1
|
St-Louis JL, El Jellas K, Velasco K, Slipp BA, Hu J, Helgeland G, Steine SJ, De Jesus DF, Kulkarni RN, Molven A. Deficiency of the metabolic enzyme SCHAD in pancreatic β-cells promotes amino acid-sensitive hypoglycemia. J Biol Chem 2023; 299:104986. [PMID: 37392854 PMCID: PMC10407745 DOI: 10.1016/j.jbc.2023.104986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023] Open
Abstract
Congenital hyperinsulinism of infancy (CHI) can be caused by a deficiency of the ubiquitously expressed enzyme short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD). To test the hypothesis that SCHAD-CHI arises from a specific defect in pancreatic β-cells, we created genetically engineered β-cell-specific (β-SKO) or hepatocyte-specific (L-SKO) SCHAD knockout mice. While L-SKO mice were normoglycemic, plasma glucose in β-SKO animals was significantly reduced in the random-fed state, after overnight fasting, and following refeeding. The hypoglycemic phenotype was exacerbated when the mice were fed a diet enriched in leucine, glutamine, and alanine. Intraperitoneal injection of these three amino acids led to a rapid elevation in insulin levels in β-SKO mice compared to controls. Consistently, treating isolated β-SKO islets with the amino acid mixture potently enhanced insulin secretion compared to controls in a low-glucose environment. RNA sequencing of β-SKO islets revealed reduced transcription of β-cell identity genes and upregulation of genes involved in oxidative phosphorylation, protein metabolism, and Ca2+ handling. The β-SKO mouse offers a useful model to interrogate the intra-islet heterogeneity of amino acid sensing given the very variable expression levels of SCHAD within different hormonal cells, with high levels in β- and δ-cells and virtually absent α-cell expression. We conclude that the lack of SCHAD protein in β-cells results in a hypoglycemic phenotype characterized by increased sensitivity to amino acid-stimulated insulin secretion and loss of β-cell identity.
Collapse
Affiliation(s)
- Johanna L St-Louis
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, USA; Department of Clinical Medicine, Gade Laboratory for Pathology, University of Bergen, Bergen, Norway
| | - Khadija El Jellas
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, USA; Department of Clinical Medicine, Gade Laboratory for Pathology, University of Bergen, Bergen, Norway
| | - Kelly Velasco
- Department of Clinical Medicine, Gade Laboratory for Pathology, University of Bergen, Bergen, Norway
| | - Brittany A Slipp
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Jiang Hu
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Geir Helgeland
- Department of Clinical Medicine, Gade Laboratory for Pathology, University of Bergen, Bergen, Norway
| | - Solrun J Steine
- Department of Clinical Medicine, Gade Laboratory for Pathology, University of Bergen, Bergen, Norway
| | - Dario F De Jesus
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA; Harvard Stem Cell Institute, Boston, USA
| | - Rohit N Kulkarni
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA; Harvard Stem Cell Institute, Boston, USA
| | - Anders Molven
- Department of Clinical Medicine, Gade Laboratory for Pathology, University of Bergen, Bergen, Norway; Department of Pathology, Haukeland University Hospital, Bergen, Norway; Section for Cancer Genomics, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
2
|
Fang H, Li H, Zhang H, Wang S, Xu S, Chang L, Yang Y, Cui R. Short-chain L-3-hydroxyacyl-CoA dehydrogenase: A novel vital oncogene or tumor suppressor gene in cancers. Front Pharmacol 2022; 13:1019312. [PMID: 36313354 PMCID: PMC9614034 DOI: 10.3389/fphar.2022.1019312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/23/2022] [Indexed: 08/22/2023] Open
Abstract
The reprogramming of cellular metabolism is frequently linked to tumorigenesis. Glucose, fatty acids, and amino acids are the specific substrates involved in how an organism maintains metabolic equilibrium. The HADH gene codes for the short-chain L-3-hydroxyacyl-CoA dehydrogenase (HADH), a crucial enzyme in fatty acid oxidation that catalyzes the third phase of fatty acid oxidation in mitochondria. Increasing data suggest that HADH is differentially expressed in various types of malignancies and is linked to cancer development and progression. The significance of HADH expression in tumors and its potential mechanisms of action in the onset and progression of certain cancers are summarized in this article. The possible roles of HADH as a target and/or biomarker for the detection and treatment of various malignancies is also described here.
Collapse
Affiliation(s)
- He Fang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hanyang Li
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Shu Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Shuang Xu
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Li Chang
- Department of Pathology, The Second Hospital of Jilin University, Changchun, China
| | - Yongsheng Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Fu Z, Kim H, Morse PT, Lu MJ, Hüttemann M, Cambronne XA, Zhang K, Zhang R. The mitochondrial NAD + transporter SLC25A51 is a fasting-induced gene affecting SIRT3 functions. Metabolism 2022; 135:155275. [PMID: 35932995 PMCID: PMC10080998 DOI: 10.1016/j.metabol.2022.155275] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Nicotinamide adenine dinucleotide (NAD) is a coenzyme central to metabolism and energy production. NAD+-dependent deacetylase sirtuin 3 (SIRT3) regulates the acetylation levels of mitochondrial proteins that are involved in mitochondrial homeostasis. Fasting up-regulates hepatic SIRT3 activity, which requires mitochondrial NAD+. What is the mechanism, then, to transport more NAD+ into mitochondria to sustain enhanced SIRT3 activity during fasting? OBJECTIVE SLC25A51 is a recently discovered mitochondrial NAD+ transporter. We tested the hypothesis that, during fasting, increased expression of SLC25A51 is needed for enhanced mitochondrial NAD+ uptake to sustain SIRT3 activity. Because the fasting-fed cycle and circadian rhythm are closely linked, we further tested the hypothesis that SLC25A51 is a circadian regulated gene. METHODS We examined Slc25a51 expression in the liver of fasted mice, and examined its circadian rhythm in wild-type mice and those with liver-specific deletion of the clock gene BMAL1 (LKO). We suppressed Slc25a51 expression in hepatocytes and the mouse liver using shRNA-mediated knockdown, and then examined mitochondrial NAD+ levels, SIRT3 activities, and acetylation levels of SIRT3 target proteins (IDH2 and ACADL). We measured mitochondrial oxygen consumption rate using Seahorse analysis in hepatocytes with reduced Slc25a51 expression. RESULTS We found that fasting induced the hepatic expression of Slc25a51, and its expression showed a circadian rhythm-like pattern that was disrupted in LKO mice. Reduced expression of Slc25a51 in hepatocytes decreased mitochondrial NAD+ levels and SIRT3 activity, reflected by increased acetylation of SIRT3 targets. Slc25a51 knockdown reduced the oxygen consumption rate in intact hepatocytes. Mice with reduced Slc25a51 expression in the liver manifested reduced hepatic mitochondrial NAD+ levels, hepatic steatosis and hypertriglyceridemia. CONCLUSIONS Slc25a51 is a fasting-induced gene that is needed for hepatic SIRT3 functions.
