1
|
Shrum SA, Nukala U, Shrimali S, Pineda EN, Krager KJ, Thakkar S, Jones DE, Pathak R, Breen PJ, Aykin-Burns N, Compadre CM. Tocotrienols Provide Radioprotection to Multiple Organ Systems through Complementary Mechanisms of Antioxidant and Signaling Effects. Antioxidants (Basel) 2023; 12:1987. [PMID: 38001840 PMCID: PMC10668991 DOI: 10.3390/antiox12111987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Tocotrienols have powerful radioprotective properties in multiple organ systems and are promising candidates for development as clinically effective radiation countermeasures. To facilitate their development as clinical radiation countermeasures, it is crucial to understand the mechanisms behind their powerful multi-organ radioprotective properties. In this context, their antioxidant effects are recognized for directly preventing oxidative damage to cellular biomolecules from ionizing radiation. However, there is a growing body of evidence indicating that the radioprotective mechanism of action for tocotrienols extends beyond their antioxidant properties. This raises a new pharmacological paradigm that tocotrienols are uniquely efficacious radioprotectors due to a synergistic combination of antioxidant and other signaling effects. In this review, we have covered the wide range of multi-organ radioprotective effects observed for tocotrienols and the mechanisms underlying it. These radioprotective effects for tocotrienols can be characterized as (1) direct cytoprotective effects, characteristic of the classic antioxidant properties, and (2) other effects that modulate a wide array of critical signaling factors involved in radiation injury.
Collapse
Affiliation(s)
- Stephen A. Shrum
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
- Tocol Pharmaceuticals, LLC, Little Rock, AR 77205, USA
| | - Ujwani Nukala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
- Joint Bioinformatics Graduate Program, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Shivangi Shrimali
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
- Joint Bioinformatics Graduate Program, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Edith Nathalie Pineda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
- Joint Bioinformatics Graduate Program, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Kimberly J. Krager
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Shraddha Thakkar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Darin E. Jones
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Rupak Pathak
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Philip J. Breen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Nukhet Aykin-Burns
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Cesar M. Compadre
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
- Tocol Pharmaceuticals, LLC, Little Rock, AR 77205, USA
| |
Collapse
|
2
|
Tupal A, Sabzichi M, Bazzaz R, Fathi Maroufi N, Mohammadi M, Pirouzpanah SM, Ramezani F. Application of ɑ-Tocotrienol-Loaded Biocompatible Precirol in Attenuation of Doxorubicin Dose-Dependent Behavior in HUH-7 Hepatocarcinoma Cell Line. Nutr Cancer 2019; 72:653-661. [PMID: 31390910 DOI: 10.1080/01635581.2019.1650191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumor-targeted nanoparticle delivery system has been known as a substitute and capable achievement in cancer treatment compared to conventional methods. In this study, we examined potential application of ɑ-tocotrienol-Precirol formulation to enhance efficiency of doxorubicin (DOX) in induction of apoptosis in HUH-7 hepatocarcinoma cells. ɑ-tocotrienol-loaded nanoparticles were characterized at the point of zeta potential, particle size, scanning electron microscope (SEM), and cell internalization. To evaluate antiproliferative effects of formulation, apoptosis, cell cycle procedure, flow cytometry, and MTT assays were employed. Optimum size of the ɑ-tocotrienol formulation revealed narrow size distribution with mean average of 78 ± 3 nm. IC50 values for ɑ-tocotrienol and ɑ-tocotrienol-nano structured lipid carriers after 24 h were 15 ± 0.6 and 10 ± 0.03 µM, respectively. After incubation of cells with ɑ-tocotrienol-loaded careers, the rate of cell proliferation decreased from 53 ± 6.1 to 34 ± 7.1% (P < 0.05). A significant improvement in the apoptosis percentage was revealed after treatment of the HUH-7 cell line with DOX and ɑ-tocotrienol careers (P < 0.05). Gene expression results demonstrated a marked decrease in survivin and increase in Bid and Bax levels. Our findings suggest that ɑ-tocotrienol-loaded nanoparticles elevate DOX efficacy in HUH-7 hepatocarcinoma cell.
