Wang J, Wu L, Fan L. Involvement of disulfidptosis in the pathophysiology of autism spectrum disorder. Life Sci 2025; 369:123531. [PMID: 40054734 DOI: 10.1016/j.lfs.2025.123531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/22/2025] [Accepted: 03/03/2025] [Indexed: 03/30/2025]
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder, with oxidative stress recognized as a key pathogenic mechanisms. Oxidative stress disrupts intracellular dynamic- thiol/disulfide homeostasis (DTDH), potentially leading to disulfidptosis, a newly identified cell death mechanism. While studies suggest a link between DTDH and ASD, direct evidence implicating disulfidptosis in ASD pathogenesis remains limited. In this study, Mendelian randomization analysis revealed a significant causal association between disulfidptosis-related sulfhydryl oxidase 1 and 2 and ASD (OR1 = 0.883, OR2 = 0.924, p < 0.05). A positive correlation between protein disulfide-isomerase and cognitive performance (OR = 1.021, p < 0.01) further supported the role of disulfidptosis in ASD. Seven disulfidptosis-related genes (TIMP1, STAT3, VWA1, ADA, IL5, PF4, and TXNDC12) were identified and linked to immune cell alterations. A TF-miRNA-mRNA regulatory network and a predictive model (AUC = 0.759) were constructed and external validation datasets (AUC = 0.811). Immune infiltration analysis demonstrated altered expression of naive B cells and three other types of immune cells in ASD children. Animal experiments further validated the differential expression of key genes, highlighting their relevance to ASD pathogenesis. Animal experiments found that BTBR mice exhibit glucose starvation and NADPH depletion, with the specific indicator Slc7a11 being highly expressed. Silencing Slc7a11 can improve core ASD impairments in BTBR mice. CONCLUSION: This study establishes the first mechanistic link between disulfidptosis and ASD, identifies seven key genes and their regulatory network, and develops a predictive model with clinical utility. Animal experiments further confirmed the strong association between disulfidpotosis and ASD phenotypes. These findings offer novel therapeutic targets for modulating oxidative stress in ASD.
Collapse
Affiliation(s)
- Yutong Liu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Yaqi Sun
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Anjie Chen
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Jiaqi Chen
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Tikang Zhu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Shuting Wang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Wanying Qiao
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Ding Zhou
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Xirui Zhang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Shuangshuang Chen
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Yaxin Shi
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Yuan Yang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Jia Wang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China; Key Laboratory of Children development and genetic research, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin 150081, China
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China; Key Laboratory of Children development and genetic research, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin 150081, China
| | - Lili Fan
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China; Key Laboratory of Children development and genetic research, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
2
|
Jiang P, Zhou L, Zhao L, Fei X, Wang Z, Liu T, Tang Y, Li D, Gong H, Luo Y, Li S, Yang H, Liao H, Fan X. Puerarin attenuates valproate-induced features of ASD in male mice via regulating Slc7a11-dependent ferroptosis. Neuropsychopharmacology 2024; 49:497-507. [PMID: 37491673 PMCID: PMC10789763 DOI: 10.1038/s41386-023-01659-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023]
Abstract
Autism spectrum disorder (ASD) is a complicated, neurodevelopmental disorder characterized by social deficits and stereotyped behaviors. Accumulating evidence suggests that ferroptosis is involved in the development of ASD, but the underlying mechanism remains elusive. Puerarin has an anti-ferroptosis function. Here, we found that the administration of puerarin from P12 to P15 ameliorated the autism-associated behaviors in the VPA-exposed male mouse model of autism by inhibiting ferroptosis in neural stem cells of the hippocampus. We highlight the role of ferroptosis in the hippocampus neurogenesis and confirm that puerarin treatment inhibited iron overload, lipid peroxidation accumulation, and mitochondrial dysfunction, as well as enhanced the expression of ferroptosis inhibitory proteins, including Nrf2, GPX4, Slc7a11, and FTH1 in the hippocampus of VPA mouse model of autism. In addition, we confirmed that inhibition of xCT/Slc7a11-mediated ferroptosis occurring in the hippocampus is closely related to puerarin-exerted therapeutic effects. In conclusion, our study suggests that puerarin targets core symptoms and hippocampal neurogenesis reduction through ferroptosis inhibition, which might be a potential drug for autism intervention.