Collapse
Affiliation(s)
- Zhiyao Fu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Hyunbae Kim
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Paul T Morse
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Mu-Jie Lu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Xiaolu A Cambronne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Ren Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
4
|
Giri D, Hawton K, Senniappan S. Congenital hyperinsulinism: recent updates on molecular mechanisms, diagnosis and management. J Pediatr Endocrinol Metab 2022; 35:279-296. [PMID: 34547194 DOI: 10.1515/jpem-2021-0369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022]
Abstract
Congenital hyperinsulinism (CHI) is a rare disease characterized by an unregulated insulin release, leading to hypoglycaemia. It is the most frequent cause of persistent and severe hypoglycaemia in the neonatal period and early childhood. Mutations in 16 different key genes (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, UCP2, HNF4A, HNF1A, HK1, KCNQ1, CACNA1D, FOXA2, EIF2S3, PGM1 and PMM2) that are involved in regulating the insulin secretion from pancreatic β-cells have been described to be responsible for the underlying molecular mechanisms of CHI. CHI can also be associated with specific syndromes and can be secondary to intrauterine growth restriction (IUGR), maternal diabetes, birth asphyxia, etc. It is important to diagnose and promptly initiate appropriate management as untreated hypoglycaemia can be associated with significant neurodisability. CHI can be histopathologically classified into diffuse, focal and atypical forms. Advances in molecular genetics, imaging techniques (18F-fluoro-l-dihydroxyphenylalanine positron emission tomography/computed tomography scanning), novel medical therapies and surgical advances (laparoscopic pancreatectomy) have changed the management and improved the outcome of patients with CHI. This review article provides an overview of the background, clinical presentation, diagnosis, molecular genetics and therapy for children with different forms of CHI.
Collapse
Affiliation(s)
- Dinesh Giri
- Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK.,University of Bristol, Bristol, UK
| | - Katherine Hawton
- Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | | |
Collapse
|
5
|
Zhang W, Sang YM. Genetic pathogenesis, diagnosis, and treatment of short-chain 3-hydroxyacyl-coenzyme A dehydrogenase hyperinsulinism. Orphanet J Rare Dis 2021; 16:467. [PMID: 34736508 PMCID: PMC8567654 DOI: 10.1186/s13023-021-02088-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/17/2021] [Indexed: 11/27/2022] Open
Abstract
Congenital hyperinsulinism (CHI), a major cause of persistent and recurrent hypoglycemia in infancy and childhood. Numerous pathogenic genes have been associated with 14 known genetic subtypes of CHI. Adenosine triphosphate-sensitive potassium channel hyperinsulinism (KATP-HI) is the most common and most severe subtype, accounting for 40–50% of CHI cases. Short-chain 3-hydroxyacyl-coenzyme A dehydrogenase hyperinsulinism (SCHAD-HI) is a rare subtype that accounts for less than 1% of all CHI cases that are caused by homozygous mutations in the hydroxyacyl-coenzyme A dehydrogenase (HADH) gene. This review provided a systematic description of the genetic pathogenesis and current progress in the diagnosis and treatment of SCHAD-HI to improve our understanding of this disease.
Collapse
Affiliation(s)
- Wei Zhang
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Yan-Mei Sang
- Department of Pediatric Endocrinology, Genetic and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| |
Collapse
|
6
|
Liu L, Schubert DM, Könneke M, Berg IA. ( S)-3-Hydroxybutyryl-CoA Dehydrogenase From the Autotrophic 3-Hydroxypropionate/4-Hydroxybutyrate Cycle in Nitrosopumilus maritimus. Front Microbiol 2021; 12:712030. [PMID: 34290692 PMCID: PMC8287830 DOI: 10.3389/fmicb.2021.712030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/11/2021] [Indexed: 11/18/2022] Open
Abstract
Ammonia-oxidizing archaea of the phylum Thaumarchaeota are among the most abundant organisms that exert primary control of oceanic and soil nitrification and are responsible for a large part of dark ocean primary production. They assimilate inorganic carbon via an energetically efficient version of the 3-hydroxypropionate/4-hydroxybutyrate cycle. In this cycle, acetyl-CoA is carboxylated to succinyl-CoA, which is then converted to two acetyl-CoA molecules with 4-hydroxybutyrate as the key intermediate. This conversion includes the (S)-3-hydroxybutyryl-CoA dehydrogenase reaction. Here, we heterologously produced the protein Nmar_1028 catalyzing this reaction in thaumarchaeon Nitrosopumilus maritimus, characterized it biochemically and performed its phylogenetic analysis. This NAD-dependent dehydrogenase is highly active with its substrate, (S)-3-hydroxybutyryl-CoA, and its low Km value suggests that the protein is adapted to the functioning in the 3-hydroxypropionate/4-hydroxybutyrate cycle. Nmar_1028 is homologous to the dehydrogenase domain of crotonyl-CoA hydratase/(S)-3-hydroxybutyryl-CoA dehydrogenase that is present in many Archaea. Apparently, the loss of the dehydratase domain of the fusion protein in the course of evolution was accompanied by lateral gene transfer of 3-hydroxypropionyl-CoA dehydratase/crotonyl-CoA hydratase from Bacteria. Although (S)-3-hydroxybutyryl-CoA dehydrogenase studied here is neither unique nor characteristic for the HP/HB cycle, Nmar_1028 appears to be the only (S)-3-hydroxybutyryl-CoA dehydrogenase in N. maritimus and is thus essential for the functioning of the 3-hydroxypropionate/4-hydroxybutyrate cycle and for the biology of this important marine archaeon.