Collapse
Affiliation(s)
- Ailar Tupal
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sabzichi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Roya Bazzaz
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Mohammadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fatemeh Ramezani
- Department of Molecular Medicine, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Tocotrienols: The promising analogues of vitamin E for cancer therapeutics. Pharmacol Res 2018; 130:259-272. [DOI: 10.1016/j.phrs.2018.02.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 12/16/2022]
|
4
|
Inhibitory effect of a redox-silent analogue of tocotrienol on hypoxia adaptation in prostate cancer cells. Anticancer Drugs 2017; 28:289-297. [DOI: 10.1097/cad.0000000000000460] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Chin KY, Pang KL, Soelaiman IN. Tocotrienol and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:97-130. [DOI: 10.1007/978-3-319-41334-1_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Shibata A, Nakagawa K, Tsuduki T, Miyazawa T. δ-Tocotrienol treatment is more effective against hypoxic tumor cells than normoxic cells: potential implications for cancer therapy. J Nutr Biochem 2015; 26:832-40. [PMID: 25979648 DOI: 10.1016/j.jnutbio.2015.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 02/22/2015] [Accepted: 02/26/2015] [Indexed: 12/26/2022]
Abstract
Tocotrienols, unsaturated forms of vitamin E, inhibit the proliferation of a variety of cancer cells and suppress angiogenesis. However, the mechanisms underlying those effects on cancer cell growth remain unclear especially under hypoxic conditions. In this study, we demonstrated that δ-tocotrienol (δ-T3) could be used as a novel anticancer agent against human colorectal adenocarcinoma (DLD-1) cells under both normoxic and hypoxic conditions. δ-T3 inhibited the growth of DLD-1 cells in a dose-dependent fashion by inducing cell cycle arrest and apoptosis. This effect was more potent under hypoxic than normoxic conditions. The anticancer effect of δ-T3 was achieved by its up-regulation of cyclin-dependent kinase inhibitors (p21 and p27), the activation of caspases and the suppression of phosphorylation of protein kinase B (Akt) at Thr(308) and Ser(473). In in vivo studies, oral administration of rice bran tocotrienol (RBT3, mainly γ-T3) (10 mg/mouse/day) significantly inhibited tumor growth in nude mice. In tumor analyses, RBT3 activated p21, p27, caspase-3 and caspase-9 and decreased Akt phosphorylation. Furthermore, immunostaining revealed that RBT3 decreased the number of cells positive for CD31/platelet endothelial cell adhesion molecule-1 in microvessels in the tumor. Taken together, these data suggest that tocotrienols are potent antitumor agents capable of inducing apoptosis and inhibiting angiogenesis under both hypoxic and normoxic conditions. Tocotrienols could have significant therapeutic potential in the clinical treatment of tumors.
Collapse
Affiliation(s)
- Akira Shibata
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan.
| | - Tsuyoshi Tsuduki
- Laboratory of Food and Biomolecular Science, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan
| | - Teruo Miyazawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan
| |
Collapse
|
7
|
SUGAHARA R, SATO A, UCHIDA A, SHIOZAWA S, SATO C, VIRGONA N, YANO T. Annatto Tocotrienol Induces a Cytotoxic Effect on Human Prostate Cancer PC3 Cells via the Simultaneous Inhibition of Src and Stat3. J Nutr Sci Vitaminol (Tokyo) 2015; 61:497-501. [DOI: 10.3177/jnsv.61.497] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Ayami SATO
- Graduate School of Life Sciences, Toyo University
| | - Asuka UCHIDA
- Graduate School of Life Sciences, Toyo University
| | | | - Chiaki SATO
- Graduate School of Life Sciences, Toyo University
| | | | | |
Collapse
|
8
|
Cytotoxicity and apoptotic activities of alpha-, gamma- and delta-tocotrienol isomers on human cancer cells. Altern Ther Health Med 2014; 14:469. [PMID: 25480449 PMCID: PMC4295404 DOI: 10.1186/1472-6882-14-469] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 11/26/2014] [Indexed: 11/30/2022]
Abstract