Collapse
Affiliation(s)
- Peiyan Jiang
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, 400038, Chongqing, China
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Lianyu Zhou
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, 400038, Chongqing, China
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 400037, Chongqing, China
| | - Linyang Zhao
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, 400038, Chongqing, China
| | - Xinghang Fei
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, 400038, Chongqing, China
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 400037, Chongqing, China
| | - Zhifei Wang
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, 400038, Chongqing, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, 400038, Chongqing, China
| | - Yexi Tang
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, 400038, Chongqing, China
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 400037, Chongqing, China
| | - Dabing Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Hong Gong
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, 400038, Chongqing, China
| | - Yi Luo
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, 400038, Chongqing, China
| | - Song Li
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China
| | - Hui Yang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China
| | - Huiling Liao
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, 400038, Chongqing, China.
| |
Collapse
|
3
|
Sexually dimorphic and brain region-specific transporter adaptations in system x c- null mice. Neurochem Int 2020; 141:104888. [PMID: 33199267 DOI: 10.1016/j.neuint.2020.104888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
System xc- is a heterodimeric amino acid antiporter that, in the central nervous system, is best known for linking the import of L-cystine (CySS) with the export of L-glutamate for the production and maintenance of cellular glutathione (GSH) and extracellular glutamate levels, respectively. Yet, mice that are null for system xc- are healthy, fertile, and, morphologically, their brains are grossly normal. This suggests other glutamate and/or cyst(e)ine transport mechanisms may be upregulated in compensation. To test this, we measured the plasma membrane expression of Excitatory Amino Acid Transporters (EAATs) 1-3, the Alanine-Serine-Cysteine-Transporter (ASCT) 1, the sodium-coupled neutral amino acid transporter (SNAT) 3 and the L Amino Acid Transporter (LAT) 2 in striatum, hippocampus and cortex of male and female mice using Western Blot analysis. Present results demonstrate brain region and transporter-specific changes occurs in female system xc- null mice with increased expression of EAAT1 and ASCT1 occurring in the striatum and cortex, respectively, and decreased SNAT 3 expression in cortex. In male system xc- null brain, only SNAT3 was altered significantly - increasing in the cortex, but decreasing in the striatum. Total levels of GSH and CyS were similar to that found in age and sex-matched littermate control mice, however, reductions in the ratio of reduced to oxidized GSH (GSH/GSSG) - a hallmark of oxidative stress - were found in all three brain regions in female system xc- null mice, whereas this occurred exclusively in the striatum of males. Protein levels of Superoxide dismutase (SOD) 1 were reduced, whereas SOD2 was enhanced in the hippocampus of male xc- null mice only. Finally, striatal vulnerability to 3-nitropropionic acid (3-NP)-mediated oxidative stress in either sex showed no genotype difference, although 3-NP was more toxic to female mice of either genotype, as evidenced by an increase in moribundity as compared to males.
Collapse
|
4
|
Slc7a11 Modulated by POU2F1 is Involved in Pigmentation in Rabbit. Int J Mol Sci 2019; 20:ijms20102493. [PMID: 31137576 PMCID: PMC6566412 DOI: 10.3390/ijms20102493] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 01/22/2023] Open
Abstract
Solute carrier family 7 member 11 (Slc7a11) is a cystine/glutamate xCT transporter that controls the production of pheomelanin pigment to change fur and skin color in animals. Previous studies have found that skin expression levels of Slc7a11 varied significantly with fur color in Rex rabbits. However, the molecular regulation mechanism of Slc7a11 in pigmentation is unknown. Here, rabbit melanocytes were first isolated and identified. The distribution and expression pattern of Slc7a11 was confirmed in skin from rabbits with different fur colors. Slc7a11 affected the expression of pigmentation related genes and thus affected melanogenesis. Meanwhile, Slc7a11 decreased melanocyte apoptosis, but inhibition of Slc7a11 enhanced apoptosis. Furthermore, the POU2F1 protein was found to bind to the −713 to −703 bp region of Slc7a11 promoter to inhibit its activity in a dual-luciferase reporter and site-directed mutagenesis assay. This study reveals the function of the Slc7a11 in melanogenesis and provides in-depth analysis of the mechanism of fur pigmentation.