Collapse
Affiliation(s)
- Li Liu
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| | - Daniel M Schubert
- Department of Microbiology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Martin Könneke
- Marine Archaea Group, MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.,Benthic Microbiology, Institute for Chemistry and Biology of the Marine Environments, University of Oldenburg, Oldenburg, Germany
| | - Ivan A Berg
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| |
Collapse
|
7
|
Gϋemes M, Rahman SA, Kapoor RR, Flanagan S, Houghton JAL, Misra S, Oliver N, Dattani MT, Shah P. Hyperinsulinemic hypoglycemia in children and adolescents: Recent advances in understanding of pathophysiology and management. Rev Endocr Metab Disord 2020; 21:577-597. [PMID: 32185602 PMCID: PMC7560934 DOI: 10.1007/s11154-020-09548-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hyperinsulinemic hypoglycemia (HH) is characterized by unregulated insulin release, leading to persistently low blood glucose concentrations with lack of alternative fuels, which increases the risk of neurological damage in these patients. It is the most common cause of persistent and recurrent hypoglycemia in the neonatal period. HH may be primary, Congenital HH (CHH), when it is associated with variants in a number of genes implicated in pancreatic development and function. Alterations in fifteen genes have been recognized to date, being some of the most recently identified mutations in genes HK1, PGM1, PMM2, CACNA1D, FOXA2 and EIF2S3. Alternatively, HH can be secondary when associated with syndromes, intra-uterine growth restriction, maternal diabetes, birth asphyxia, following gastrointestinal surgery, amongst other causes. CHH can be histologically characterized into three groups: diffuse, focal or atypical. Diffuse and focal forms can be determined by scanning using fluorine-18 dihydroxyphenylalanine-positron emission tomography. Newer and improved isotopes are currently in development to provide increased diagnostic accuracy in identifying lesions and performing successful surgical resection with the ultimate aim of curing the condition. Rapid diagnostics and innovative methods of management, including a wider range of treatment options, have resulted in a reduction in co-morbidities associated with HH with improved quality of life and long-term outcomes. Potential future developments in the management of this condition as well as pathways to transition of the care of these highly vulnerable children into adulthood will also be discussed.
Collapse
Affiliation(s)
- Maria Gϋemes
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, UK
- Department of Pediatric Endocrinology, Great Ormond Street Hospital for Children, London, UK
- Endocrinology Service, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Sofia Asim Rahman
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, UK
| | - Ritika R Kapoor
- Pediatric Diabetes and Endocrinology, King's College Hospital NHS Trust, Denmark Hill, London, UK
| | - Sarah Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jayne A L Houghton
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
- Royal Devon and Exeter Foundation Trust, Exeter, UK
| | - Shivani Misra
- Department of Diabetes, Endocrinology and Metabolic Medicine, Faculty of Medicine, Imperial College Healthcare NHS Trust, London, UK
| | - Nick Oliver
- Department of Diabetes, Endocrinology and Metabolic Medicine, Faculty of Medicine, Imperial College Healthcare NHS Trust, London, UK
| | - Mehul Tulsidas Dattani
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, UK
- Department of Pediatric Endocrinology, Great Ormond Street Hospital for Children, London, UK
| | - Pratik Shah
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, UK.
- Department of Pediatric Endocrinology, Great Ormond Street Hospital for Children, London, UK.
| |
Collapse
|
8
|
Molven A, Hollister-Lock J, Hu J, Martinez R, Njølstad PR, Liew CW, Weir G, Kulkarni RN. The Hypoglycemic Phenotype Is Islet Cell-Autonomous in Short-Chain Hydroxyacyl-CoA Dehydrogenase-Deficient Mice. Diabetes 2016; 65:1672-8. [PMID: 26953163 PMCID: PMC4878426 DOI: 10.2337/db15-1475] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/04/2016] [Indexed: 11/30/2022]
Abstract
Congenital hyperinsulinism of infancy (CHI) can be caused by inactivating mutations in the gene encoding short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD), a ubiquitously expressed enzyme involved in fatty acid oxidation. The hypersecretion of insulin may be explained by a loss of interaction between SCHAD and glutamate dehydrogenase in the pancreatic β-cells. However, there is also a general accumulation of metabolites specific for the enzymatic defect in affected individuals. It remains to be explored whether hypoglycemia in SCHAD CHI can be uncoupled from the systemic effect on fatty acid oxidation. We therefore transplanted islets from global SCHAD knockout (SCHADKO) mice into mice with streptozotocin-induced diabetes. After transplantation, SCHADKO islet recipients exhibited significantly lower random and fasting blood glucose compared with mice transplanted with normal islets or nondiabetic, nontransplanted controls. Furthermore, intraperitoneal glucose tolerance was improved in animals receiving SCHADKO islets compared with those receiving normal islets. Graft β-cell proliferation and apoptosis rates were similar in the two transplantation groups. We conclude that hypoglycemia in SCHAD-CHI is islet cell-autonomous.
Collapse
Affiliation(s)
- Anders Molven
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Jennifer Hollister-Lock
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - Jiang Hu
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - Rachael Martinez
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - Pål R Njølstad
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Chong Wee Liew
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL
| | - Gordon Weir
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA Harvard Stem Cell Institute, Boston, MA
| |
Collapse
|
9
|
Nessa A, Rahman SA, Hussain K. Hyperinsulinemic Hypoglycemia - The Molecular Mechanisms. Front Endocrinol (Lausanne) 2016; 7:29. [PMID: 27065949 PMCID: PMC4815176 DOI: 10.3389/fendo.2016.00029] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/21/2016] [Indexed: 12/14/2022] Open
Abstract
Under normal physiological conditions, pancreatic β-cells secrete insulin to maintain fasting blood glucose levels in the range 3.5-5.5 mmol/L. In hyperinsulinemic hypoglycemia (HH), this precise regulation of insulin secretion is perturbed so that insulin continues to be secreted in the presence of hypoglycemia. HH may be due to genetic causes (congenital) or secondary to certain risk factors. The molecular mechanisms leading to HH involve defects in the key genes regulating insulin secretion from the β-cells. At this moment, in time genetic abnormalities in nine genes (ABCC8, KCNJ11, GCK, SCHAD, GLUD1, SLC16A1, HNF1A, HNF4A, and UCP2) have been described that lead to the congenital forms of HH. Perinatal stress, intrauterine growth retardation, maternal diabetes mellitus, and a large number of developmental syndromes are also associated with HH in the neonatal period. In older children and adult's insulinoma, non-insulinoma pancreatogenous hypoglycemia syndrome and post bariatric surgery are recognized causes of HH. This review article will focus mainly on describing the molecular mechanisms that lead to unregulated insulin secretion.