Background Tocotrienols, especially the gamma isomer was discovered to possess cytotoxic effects associated with the induction of apoptosis in numerous cancers. Individual tocotrienol isomers are believed to induce dissimilar apoptotic mechanisms in different cancer types. This study was aimed to compare the cytotoxic potency of alpha-, gamma- and delta-tocotrienols, and to explore their resultant apoptotic mechanisms in human lung adenocarcinoma A549 and glioblastoma U87MG cells which are scarcely researched. Methods The cytotoxic effects of alpha-, gamma- and delta-tocotrienols in both A549 and U87MG cancer cells were first determined at the cell viability and morphological aspects. DNA damage types were then identified by comet assay and flow cytometric study was carried out to support the incidence of apoptosis. The involvements of caspase-8, Bid, Bax and mitochondrial membrane permeability (MMP) in the execution of apoptosis were further expounded. Results All tocotrienols inhibited the growth of A549 and U87MG cancer cells in a concentration- and time-dependent manner. These treated cancer cells demonstrated some hallmarks of apoptotic morphologies, apoptosis was further confirmed by cell accumulation at the pre-G1 stage. All tocotrienols induced only double strand DNA breaks (DSBs) and no single strand DNA breaks (SSBs) in both treated cancer cells. Activation of caspase-8 leading to increased levels of Bid and Bax as well as cytochrome c release attributed by the disruption of mitochondrial membrane permeability in both A549 and U87MG cells were evident. Conclusions This study has shown that delta-tocotrienol, in all experimental approaches, possessed a higher efficacy (shorter induction period) and effectiveness (higher induction rate) in the execution of apoptosis in both A549 and U87MG cancer cells as compared to alpha- and gamma-tocotrienols. Tocotrienols in particular the delta isomer can be an alternative chemotherapeutic agent for treating lung and brain cancers. Electronic supplementary material The online version of this article (doi:10.1186/1472-6882-14-469) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Ahsan H, Ahad A, Iqbal J, Siddiqui WA. Pharmacological potential of tocotrienols: a review. Nutr Metab (Lond) 2014; 11:52. [PMID: 25435896 PMCID: PMC4247006 DOI: 10.1186/1743-7075-11-52] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/15/2014] [Indexed: 02/06/2023] Open
Abstract
Tocotrienols, members of the vitamin E family, are natural compounds found in a number of vegetable oils, wheat germ, barley, and certain types of nuts and grains. Like tocopherols, tocotrienols are also of four types viz. alpha, beta, gamma and delta. Unlike tocopherols, tocotrienols are unsaturated and possess an isoprenoid side chain. Tocopherols are lipophilic in nature and are found in association with lipoproteins, fat deposits and cellular membranes and protect the polyunsaturated fatty acids from peroxidation reactions. The unsaturated chain of tocotrienol allows an efficient penetration into tissues that have saturated fatty layers such as the brain and liver. Recent mechanistic studies indicate that other forms of vitamin E, such as γ-tocopherol, δ-tocopherol, and γ-tocotrienol, have unique antioxidant and anti-inflammatory properties that are superior to those of α-tocopherol against chronic diseases. These forms scavenge reactive nitrogen species, inhibit cyclooxygenase- and 5-lipoxygenase-catalyzed eicosanoids and suppress proinflammatory signalling, such as NF-κB and STAT. The animal and human studies show tocotrienols may be useful against inflammation-associated diseases. Many of the functions of tocotrienols are related to its antioxidant properties and its varied effects are due to it behaving as a signalling molecule. Tocotrienols exhibit biological activities that are also exhibited by tocopherols, such as neuroprotective, anti-cancer, anti-inflammatory and cholesterol lowering properties. Hence, effort has been made to compile the different functions and properties of tocotrienols in experimental model systems and humans. This article constitutes an in-depth review of the pharmacology, metabolism, toxicology and biosafety aspects of tocotrienols. Tocotrienols are detectable at appreciable levels in the plasma after supplementations. However, there is inadequate data on the plasma concentrations of tocotrienols that are sufficient to demonstrate significant physiological effect and biodistribution studies show their accumulation in vital organs of the body. Considering the wide range of benefits that tocotrienols possesses against some common human ailments and having a promising potential, the experimental analysis accounts for about a small fraction of all vitamin E research. The current state of knowledge deserves further investigation into this lesser known form of vitamin E.