Collapse
|
5
|
Choi BY, Won SJ, Kim JH, Sohn M, Song HK, Chung TN, Kim TY, Suh SW. EAAC1 gene deletion reduces adult hippocampal neurogenesis after transient cerebral ischemia. Sci Rep 2018; 8:6903. [PMID: 29720605 PMCID: PMC5932005 DOI: 10.1038/s41598-018-25191-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 04/17/2018] [Indexed: 12/20/2022] Open
Abstract
Several studies have demonstrated that excitatory amino acid carrier-1 (EAAC1) gene deletion exacerbates hippocampal and cortical neuronal death after ischemia. However, presently there are no studies investigating the role of EAAC1 in hippocampal neurogenesis. In this study, we tested the hypothesis that reduced cysteine transport into neurons by EAAC1 knockout negatively affects adult hippocampal neurogenesis under physiological or pathological states. This study used young mice (aged 3-5 months) and aged mice (aged 11-15 months) of either the wild-type (WT) or EAAC1 -/- genotype. Ischemia was induced through the occlusion of bilateral common carotid arteries for 30 minutes. Histological analysis was performed at 7 or 30 days after ischemia. We found that both young and aged mice with loss of the EAAC1 displayed unaltered cell proliferation and neuronal differentiation, as compared to age-matched WT mice under ischemia-free conditions. However, neurons generated from EAAC1 -/- mice showed poor survival outcomes in both young and aged mice. In addition, deletion of EAAC1 reduced the overall level of neurogenesis, including cell proliferation, differentiation, and survival after ischemia. The present study demonstrates that EAAC1 is important for the survival of newly generated neurons in the adult brain under physiological and pathological conditions. Therefore, this study suggests that EAAC1 plays an essential role in modulating hippocampal neurogenesis.
Collapse
Affiliation(s)
- Bo Young Choi
- Department of Physiology, Hallym University, College of Medicine, Chuncheon, 24252, South Korea
| | - Seok Joon Won
- Department of Neurology, University of California San Francisco and Veterans Affairs Medical Center, San Francisco, CA, 94121, USA
| | - Jin Hee Kim
- Department of Physiology, Hallym University, College of Medicine, Chuncheon, 24252, South Korea
| | - Min Sohn
- Department of Nursing, Inha University, Incheon, 22212, South Korea
| | - Hong Ki Song
- Department of Neurology, Hallym University, College of Medicine, Chuncheon, 24252, South Korea
| | - Tae Nyoung Chung
- Department of Emergency Medicine, CHA University School of Medicine, Seongnam, 13496, South Korea
| | - Tae Yul Kim
- Department of Physiology, Hallym University, College of Medicine, Chuncheon, 24252, South Korea
| | - Sang Won Suh
- Department of Physiology, Hallym University, College of Medicine, Chuncheon, 24252, South Korea.
| |
Collapse
|
6
|
Savaskan NE, Fan Z, Broggini T, Buchfelder M, Eyüpoglu IY. Neurodegeneration and the Brain Tumor Microenvironment. [corrected]. Curr Neuropharmacol 2016; 13:258-65. [PMID: 26411769 PMCID: PMC4598438 DOI: 10.2174/1570159x13666150122224158] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Malignant brain tumors are characterized by destructive growth and neuronal cell death making them one of the most devastating diseases. Neurodegenerative actions of malignant gliomas resemble mechanisms also found in many neurodegenerative diseases such as Alzheimer's and Parkinson's diseases and amyotrophic lateral sclerosis. Recent data demonstrate that gliomas seize neuronal glutamate signaling for their own growth advantage. Excessive glutamate release via the glutamate/cystine antiporter xCT (system xc-, SLC7a11) renders cancer cells resistant to chemotherapeutics and create the tumor microenvironment toxic for neurons. In particular the glutamate/cystine antiporter xCT takes center stage in neurodegenerative processes and sets this transporter a potential prime target for cancer therapy. Noteworthy is the finding, that reactive oxygen species (ROS) activate transient receptor potential (TRP) channels and thereby TRP channels can potentiate glutamate release. Yet another important biological feature of the xCT/glutamate system is its modulatory effect on the tumor microenvironment with impact on host cells and the cancer stem cell niche. The EMA and FDA-approved drug sulfasalazine (SAS) presents a lead compound for xCT inhibition, although so far clinical trials on glioblastomas with SAS were ambiguous. Here, we critically analyze the mechanisms of action of xCT antiporter on malignant gliomas and in the tumor microenvironment. Deciphering the impact of xCT and glutamate and its relation to TRP channels in brain tumors pave the way for developing important cancer microenvironmental modulators and drugable lead targets.