Collapse
Affiliation(s)
- Azizun Nessa
- Genetics and Genomic Medicine Programme, Department of Paediatric Endocrinology, UCL Institute of Child Health, Great Ormond Street Hospital for Children NHS, London, UK
| | - Sofia A. Rahman
- Genetics and Genomic Medicine Programme, Department of Paediatric Endocrinology, UCL Institute of Child Health, Great Ormond Street Hospital for Children NHS, London, UK
| | - Khalid Hussain
- Genetics and Genomic Medicine Programme, Department of Paediatric Endocrinology, UCL Institute of Child Health, Great Ormond Street Hospital for Children NHS, London, UK
- *Correspondence: Khalid Hussain,
| |
Collapse
|
10
|
Li M, Li C, Allen A, Stanley CA, Smith TJ. Glutamate dehydrogenase: structure, allosteric regulation, and role in insulin homeostasis. Neurochem Res 2013; 39:433-45. [PMID: 24122080 DOI: 10.1007/s11064-013-1173-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/26/2013] [Accepted: 10/03/2013] [Indexed: 02/02/2023]
Abstract
Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of L-glutamate to 2-oxoglutarate. Only in the animal kingdom is this enzyme heavily allosterically regulated by a wide array of metabolites. The major activators are ADP and leucine and inhibitors include GTP, palmitoyl CoA, and ATP. Spontaneous mutations in the GTP inhibitory site that lead to the hyperinsulinism/hyperammonemia (HHS) syndrome have shed light as to why mammalian GDH is so tightly regulated. Patients with HHS exhibit hypersecretion of insulin upon consumption of protein and concomitantly extremely high levels of ammonium in the serum. The atomic structures of four new inhibitors complexed with GDH complexes have identified three different allosteric binding sites. Using a transgenic mouse model expressing the human HHS form of GDH, at least three of these compounds blocked the dysregulated form of GDH in pancreatic tissue. EGCG from green tea prevented the hyper-response to amino acids in whole animals and improved basal serum glucose levels. The atomic structure of the ECG-GDH complex and mutagenesis studies is directing structure-based drug design using these polyphenols as a base scaffold. In addition, all of these allosteric inhibitors are elucidating the atomic mechanisms of allostery in this complex enzyme.
Collapse
Affiliation(s)
- Ming Li
- Donald Danforth Plant Science Center, 975 North Warson Road, Saint Louis, MO, 63132, USA
| | | | | | | | | |
Collapse
|
11
|
Perrone CE, Mattocks DAL, Plummer JD, Chittur SV, Mohney R, Vignola K, Orentreich DS, Orentreich N. Genomic and metabolic responses to methionine-restricted and methionine-restricted, cysteine-supplemented diets in Fischer 344 rat inguinal adipose tissue, liver and quadriceps muscle. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2012; 5:132-57. [PMID: 23052097 DOI: 10.1159/000339347] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 05/04/2012] [Indexed: 01/26/2023]
Abstract
BACKGROUND/AIMS Methionine restriction (MR) is a dietary intervention that increases lifespan, reduces adiposity and improves insulin sensitivity. These effects are reversed by supplementation of the MR diet with cysteine (MRC). Genomic and metabolomic studies were conducted to identify potential mechanisms by which MR induces favorable metabolic effects, and that are reversed by cysteine supplementation. METHODS Gene expression was examined by microarray analysis and TaqMan quantitative PCR. Levels of selected proteins were measured by Western blot and metabolic intermediates were analyzed by mass spectrometry. RESULTS MR increased lipid metabolism in inguinal adipose tissue and quadriceps muscle while it decreased lipid synthesis in liver. In inguinal adipose tissue, MR not only caused the transcriptional upregulation of genes associated with fatty acid synthesis but also of Lpin1, Pc, Pck1 and Pdk1, genes that are associated with glyceroneogenesis. MR also upregulated lipolysis-associated genes in inguinal fat and led to increased oxidation in this tissue, as suggested by higher levels of methionine sulfoxide and 13-HODE + 9-HODE compared to control-fed (CF) rats. Moreover, MR caused a trend toward the downregulation of inflammation-associated genes in inguinal adipose tissue. MRC reversed most gene and metabolite changes induced by MR in inguinal adipose tissue, but drove the expression of Elovl6, Lpin1, Pc, and Pdk1 below CF levels. In liver, MR decreased levels of a number of long-chain fatty acids, glycerol and glycerol-3-phosphate corresponding with the gene expression data. Although MR increased the expression of genes associated with carbohydrate metabolism, levels of glycolytic intermediates were below CF levels. MR, however, stimulated gluconeogenesis and ketogenesis in liver tissue. As previously reported, sulfur amino acids derived from methionine were decreased in liver by MR, but homocysteine levels were elevated. Increased liver homocysteine levels by MR were associated with decreased cystathionine β-synthase (CBS) protein levels and lowered vitamin B6 and 5-methyltetrahydrofolate (5MeTHF) content. Finally, MR upregulated fibroblast growth factor 21 (FGF21) gene and protein levels in both liver and adipose tissues. MRC reversed some of MR's effects in liver and upregulated the transcription of genes associated with inflammation and carcinogenesis such as Cxcl16, Cdh17, Mmp12, Mybl1, and Cav1 among others. In quadriceps muscle, MR upregulated lipid metabolism-associated genes and increased 3-hydroxybutyrate levels suggesting increased fatty acid oxidation as well as stimulation of gluconeogenesis and glycogenolysis in this tissue. CONCLUSION Increased lipid metabolism in inguinal adipose tissue and quadriceps muscle, decreased triglyceride synthesis in liver and the downregulation of inflammation-associated genes are among the factors that could favor the lean phenotype and increased insulin sensitivity observed in MR rats.