Collapse
Affiliation(s)
- Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025 India
| | - Amjid Ahad
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110062 India
| | - Jahangir Iqbal
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203 USA
| | - Waseem A Siddiqui
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110062 India
| |
Collapse
|
10
|
Sudhahar V, Fukai T. Antioxidant Supplementation and Therapies. STUDIES ON PEDIATRIC DISORDERS 2014. [DOI: 10.1007/978-1-4939-0679-6_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Ahsan H, Ahad A, Iqbal J, Siddiqui WA. Pharmacological potential of tocotrienols: a review. Nutr Metab (Lond) 2014. [PMID: 25435896 DOI: 10.1186/743-7075-11-52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Tocotrienols, members of the vitamin E family, are natural compounds found in a number of vegetable oils, wheat germ, barley, and certain types of nuts and grains. Like tocopherols, tocotrienols are also of four types viz. alpha, beta, gamma and delta. Unlike tocopherols, tocotrienols are unsaturated and possess an isoprenoid side chain. Tocopherols are lipophilic in nature and are found in association with lipoproteins, fat deposits and cellular membranes and protect the polyunsaturated fatty acids from peroxidation reactions. The unsaturated chain of tocotrienol allows an efficient penetration into tissues that have saturated fatty layers such as the brain and liver. Recent mechanistic studies indicate that other forms of vitamin E, such as γ-tocopherol, δ-tocopherol, and γ-tocotrienol, have unique antioxidant and anti-inflammatory properties that are superior to those of α-tocopherol against chronic diseases. These forms scavenge reactive nitrogen species, inhibit cyclooxygenase- and 5-lipoxygenase-catalyzed eicosanoids and suppress proinflammatory signalling, such as NF-κB and STAT. The animal and human studies show tocotrienols may be useful against inflammation-associated diseases. Many of the functions of tocotrienols are related to its antioxidant properties and its varied effects are due to it behaving as a signalling molecule. Tocotrienols exhibit biological activities that are also exhibited by tocopherols, such as neuroprotective, anti-cancer, anti-inflammatory and cholesterol lowering properties. Hence, effort has been made to compile the different functions and properties of tocotrienols in experimental model systems and humans. This article constitutes an in-depth review of the pharmacology, metabolism, toxicology and biosafety aspects of tocotrienols. Tocotrienols are detectable at appreciable levels in the plasma after supplementations. However, there is inadequate data on the plasma concentrations of tocotrienols that are sufficient to demonstrate significant physiological effect and biodistribution studies show their accumulation in vital organs of the body. Considering the wide range of benefits that tocotrienols possesses against some common human ailments and having a promising potential, the experimental analysis accounts for about a small fraction of all vitamin E research. The current state of knowledge deserves further investigation into this lesser known form of vitamin E.
Collapse
Affiliation(s)
- Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025 India
| | - Amjid Ahad
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110062 India
| | - Jahangir Iqbal
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203 USA
| | - Waseem A Siddiqui
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110062 India
| |
Collapse
|
12
|
Zarogoulidis P, Cheva A, Zarampouka K, Huang H, Li C, Huang Y, Katsikogiannis N, Zarogoulidis K. Tocopherols and tocotrienols as anticancer treatment for lung cancer: future nutrition. J Thorac Dis 2013; 5:349-52. [PMID: 23825772 DOI: 10.3978/j.issn.2072-1439.2013.04.03] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/03/2013] [Indexed: 02/05/2023]
Abstract
Nutrition has been known for ages to shield the immune system against several formulations that deregulate normal DNA repair mechanisms, and induce tumorigenesis. Vitamins and in specific Vit E and its members tocopherols (α-, β-, γ-, δ-) and tocotrienols (α-, β-, γ-, δ-) have demonstrated strong association with the prevention of cancer and inhibition of tumor, both in vitro and in vivo. Vitamin E has also demonstrated effective role against chemotherapy resistant cancer cell evolution and a protective role in acute interstitial disease. Several formulations of Vitamin E have been investigated conjugated with different carriers as nano-formulations and administered in different forms. Additionally, several tumorigenic pathways have been investigated separately in an effort to identify which member of Vitamin E inhibits efficiently every pathway. Vitamin E presented efficiency against specific subhistology types of lung cancer. Finally, in the current work up to date information regarding novel formulations with Vitamin E and inhibition pathways are going to be presented and commented.