Collapse
Affiliation(s)
- Nicolai E Savaskan
- Department of Neurosurgery, Universitatsklinikum Erlangen, Friedrich Alexander University of Erlangen- Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany.
| | | | | | | | | |
Collapse
|
7
|
Tian X, Meng X, Wang L, Song Y, Zhang D, Ji Y, Li X, Dong C. Molecular cloning, mRNA expression and tissue distribution analysis of Slc7a11 gene in alpaca (Lama paco) skins associated with different coat colors. Gene 2015; 555:88-94. [DOI: 10.1016/j.gene.2014.10.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/13/2014] [Accepted: 10/16/2014] [Indexed: 12/01/2022]
|
8
|
Wang Z, Liu DX, Wang FW, Zhang Q, Du ZX, Zhan JM, Yuan QH, Ling EA, Hao AJ. L-Cysteine promotes the proliferation and differentiation of neural stem cells via the CBS/H₂S pathway. Neuroscience 2013; 237:106-17. [PMID: 23376738 DOI: 10.1016/j.neuroscience.2012.12.057] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 11/20/2012] [Accepted: 12/13/2012] [Indexed: 12/17/2022]
Abstract
Growing evidence has suggested that hydrogen sulfide (H₂S) acts as a novel neuro-modulator and neuroprotective agent; however, it remains to be investigated whether H2S has a direct effect on neural stem cells (NSCs). We report here that NSCs expressed cystathionine β synthase (CBS) and addition of exogenous H2S donor, L-cysteine, stimulated proliferation and increased the differentiation potential of NSCs to neurons and astroglia. Moreover, pre-treatment with aminooxyacetic acid, the inhibitor of CBS or knockdown of CBS in using siRNA, significantly attenuated the effects of L-cysteine on elevated H₂S levels and the cell proliferation; it also effectively suppressed L-cysteine-induced neurogenesis and astrocytogenesis. Further analysis revealed that L-cysteine-induced proliferation was associated with phosphorylation of extracellular signal-regulated kinases 1/2 and differentiation with altered expression of differentiation-related genes. Taken together, the present data suggest that L-cysteine can enhance proliferation and differentiation of NSCs via the CBS/H2S pathway, which may serve as a useful inference for elucidating its role in regulating the fate of NSCs in physiological and pathological settings.
Collapse
Affiliation(s)
- Z Wang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Guo W, Zhang L, Christopher DM, Teng ZQ, Fausett SR, Liu C, George OL, Klingensmith J, Jin P, Zhao X. RNA-binding protein FXR2 regulates adult hippocampal neurogenesis by reducing Noggin expression. Neuron 2011; 70:924-38. [PMID: 21658585 DOI: 10.1016/j.neuron.2011.03.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2011] [Indexed: 10/18/2022]
Abstract
In adult mammalian brains, neurogenesis persists in the subventricular zone of the lateral ventricles (SVZ) and the dentate gyrus (DG) of the hippocampus. Although evidence suggest that adult neurogenesis in these two regions is subjected to differential regulation, the underlying mechanism is unclear. Here, we show that the RNA-binding protein FXR2 specifically regulates DG neurogenesis by reducing the stability of Noggin mRNA. FXR2 deficiency leads to increased Noggin expression and subsequently reduced BMP signaling, which results in increased proliferation and altered fate specification of neural stem/progenitor cells in DG. In contrast, Noggin is not regulated by FXR2 in the SVZ, because Noggin expression is restricted to the ependymal cells of the lateral ventricles, where FXR2 is not expressed. Differential regulation of SVZ and DG stem cells by FXR2 may be a key component of the mechanism that governs the different neurogenic processes in these two adult germinal zones.