Collapse
Affiliation(s)
- Carmen E Perrone
- Orentreich Foundation for the Advancement of Science, Inc, Cold Spring-on-Hudson, NY, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Heslegrave AJ, Kapoor RR, Eaton S, Chadefaux B, Akcay T, Simsek E, Flanagan SE, Ellard S, Hussain K. Leucine-sensitive hyperinsulinaemic hypoglycaemia in patients with loss of function mutations in 3-Hydroxyacyl-CoA Dehydrogenase. Orphanet J Rare Dis 2012; 7:25. [PMID: 22583614 PMCID: PMC3433310 DOI: 10.1186/1750-1172-7-25] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/14/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Loss of function mutations in 3-Hydroxyacyl-CoA Dehydrogenase (HADH) cause protein sensitive hyperinsulinaemic hypoglycaemia (HH). HADH encodes short chain 3-hydroxacyl-CoA dehydrogenase, an enzyme that catalyses the penultimate reaction in mitochondrial β-oxidation of fatty acids. Mutations in GLUD1 encoding glutamate dehydrogenase, also cause protein sensitive HH (due to leucine sensitivity). Reports suggest a protein-protein interaction between HADH and GDH. This study was undertaken in order to understand the mechanism of protein sensitivity in patients with HADH mutations. METHODS An oral leucine tolerance test was conducted in controls and nine patients with HADH mutations. Basal GDH activity and the effect of GTP were determined in lymphoblast homogenates from 4 patients and 3 controls. Immunoprecipitation was conducted in patient and control lymphoblasts to investigate protein interactions. RESULTS Patients demonstrated severe HH (glucose range 1.7-3.2 mmol/l; insulin range 4.8-63.8 mU/l) in response to the oral leucine load, this HH was not observed in control patients subjected to the same leucine load. Basal GDH activity and half maximal inhibitory concentration of GTP was similar in patients and controls. HADH protein could be co-immunoprecipitated with GDH protein in control samples but not in patient samples. CONCLUSIONS We conclude that GDH and HADH have a direct protein-protein interaction, which is lost in patients with HADH mutations causing leucine induced HH. This is not associated with loss of inhibitory effect of GTP on GDH (as in patients with GLUD1 mutations).
Collapse
Affiliation(s)
- Amanda J Heslegrave
- The Institute of Child Health, University College London, London, WC1N 1EH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zschocke J. HSD10 disease: clinical consequences of mutations in the HSD17B10 gene. J Inherit Metab Dis 2012; 35:81-9. [PMID: 22127393 DOI: 10.1007/s10545-011-9415-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 10/24/2011] [Accepted: 10/25/2011] [Indexed: 10/15/2022]
Abstract
The HSD17B10 gene is located on chromosome Xp11.2 and codes for a multifunctional protein called 17β-hydroxysteroid dehydrogenase type 10 (HSD10). This protein catalyzes the 2-methyl-3-hydroxybutyryl-CoA dehydrogenation (MHBD) reaction in isoleucine metabolism and is an essential component of mitochondrial RNase P required for the processing of mtDNA transcripts. HSD10 is required for normal mitochondrial maintenance, and complete loss of HSD10 is incompatible with life. Mutations in the HSD17B10 gene have been reported in 19 families. The classical infantile form of what is best named HSD10 disease is characterized by a period of more or less normal development in the first 6-18 months of life. Some patients showed transient metabolic derangement in the neonatal period, with good clinical recovery but often persistent lactate elevation. Usually from age 6-18 months affected boys show a progressive neurodegenerative disease course in conjunction with retinopathy and cardiomyopathy leading to death at age 2-4 years or later. A more severe presentation in the neonatal period with little neurological development, severe progressive cardiomyopathy, and early death, is denoted neonatal form. Juvenile and atypical/asymptomatic forms of HSD10 disease have been recognized. Heterozygous females often show non-progressive developmental delay and intellectual disability but may also be clinically normal. The pathogenesis is poorly understood but is unrelated to MHBD function. Diagnosis is based on typical abnormalities in urinary organic acid analysis and molecular studies. The same de novo mutation p.R130C was found in over half of patient families; it is associated with the infantile disease form. There is no effective treatment.
Collapse
Affiliation(s)
- Johannes Zschocke
- Division of Human Genetics, Medical University Innsbruck, Schöpfstr 41, 6020 Innsbruck, Austria.
| |
Collapse
|
14
|
Li M, Li C, Allen A, Stanley CA, Smith TJ. The structure and allosteric regulation of mammalian glutamate dehydrogenase. Arch Biochem Biophys 2011; 519:69-80. [PMID: 22079166 DOI: 10.1016/j.abb.2011.10.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/19/2011] [Accepted: 10/25/2011] [Indexed: 01/10/2023]
Abstract
Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of l-glutamate to 2-oxoglutarate. Only in the animal kingdom is this enzyme heavily allosterically regulated by a wide array of metabolites. The major activators are ADP and leucine, while the most important inhibitors include GTP, palmitoyl CoA, and ATP. Recently, spontaneous mutations in the GTP inhibitory site that lead to the hyperinsulinism/hyperammonemia (HHS) syndrome have shed light as to why mammalian GDH is so tightly regulated. Patients with HHS exhibit hypersecretion of insulin upon consumption of protein and concomitantly extremely high levels of ammonium in the serum. The atomic structures of four new inhibitors complexed with GDH complexes have identified three different allosteric binding sites. Using a transgenic mouse model expressing the human HHS form of GDH, at least three of these compounds were found to block the dysregulated form of GDH in pancreatic tissue. EGCG from green tea prevented the hyper-response to amino acids in whole animals and improved basal serum glucose levels. The atomic structure of the ECG-GDH complex and mutagenesis studies is directing structure-based drug design using these polyphenols as a base scaffold. In addition, all of these allosteric inhibitors are elucidating the atomic mechanisms of allostery in this complex enzyme.