Collapse
Affiliation(s)
- Paul Zarogoulidis
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece; ; University Pulmonary Department, "Ruhrland" Clinic, University of Duisburg-Essen, Essen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Sato A, Sekine M, Virgona N, Ota M, Yano T. Yes is a central mediator of cell growth in malignant mesothelioma cells. Oncol Rep 2012; 28:1889-93. [PMID: 22948717 DOI: 10.3892/or.2012.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/12/2012] [Indexed: 12/11/2022] Open
Abstract
The constitutive activation of the Src family kinases (SFKs) has been established as a poor prognostic factor in malignant mesothelioma (MM), however, the family member(s) which contribute to the malignancy have not been defined. This study aimed to identify the SFK member(s) contributing to cell growth using RNA interference in various MM cell lines. Silencing of Yes but not of c-Src or Fyn in MM cells leads to cell growth suppression. This suppressive effect caused by Yes silencing mainly depends on G1 cell cycle arrest and partly the induction of apoptosis. Also, the knockout of Yes induces the inactivation of β-catenin signaling and subsequently decreases the levels of cyclin D necessary for G1-S transition in the cell cycle. In addition, Yes knockout has less effect on cell growth suppression in β-catenin-deficient H28 MM cells compared to other MM cells which express the catenin. Overall, we conclude that Yes is a central mediator for MM cell growth that is not shared with other SFKs such as c-Src.
Collapse
Affiliation(s)
- Ayami Sato
- Faculty of Life Sciences, Toyo University, Itakura, Oura, Gunma 374-0193, Japan
| | | | | | | | | |
Collapse
|
14
|
Kannappan R, Gupta SC, Kim JH, Aggarwal BB. Tocotrienols fight cancer by targeting multiple cell signaling pathways. GENES AND NUTRITION 2011; 7:43-52. [PMID: 21484157 DOI: 10.1007/s12263-011-0220-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 12/11/2022]
Abstract
Cancer cells are distinguished by several distinct characteristics, such as self-sufficiency in growth signal, resistance to growth inhibition, limitless replicative potential, evasion of apoptosis, sustained angiogenesis, and tissue invasion and metastasis. Tumor cells acquire these properties due to the dysregulation of multiple genes and associated cell signaling pathways, most of which are linked to inflammation. For that reason, rationally designed drugs that target a single gene product are unlikely to be of use in preventing or treating cancer. Moreover, targeted drugs can cause serious and even life-threatening side effects. Therefore, there is an urgent need for safe and effective promiscuous (multitargeted) drugs. "Mother Nature" produces numerous such compounds that regulate multiple cell signaling pathways, are cost effective, exhibit low toxicity, and are readily available. One among these is tocotrienol, a member of the vitamin E family, which has exhibited anticancer properties. This review summarizes data from in vitro and in vivo studies of the effects of tocotrienol on nuclear factor-κB, signal transducer and activator of transcription (STAT) 3, death receptors, apoptosis, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), hypoxia-inducible factor (HIF) 1, growth factor receptor kinases, and angiogenic pathways.
Collapse
Affiliation(s)
- Ramaswamy Kannappan
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | | | | |
Collapse
|
15
|
Aggarwal BB, Sundaram C, Prasad S, Kannappan R. Tocotrienols, the vitamin E of the 21st century: its potential against cancer and other chronic diseases. Biochem Pharmacol 2010; 80:1613-31. [PMID: 20696139 PMCID: PMC2956867 DOI: 10.1016/j.bcp.2010.07.043] [Citation(s) in RCA: 361] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/12/2010] [Accepted: 07/27/2010] [Indexed: 02/07/2023]
Abstract
Initially discovered in 1938 as a "fertility factor," vitamin E now refers to eight different isoforms that belong to two categories, four saturated analogues (α, β, γ, and δ) called tocopherols and four unsaturated analogues referred to as tocotrienols. While the tocopherols have been investigated extensively, little is known about the tocotrienols. Very limited studies suggest that both the molecular and therapeutic targets of the tocotrienols are distinct from those of the tocopherols. For instance, suppression of inflammatory transcription factor NF-κB, which is closely linked to tumorigenesis and inhibition of HMG-CoA reductase, mammalian DNA polymerases and certain protein tyrosine kinases, is unique to the tocotrienols. This review examines in detail the molecular targets of the tocotrienols and their roles in cancer, bone resorption, diabetes, and cardiovascular and neurological diseases at both preclinical and clinical levels. As disappointment with the therapeutic value of the tocopherols grows, the potential of these novel vitamin E analogues awaits further investigation.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Box 143, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
16
|