Collapse
Affiliation(s)
- Weixiang Guo
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dissection of mitogenic and neurodegenerative actions of cystine and glutamate in malignant gliomas. Oncogene 2011; 30:43-53. [PMID: 20802520 DOI: 10.1038/onc.2010.391] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Malignant glioma represents one of the most aggressive and lethal human neoplasias. A hallmark of gliomas is their rapid proliferation and destruction of vital brain tissue, a process in which excessive glutamate release by glioma cells takes center stage. Pharmacologic antagonism with glutamate signaling through ionotropic glutamate receptors attenuates glioma progression in vivo, indicating that glutamate release by glioma cells is a prerequisite for rapid glioma growth. Glutamate has been suggested to promote glioma cell proliferation in an autocrine or paracrine manner, in particular by activation of the (RS)-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid hydrate (AMPA) subtype of glutamate receptors. Here, we dissect the effects of glutamate secretion on glioma progression. Glioma cells release glutamate through the amino-acid antiporter system X(c)(-), a process that is mechanistically linked with cystine incorporation. We show that disrupting glutamate secretion by interfering with the system X(c)(-) activity attenuates glioma cell proliferation solely cystine dependently, whereas glutamate itself does not augment glioma cell growth in vitro. Neither AMPA receptor agonism nor antagonism affects glioma growth in vitro. On a molecular level, AMPA insensitivity is concordant with a pronounced transcriptional downregulation of AMPA receptor subunits or overexpression of the fully edited GluR2 subunit, both of which block receptor activity. Strikingly, AMPA receptor inhibition in tumor-implanted brain slices resulted in markedly reduced tumor progression associated with alleviated neuronal cell death, suggesting that the ability of glutamate to promote glioma progression strictly requires the tumor microenvironment. Concerning a potential pharmacotherapy, targeting system X(c)(-) activity disrupts two major pathophysiological properties of glioma cells, that is, the induction of excitotoxic neuronal cell death and incorporation of cystine required for rapid proliferation.
Collapse
|
11
|
Savaskan NE, Eyüpoglu IY. xCT modulation in gliomas: relevance to energy metabolism and tumor microenvironment normalization. Ann Anat 2010; 192:309-13. [PMID: 20801625 DOI: 10.1016/j.aanat.2010.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 07/08/2010] [Indexed: 01/18/2023]
Abstract
Several nutrient transporters impacting the glutathione/redox cycle regulation and cell proliferation have been identified in cancer, which render these transporters potential prime targets for cytotoxic anticancer therapy. One promising transporter is system X(c)(-), also known as xCT (SLC7a11), which is expressed in various cancers including primary malignant brain tumors (gliomas). An important biological feature of these transporters, and in particular of xCT is its specific modulation of the tumor microenvironment leading to growth advantage for cancer. Thus, tumor microenvironment shaping by xCT inhibition revealed a so far neglected hallmark of gliomas, i.e. tumor-induced neurotoxicity and its impact on the development of peritumoral brain swelling. This review here discusses available pharmacological tools for the tumor microenvironment normalization, in the context of perifocal edema and the Warburg effect and highlights the implications of such metabolic normalization approach in the design of new therapies.
Collapse
Affiliation(s)
- Nic E Savaskan
- Institute of Cell Biology and Neurobiology, Center for Anatomy, CCM2, Charité-Medical School Berlin, D-10117 Berlin, Germany.
| | | |
Collapse
|
12
|
Featherstone DE. Intercellular glutamate signaling in the nervous system and beyond. ACS Chem Neurosci 2010; 1:4-12. [PMID: 22778802 DOI: 10.1021/cn900006n] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 09/25/2009] [Indexed: 01/22/2023] Open
Abstract
Most intercellular glutamate signaling in the nervous system occurs at synapses. Some intercellular glutamate signaling occurs outside synapses, however, and even outside the nervous system where high ambient extracellular glutamate might be expected to preclude the effectiveness of glutamate as an intercellular signal. Here, I briefly review the types of intercellular glutamate signaling in the nervous system and beyond, with emphasis on the diversity of signaling mechanisms and fundamental unanswered questions.
Collapse
Affiliation(s)
- David E. Featherstone
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| |
Collapse
|
13
|
Savaskan NE, Hahnen E, Eyüpoglu IY. The x(c)(-) cystine/glutamate antiporter (xCT) as a potential target for therapy of cancer: yet another cytotoxic anticancer approach? J Cell Physiol 2009; 220:531-2; author reply 533-4. [PMID: 19415694 DOI: 10.1002/jcp.21795] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
14
|
Ueda Y, Doi T, Takaki M, Nagatomo K, Nakajima A, Willmore LJ. Levetiracetam enhances endogenous antioxidant in the hippocampus of rats: In vivo evaluation by brain microdialysis combined with ESR spectroscopy. Brain Res 2009; 1266:1-7. [PMID: 19268434 DOI: 10.1016/j.brainres.2009.02.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 01/05/2009] [Accepted: 02/21/2009] [Indexed: 10/21/2022]
|