Collapse
Affiliation(s)
- Ming Li
- Donald Danforth Plant Science Center, 975 North Warson Road, Saint Louis, MO 63132, USA
| | | | | | | | | |
Collapse
|
15
|
Popa FI, Perlini S, Teofoli F, Degani D, Funghini S, La Marca G, Rinaldo P, Vincenzi M, Antoniazzi F, Boner A, Camilot M. 3-hydroxyacyl-coenzyme a dehydrogenase deficiency: identification of a new mutation causing hyperinsulinemic hypoketotic hypoglycemia, altered organic acids and acylcarnitines concentrations. JIMD Rep 2011; 2:71-7. [PMID: 23430856 DOI: 10.1007/8904_2011_50] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 03/03/2011] [Accepted: 03/04/2011] [Indexed: 12/24/2022] Open
Abstract
The human HADH gene encodes the short-chain-L-3-hydroxyacyl-CoA dehydrogenase, the enzyme which catalyzes the third step of the β-oxidation of the fatty acids in the mitochondrial matrix. Loss-of-function mutations in the HADH gene lead to short-chain-L-3-hydroxyacyl-CoA dehydrogenase deficiency, an autosomal recessive genetic defect of unknown prevalence with a wide spectrum of phenotypic variability. As in other metabolic diseases, the diagnostic relevance of the biochemical evaluations, plasma acylcarnitines, and urinary organic acids, are crucially dependent on the clinical conditions of the patient during specimen collection.This paper describes the eighth patient carrying a HADH gene mutation, a new homozygous deletion c.565delG leading to an early stop codon (p.V116Wfs124X), in an infant with hyperinsulininemic hypoglycemia, displaying abnormal patterns of plasma acylcarnitines and urinary organic acids. We conclude that, when the residual catalytic activity of the mutated enzyme is seriously reduced, the biochemical hallmarks of the disease, namely plasma 3-hydroxybutyrylcarnitine and urinary 3-hydroxyglutaric acid, are invariably present.
Collapse
Affiliation(s)
- Florina Ion Popa
- Department of Life Sciences and Reproduction, Division of Pediatrics, University of Verona, P.le L.A. Scuro 10, 37134, Verona, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Stanley CA. Two genetic forms of hyperinsulinemic hypoglycemia caused by dysregulation of glutamate dehydrogenase. Neurochem Int 2011; 59:465-72. [PMID: 21130127 PMCID: PMC3081417 DOI: 10.1016/j.neuint.2010.11.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 11/18/2010] [Accepted: 11/24/2010] [Indexed: 02/02/2023]
Abstract
Glutamate dehydrogenase (GDH) has recently been shown to be involved in two genetic disorders of hyperinsulinemic hypoglycemia in children. These include the hyperinsulinism/hyperammonemia syndrome caused by dominant activating mutations of GLUD1 which interfere with inhibitory regulation by GTP and hyperinsulinism due to recessive deficiency of short-chain 3-hydroxy-acyl-CoA dehydrogenase (SCHAD, encoded by HADH1). The clinical manifestations of the abnormalities in pancreatic ß-cell insulin regulation include fasting hypoglycemia, as well as protein-sensitive hypoglycemia. The latter is due to abnormally increased sensitivity of affected children to stimulation of insulin secretion by the amino acid, leucine. In patients with GDH activating mutations, mild hyperammonemia occurs in both the basal and protein-fed state, possibly due to increased renal ammoniagenesis. Some patients with GDH activating mutations appear to be at unusual risk of developmental delay and generalized epilepsy, perhaps reflecting consequences of increased GDH activity in the brain. Studies of these two disorders have been carried out in mouse models to define the mechanisms of insulin dysregulation. In SCHAD deficiency, the activation of GDH is due to loss of a direct inhibitory protein-protein interaction between SCHAD and GDH. These two novel human disorders demonstrate the important role of GDH in insulin regulation and illustrate unexpectedly important reasons for the unusually complex allosteric regulation of GDH.
Collapse
Affiliation(s)
- Charles A Stanley
- University of Pennsylvania School of Medicine, Endocrinology Division, The Children's Hospital of Philadelphia, Philadelphia, PA 19026, United States.
| |
Collapse
|
17
|
Martins E, Cardoso ML, Rodrigues E, Barbot C, Ramos A, Bennett MJ, Teles EL, Vilarinho L. Short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: the clinical relevance of an early diagnosis and report of four new cases. J Inherit Metab Dis 2011; 34:835-42. [PMID: 21347589 DOI: 10.1007/s10545-011-9287-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 01/22/2011] [Accepted: 01/25/2011] [Indexed: 02/07/2023]
Abstract
Short-chain 3-hydroxyacyl-CoA dehydrogenase (HADH, SCHAD) deficiency (OMIM #231530) represents a recently described disorder of mitochondrial fatty acid beta-oxidation, with less than ten cases described worldwide. The main clinical presentation of this metabolic disease is different from other inherited defects of fatty acid β-oxidation as the hypoglycemia is associated with hyperinsulinism. We present the clinical, biochemical and molecular findings of four new Caucasian patients with HADH deficiency. These new cases contribute to a more comprehensive description of the phenotype, diagnostic biomarkers and treatment options for this poorly defined disease.
Collapse
Affiliation(s)
- Esmeralda Martins
- Unidade de Doenças Metabólicas, Hospital de Crianças Maria Pia, Rua da Boavista, 827, 4050-111 Porto, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Flanagan SE, Patch AM, Locke JM, Akcay T, Simsek E, Alaei M, Yekta Z, Desai M, Kapoor RR, Hussain K, Ellard S. Genome-wide homozygosity analysis reveals HADH mutations as a common cause of diazoxide-responsive hyperinsulinemic-hypoglycemia in consanguineous pedigrees. J Clin Endocrinol Metab 2011; 96:E498-502. [PMID: 21252247 PMCID: PMC3100671 DOI: 10.1210/jc.2010-1906] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CONTEXT AND OBJECTIVE Recessive mutations in the hydroxyacyl-CoA dehydrogenase (HADH) gene encoding the enzyme 3-hydroxyacyl-CoA dehydrogenase are a rare cause of diazoxide-responsive hyperinsulinemic hypoglycemia (HH) with just five probands reported to date. HADH deficiency in the first three identified patients was associated with detectable urinary 3-hydroxyglutarate and raised plasma 3-hydroxybutyryl-carnitine levels, but two recent cases did not have abnormal urine organic acids or acylcarnitines. RESEARCH DESIGN AND METHODS We studied 115 patients with diazoxide-responsive HH in whom the common genetic causes of HH had been excluded. No patients were reported to have abnormal acylcarnitines or urinary organic acids. Homozygosity mapping was undertaken in probands from 13 consanguineous pedigrees to search for regions harboring mutations that are identical by descent. RESULTS HADH sequencing was performed after genome-wide single nucleotide polymorphism analysis revealed a large shared region of homozygosity spanning the HADH locus in six unrelated probands. Homozygous mutations were identified in three of these patients and in a further two probands from consanguineous families. HADH analysis in the remainder of the cohort identified mutations in a further six probands for whom consanguinity was not reported, but who originated from countries with high rates of consanguinity. Six different HADH mutations were identified in 11/115 (10%) patients tested. CONCLUSION HADH mutations are a relatively common cause of diazoxide-responsive HH with a frequency similar to that of GLUD1 and HNF4A mutations. We recommend that HADH sequence analysis is considered in all patients with diazoxide-responsive HH when recessive inheritance is suspected.