Bi S, Liu JR, Li Y, Wang Q, Liu HK, Yan YG, Chen BQ, Sun WG. gamma-Tocotrienol modulates the paracrine secretion of VEGF induced by cobalt(II) chloride via ERK signaling pathway in gastric adenocarcinoma SGC-7901 cell line. Toxicology 2010; 274:27-33. [PMID: 20452389 DOI: 10.1016/j.tox.2010.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/02/2010] [Accepted: 05/04/2010] [Indexed: 11/26/2022]
Abstract
Hypoxia is a common characteristic feature of solid tumors, and carcinoma cells are known to secrete many growth factors. These growth factors, such as vascular endothelial growth factor (VEGF), play a major role in the regulation of tumor angiogenesis and metastasis. In this study, the effect of gamma-tocotrienol, a natural product commonly found in palm oil and rice bran, on the accumulation of HIF-1alpha protein and the paracrine secretion of VEGF in human gastric adenocarcinoma SGC-7901 cell line induced by cobalt(II) chloride (as a hypoxia mimic) was investigated. These results showed that cobalt(II) chloride induced the high expression of VEGF in SGC-7901 cells at dose of 150 micromol/L for 24h. Both basal level and cobalt(II) chloride-induced HIF-1alpha protein accumulation and VEGF paracrine secretion were inhibited in SGC-7901 cells treated with gamma-tocotrienol at 60 micromol/L treatment for 24 h. U0126, a MEK1/2 inhibitor, decreased the expression of HIF-1alpha protein and the paracrine secretion of VEGF under normoxic and hypoxic conditions. In this study, gamma-tocotrienol also significantly inhibited the hypoxia-stimulated expression of phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2). The mechanism seems to involve in inhibiting hypoxia-mediated activation of p-ERK1/2, it leads to a marked decrease in hypoxia-induced HIF-1alpha protein accumulation and VEGF secretion. These data suggest that HIF-1alpha/VEGF could be a promising target for gamma-tocotrienol in an effective method of chemoprevention and chemotherapy in human gastric cancer.
Collapse
Affiliation(s)
- Sheng Bi
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, 23 YouZheng Street, NanGang District, Harbin 150001, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
XQ2, a novel TPZ derivative, induced G2/M phase arrest and apoptosis under hypoxia in non-small cell lung cancer cells. Biosci Biotechnol Biochem 2010; 74:1181-7. [PMID: 20530905 DOI: 10.1271/bbb.90889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hypoxia is one of the inevitable circumstances of various tumors. It controls various levels of regulation in tumor progression and results in tumor resistance to radiotherapy and chemotherapy. Here we investigated a synthetic TPZ derivative, N-ethoxymethyl-3-amino-1,2,4-benzotriazine-1,4-dioxide (XQ2), a novel compound that induced anti-cancer effects both in normoxia and in hypoxia, cell proliferation assay found that XQ2 exhibited a potent inhibitory effect on the tested cancer cell lines both in normoxia and in hypoxia. Flow cytometry and western blot studies indicated that XQ2 induces G2/M arrest and a caspase-dependent apoptosis in A549 cells. Additionally, intracellular reactive oxygen species (ROS) appear to play a key role in the anticancer effect of XQ2 in hypoxia. Taken together, our data suggest that XQ2 exerted anticancer action by suppressing the ROS level and triggering cell-cycle arrest and the caspase-dependent pathway, which is associated with apoptosis.
Collapse
|
18
|
Sylvester PW, Kaddoumi A, Nazzal S, El Sayed KA. The Value of Tocotrienols in the Prevention and Treatment of Cancer. J Am Coll Nutr 2010; 29:324S-333S. [DOI: 10.1080/07315724.2010.10719847] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
19
|
Ju J, Picinich SC, Yang Z, Zhao Y, Suh N, Kong AN, Yang CS. Cancer-preventive activities of tocopherols and tocotrienols. Carcinogenesis 2010; 31:533-42. [PMID: 19748925 PMCID: PMC2860705 DOI: 10.1093/carcin/bgp205] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/31/2009] [Accepted: 08/10/2009] [Indexed: 02/07/2023] Open
Abstract
The cancer-preventive activity of vitamin E has been studied. Whereas some epidemiological studies have suggested a protective effect of vitamin E against cancer formation, many large-scale intervention studies with alpha-tocopherol (usually large doses) have not demonstrated a cancer-preventive effect. Studies on alpha-tocopherol in animal models also have not demonstrated robust cancer prevention effects. One possible explanation for the lack of demonstrable cancer-preventive effects is that high doses of alpha-tocopherol decrease the blood and tissue levels of delta-tocopherols. It has been suggested that gamma-tocopherol, due to its strong anti-inflammatory and other activities, may be the more effective form of vitamin E in cancer prevention. Our recent results have demonstrated that a gamma-tocopherol-rich mixture of tocopherols inhibits colon, prostate, mammary and lung tumorigenesis in animal models, suggesting that this mixture may have a high potential for applications in the prevention of human cancer. In this review, we discuss biochemical properties of tocopherols, results of possible cancer-preventive effects in humans and animal models and possible mechanisms involved in the inhibition of carcinogenesis. Based on this information, we propose that a gamma-tocopherol-rich mixture of tocopherols is a very promising cancer-preventive agent and warrants extensive future research.