Collapse
Affiliation(s)
- Sarah E Flanagan
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Barrack Road, Exeter, EX2 5DW, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Goetzman ES. Modeling Disorders of Fatty Acid Metabolism in the Mouse. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:389-417. [DOI: 10.1016/b978-0-12-384878-9.00010-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Bennett MJ. Pathophysiology of fatty acid oxidation disorders. J Inherit Metab Dis 2010; 33:533-7. [PMID: 20824345 DOI: 10.1007/s10545-010-9170-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 08/13/2009] [Accepted: 08/24/2009] [Indexed: 10/19/2022]
Abstract
Mitochondrial fatty acid oxidation represents an important pathway for energy generation during periods of increased energy demand such as fasting, febrile illness and muscular exertion. In liver, the primary end products of the pathway are ketone bodies, which are released into the circulation and provide energy to tissues that are not able to oxidize fatty acids such as brain. Other tissues, such as cardiac and skeletal muscle are capable of direct utilization of the fatty acids as sources of energy. This article provides an overview of the pathogenesis of fatty acid oxidation disorders. It describes the different tissue involvement with the disease processes and correlates disease phenotype with the nature of the genetic defect for the known disorders of the pathway.
Collapse
Affiliation(s)
- M J Bennett
- Department of Pathology & Laboratory Medicine, University of Pennsylvania and Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Abstract
Mutations in the HADH and HNF4A genes are rare causes of diazoxide responsive congenital hyperinsulinism (CHI). This chapter details the phenotype known to be associated with mutations in these genes. Additionally, the authors give a brief overview of the role of these genes in glucose physiology and the possible mechanisms of CHI in patients with mutations in these genes.
Collapse
Affiliation(s)
- Ritika R Kapoor
- Clinical and Molecular Genetics Unit, The Developmental Endocrinology Research Group, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | | | | |
Collapse
|
22
|
Pepin E, Guay C, Delghingaro-Augusto V, Joly E, Madiraju SRM, Prentki M. Short-chain 3-hydroxyacyl-CoA dehydrogenase is a negative regulator of insulin secretion in response to fuel and non-fuel stimuli in INS832/13 β-cells. J Diabetes 2010; 2:157-67. [PMID: 20923481 DOI: 10.1111/j.1753-0407.2010.00076.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Hyperinsulinemia associated with non-ketotic hypoglycemia is observed in patients with mutated β-oxidation enzyme short-chain 3-hydroxyacyl-CoA dehydrogenase (HADHSC). In the present study, we investigated the mechanism underlying HADHSC-mediated regulation of insulin secretion. METHODS Knockdown of HADHSC expression by RNA interference in INS832/13 β-cells was achieved using short hairpin RNA and short interference RNA. RESULTS Knockdown of HADHSC increased both fuel- (glucose or leucine plus glutamine) and non-fuel (high KCl)-induced insulin secretion. Enhanced glucose-stimulated insulin secretion (GSIS) induced by HADHSC knockdown was independent of changes in cytosolic Ca(2+) and also occurred in the presence of fatty acids. L-Carnitine, used in the formation of acyl-carnitine compounds, increased GSIS in control cells, but was unable to further increase the augmented GSIS in HADHSC-knockdown cells. The pan transaminase inhibitor amino-oxyacetate reversed HADHSC knockdown-mediated increases in GSIS. Oxidation of [1-(14) C]-palmitate and -octanoate was not reduced in HADHSC-knockdown cells. L-3-Hydroxybutyryl-carnitine (tested using its precursor L-3-hydroxybutyrate) and L-3-hydroxyglutarate, which accumulate in blood and urine, respectively, of HADHSC-deficient patients, did not change insulin secretion. CONCLUSIONS Insulin secretion promoted by both fuel and non-fuel stimuli is negatively regulated by HADHSC. Enhanced secretion after HADHSC knockdown is not due to inhibition of fatty acid oxidation causing an accumulation of long-chain fatty acids or their CoA derivatives. L-3-Hydroxybutyrate and L-3-hydroxyglutarate do not mediate enhanced secretion caused by reduced HADHSC activity. Transamination reaction(s) and the formation of short-chain acylcarnitines and CoAs may be implicated in the mechanism whereby HADHSC deficiency results in enhanced insulin secretion and hyperinsulinemia.