Collapse
Affiliation(s)
- Jihyeung Ju
- Department of Chemical Biology
- Department of Pharmaceutics
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Present address: Department of Food and Nutrition, College of Human Ecology, Chungbuk National University, 410 Sungbong-Ro, Heungduk-Gu, Cheongju 361-763, Korea
| | - Sonia C. Picinich
- Department of Chemical Biology
- Department of Pharmaceutics
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Zhihong Yang
- Department of Chemical Biology
- Department of Pharmaceutics
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Yang Zhao
- Department of Chemical Biology
- Department of Pharmaceutics
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Nanjoo Suh
- Department of Chemical Biology
- Department of Pharmaceutics
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Ah-Ng Kong
- Department of Chemical Biology
- Department of Pharmaceutics
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Chung S. Yang
- Department of Chemical Biology
- Department of Pharmaceutics
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
20
|
Banks R, Speakman JR, Selman C. Vitamin E supplementation and mammalian lifespan. Mol Nutr Food Res 2010; 54:719-25. [DOI: 10.1002/mnfr.200900382] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Design and preliminary structure–activity relationship of redox-silent semisynthetic tocotrienol analogues as inhibitors for breast cancer proliferation and invasion. Bioorg Med Chem 2010; 18:755-68. [DOI: 10.1016/j.bmc.2009.11.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 11/22/2009] [Accepted: 11/24/2009] [Indexed: 11/18/2022]
|
22
|
A redox-silent analogue of tocotrienol acts as a potential cytotoxic agent against human mesothelioma cells. Life Sci 2009; 84:650-6. [PMID: 19232361 DOI: 10.1016/j.lfs.2009.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 02/02/2009] [Accepted: 02/05/2009] [Indexed: 12/17/2022]
Abstract
AIMS Malignant mesothelioma is an aggressive cancer with no effective treatment options. A redox-silent analogue of alpha-tocotrienol, 6-O-carboxypropyl-alpha-tocotrienol (T3E) is a new potential anti-carcinogenic agent with less toxic effect on non-tumorigenic cells. Here, we evaluated the effect of T3E on killing of chemoresistant mesothelioma cell (H28). MAIN METHODS The cytotoxic effect of T3E was evaluated by a WST-1 assay, and cell cycle and apoptosis analysis were done by FACS. Each signal molecule's activity was determined by protein array and immunoblot analysis. KEY FINDINGS T3E effectively inhibited H28 cell growth at practical pharmacological concentrations (10-20 muM) without any effect on non-tumorigenic mesothelial cell (Met-5A). Inhibition of H28 cell growth by T3E mediated through G2/M arrest in cell cycle and induction of apoptosis. Protein array and immunoblot analyses revealed that T3E inhibited the activation of epidermal growth factor receptor (EGFR) via the inactivation of the Src family of protein tyrosine kinases (Src). However, the blockade of the EGFR signaling was not associated with the T3E-dependent H28 cell growth control. In addition to Src inactivation, T3E inhibited signal transduction and activation of transcription Stat3. A combination of an Src inhibitor, PP2, and a Stat3 inhibitor, AG490, induced G2/M arrest and enhanced apoptosis compared with PP2 alone. These results suggest that T3E suppresses H28 cell growth via the inhibition of Src activation and Src-independent Stat3 activation. SIGNIFICANCE T3E can be a new effective therapeutic agent against chemoresistant mesothelioma cells.
Collapse
|
23
|
Shibata A, Nakagawa K, Sookwong P, Tsuduki T, Tomita S, Shirakawa H, Komai M, Miyazawa T. Tocotrienol Inhibits Secretion of Angiogenic Factors from Human Colorectal Adenocarcinoma Cells by Suppressing Hypoxia-Inducible Factor-1α. J Nutr 2008; 138:2136-42. [DOI: 10.3945/jn.108.093237] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|