Collapse
Affiliation(s)
- Emilie Pepin
- Montreal Diabetes Research Center, CRCHUM, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Li C, Chen P, Palladino A, Narayan S, Russell LK, Sayed S, Xiong G, Chen J, Stokes D, Butt YM, Jones PM, Collins HW, Cohen NA, Cohen AS, Nissim I, Smith TJ, Strauss AW, Matschinsky FM, Bennett MJ, Stanley CA. Mechanism of hyperinsulinism in short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency involves activation of glutamate dehydrogenase. J Biol Chem 2010; 285:31806-18. [PMID: 20670938 DOI: 10.1074/jbc.m110.123638] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of insulin dysregulation in children with hyperinsulinism associated with inactivating mutations of short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD) was examined in mice with a knock-out of the hadh gene (hadh(-/-)). The hadh(-/-) mice had reduced levels of plasma glucose and elevated plasma insulin levels, similar to children with SCHAD deficiency. hadh(-/-) mice were hypersensitive to oral amino acid with decrease of glucose level and elevation of insulin. Hypersensitivity to oral amino acid in hadh(-/-) mice can be explained by abnormal insulin responses to a physiological mixture of amino acids and increased sensitivity to leucine stimulation in isolated perifused islets. Measurement of cytosolic calcium showed normal basal levels and abnormal responses to amino acids in hadh(-/-) islets. Leucine, glutamine, and alanine are responsible for amino acid hypersensitivity in islets. hadh(-/-) islets have lower intracellular glutamate and aspartate levels, and this decrease can be prevented by high glucose. hadh(-/-) islets also have increased [U-(14)C]glutamine oxidation. In contrast, hadh(-/-) mice have similar glucose tolerance and insulin sensitivity compared with controls. Perifused hadh(-/-) islets showed no differences from controls in response to glucose-stimulated insulin secretion, even with addition of either a medium-chain fatty acid (octanoate) or a long-chain fatty acid (palmitate). Pull-down experiments with SCHAD, anti-SCHAD, or anti-GDH antibodies showed protein-protein interactions between SCHAD and GDH. GDH enzyme kinetics of hadh(-/-) islets showed an increase in GDH affinity for its substrate, α-ketoglutarate. These studies indicate that SCHAD deficiency causes hyperinsulinism by activation of GDH via loss of inhibitory regulation of GDH by SCHAD.
Collapse
Affiliation(s)
- Changhong Li
- Division of Endocrinology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cornille E, Abou-Hamdan M, Khrestchatisky M, Nieoullon A, de Reggi M, Gharib B. Enhancement of L-3-hydroxybutyryl-CoA dehydrogenase activity and circulating ketone body levels by pantethine. Relevance to dopaminergic injury. BMC Neurosci 2010; 11:51. [PMID: 20416081 PMCID: PMC2880308 DOI: 10.1186/1471-2202-11-51] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 04/23/2010] [Indexed: 01/16/2023] Open
Abstract
Background The administration of the ketone bodies hydroxybutyrate and acetoacetate is known to exert a protective effect against metabolic disorders associated with cerebral pathologies. This suggests that the enhancement of their endogenous production might be a rational therapeutic approach. Ketone bodies are generated by fatty acid beta-oxidation, a process involving a mitochondrial oxido-reductase superfamily, with fatty acid-CoA thioesters as substrates. In this report, emphasis is on the penultimate step of the process, i.e. L-3-hydroxybutyryl-CoA dehydrogenase activity. We determined changes in enzyme activity and in circulating ketone body levels in the MPTP mouse model of Parkinson's disease. Since the active moiety of CoA is pantetheine, mice were treated with pantethine, its naturally-occurring form. Pantethine has the advantage of being known as an anti-inflammatory and hypolipidemic agent with very few side effects. Results We found that dehydrogenase activity and circulating ketone body levels were drastically reduced by the neurotoxin MPTP, whereas treatment with pantethine overcame these adverse effects. Pantethine prevented dopaminergic neuron loss and motility disorders. In vivo and in vitro experiments showed that the protection was associated with enhancement of glutathione (GSH) production as well as restoration of respiratory chain complex I activity and mitochondrial ATP levels. Remarkably, pantethine treatment boosted the circulating ketone body levels in MPTP-intoxicated mice, but not in normal animals. Conclusions These finding demonstrate the feasibility of the enhancement of endogenous ketone body production and provide a promising therapeutic approach to Parkinson's disease as well as, conceivably, to other neurodegenerative disorders.
Collapse
Affiliation(s)
- Emilie Cornille
- Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, UMR CNRS 6184, Université de la Méditerranée, 13015 Marseille, France
| | | | | | | | | | | |
Collapse
|
25
|
Kapoor RR, James C, Flanagan SE, Ellard S, Eaton S, Hussain K. 3-Hydroxyacyl-coenzyme A dehydrogenase deficiency and hyperinsulinemic hypoglycemia: characterization of a novel mutation and severe dietary protein sensitivity. J Clin Endocrinol Metab 2009; 94:2221-5. [PMID: 19417036 PMCID: PMC7611919 DOI: 10.1210/jc.2009-0423] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND HADH encodes for the enzyme 3-hydroxyacyl-coenzyme A dehydrogenase (HADH) and catalyses the penultimate reaction in the beta-oxidation of fatty acids. All previously reported patients with mutations in HADH gene and hyperinsulinemic hypoglycemia (HH) showed raised plasma hydroxybutyrylcarnitine and urinary 3-hydroxyglutarate. AIMS The aims of the study were: 1) to report a novel HADH gene mutation not associated with abnormal acylcarnitine or urinary organic acid profile; and 2) to report the novel observation of severe protein-sensitive HH in three patients with HADH gene mutations. RESEARCH DESIGN AND METHODS The index case presented at 4 months of age with hypoglycemic seizures. Her HH responded to diazoxide, but she continued to have episodes of hypoglycemia even on diazoxide, especially when consuming high-protein foods. RESULTS Investigations confirmed HH (blood glucose level of 1.8 mmol/liter with simultaneous serum insulin level of 58 mU/liter) with normal acylcarnitines and urine organic acids. Sequencing of the HADH gene identified a homozygous missense mutation (c.562A>G; p.Met188Val). Hydroxyacyl-coenzyme A dehydrogenase activity was significantly decreased compared with controls (index patient, mean +/- sem, 26.8 +/- 4.8 mU/mg protein; controls, 48.0 +/- 8.1 mU/mg protein; P = 0.029) in skin fibroblasts. This patient was severely protein sensitive. Two other children with HH due to HADH gene mutations also demonstrated marked protein sensitivity. CONCLUSIONS Mutations in the HADH gene are associated with protein-induced HH, and patients with HH due to HADH gene mutations may have normal acylcarnitines and urine organic acids.
Collapse
Affiliation(s)
- Ritika R Kapoor
- London Centre for Paediatric Endocrinology and Metabolism, Hospital for Children National Health Service Trust, London WC1N 3JH, United Kingdom
| | | | | | | | | | | |
Collapse
|