1
|
Gelaw TA, Sanan-Mishra N. Non-Coding RNAs in Response to Drought Stress. Int J Mol Sci 2021; 22:12519. [PMID: 34830399 PMCID: PMC8621352 DOI: 10.3390/ijms222212519] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Drought stress causes changes in the morphological, physiological, biochemical and molecular characteristics of plants. The response to drought in different plants may vary from avoidance, tolerance and escape to recovery from stress. This response is genetically programmed and regulated in a very complex yet synchronized manner. The crucial genetic regulations mediated by non-coding RNAs (ncRNAs) have emerged as game-changers in modulating the plant responses to drought and other abiotic stresses. The ncRNAs interact with their targets to form potentially subtle regulatory networks that control multiple genes to determine the overall response of plants. Many long and small drought-responsive ncRNAs have been identified and characterized in different plant varieties. The miRNA-based research is better documented, while lncRNA and transposon-derived RNAs are relatively new, and their cellular role is beginning to be understood. In this review, we have compiled the information on the categorization of non-coding RNAs based on their biogenesis and function. We also discuss the available literature on the role of long and small non-coding RNAs in mitigating drought stress in plants.
Collapse
Affiliation(s)
- Temesgen Assefa Gelaw
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
- Department of Biotechnology, College of Natural and Computational Science, Debre Birhan University, Debre Birhan P.O. Box 445, Ethiopia
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
| |
Collapse
|
2
|
Mir Q, Lakshmipati DK, Ulrich BJ, Kaplan MH, Janga SC. Comparative Analysis of Alternative Splicing Profiles in Th Cell Subsets Reveals Extensive Cell Type-Specific Effects Modulated by a Network of Transcription Factors and RNA-Binding Proteins. Immunohorizons 2021; 5:760-771. [PMID: 34583937 DOI: 10.4049/immunohorizons.2100060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022] Open
Abstract
Alternative splicing (AS) plays an important role in the development of many cell types; however, its contribution to Th subsets has been clearly defined. In this study, we compare mice naive CD4+ Th cells with Th1, Th2, Th17, and T regulatory cells and observed that the majority of AS events were retained intron, followed by skipped-exon events, with at least 1200 genes across cell types affected by AS events. A significant fraction of the AS events, especially retained intron events from the 72-h time point, were no longer observed 2 wk postdifferentiation, suggesting a role for AS in early activation and differentiation via preferential expression of specific isoforms required during T cell activation, but not for differentiation or effector function. Examining the protein consequence of the exon-skipping events revealed an abundance of structural proteins encoding for intrinsically unstructured peptide regions, followed by transmembrane helices, β strands, and polypeptide turn motifs. Analyses of expression profiles of RNA-binding proteins (RBPs) and their cognate binding sites flanking the discovered AS events revealed an enrichment for specific RBP recognition sites in each of the Th subsets. Integration with publicly available chromatin immunoprecipitation sequencing datasets for transcription factors support a model wherein lineage-determining transcription factors impact the RBP profile within the differentiating cells, and this differential expression contributes to AS of the transcriptome via a cascade of cell type-specific posttranscriptional rewiring events.
Collapse
Affiliation(s)
- Quoseena Mir
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University, Indianapolis, IN
| | - Deepak K Lakshmipati
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University, Indianapolis, IN
| | - Benjamin J Ulrich
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Mark H Kaplan
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Sarath Chandra Janga
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University, Indianapolis, IN;
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN; and
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
3
|
Hubé F, Ulveling D, Sureau A, Forveille S, Francastel C. Short intron-derived ncRNAs. Nucleic Acids Res 2017; 45:4768-4781. [PMID: 28053119 PMCID: PMC5416886 DOI: 10.1093/nar/gkw1341] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/21/2016] [Indexed: 01/02/2023] Open
Abstract
Introns represent almost half of the human genome, although they are eliminated from transcripts through RNA splicing. Yet, different classes of non-canonical miRNAs have been proposed to originate directly from intron splicing. Here, we considered the alternative splicing of introns as an interesting source of miRNAs, compatible with a developmental switch. We report computational prediction of new Short Intron-Derived ncRNAs (SID), defined as precursors of smaller ncRNAs like miRNAs and snoRNAs produced directly by splicing, and tested their dependence on each key factor in canonical or alternative miRNAs biogenesis (Drosha, DGCR8, DBR1, snRNP70, U2AF65, PRP8, Dicer, Ago2). We found that about half of predicted SID rely on debranching of the excised intron-lariat by the enzyme DBR1, as proposed for mirtrons. However, we identified new classes of SID for which miRNAs biogenesis may rely on intermingling between canonical and alternative pathways. We validated selected SID as putative miRNAs precursors and identified new endogenous miRNAs produced by non-canonical pathways, including one hosted in the first intron of SRA (Steroid Receptor RNA activator). Consistent with increased SRA intron retention during myogenic differentiation, release of SRA intron and its associated mature miRNA decreased in cells from healthy subjects but not from myotonic dystrophy patients with splicing defects.
Collapse
Affiliation(s)
- Florent Hubé
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Epigénétique et Destin Cellulaire, CNRS UMR 7216, Paris, France
| | - Damien Ulveling
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Epigénétique et Destin Cellulaire, CNRS UMR 7216, Paris, France
| | - Alain Sureau
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Epigénétique et Destin Cellulaire, CNRS UMR 7216, Paris, France
| | - Sabrina Forveille
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Epigénétique et Destin Cellulaire, CNRS UMR 7216, Paris, France
| | - Claire Francastel
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Epigénétique et Destin Cellulaire, CNRS UMR 7216, Paris, France
| |
Collapse
|
4
|
Jaswani P, Prakash S, Dhar A, Sharma RK, Prasad N, Agrawal S. MicroRNAs Involvement in Renal Pathophysiology: A Bird's Eye View. Indian J Nephrol 2017; 27:337-341. [PMID: 28904427 PMCID: PMC5590408 DOI: 10.4103/ijn.ijn_264_16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
MicroRNAs (miRNAs) are known to suppress gene expression by binding to messenger RNAs and in turn regulate different pathophysiological processes. Transforming growth factor-β, mitogen-activated protein kinase signaling, and Wnt signaling-like major pathways associated with miRNAs are involved with kidney diseases. The discovery of miRNAs has provided new insights into kidney pathologies and may provide effective therapeutic strategies. Research has demonstrated the role of miRNAs in a variety of kidney diseases including diabetic nephropathy, lupus nephritis, hypertension, nephritic syndrome, acute kidney injury, renal cell carcinoma, and renal fibrosis. miRNAs are implicated as playing a role in these diseases due to their role in apoptosis, cell proliferation, differentiation, and development. As miRNAs have been detected in a stable condition in different biological fluids, they have the potential to be tools to study the pathogenesis of human diseases with a great potential to be used in disease diagnosis and prognosis. The purpose of this review is to examine the role of miRNA in kidney disease.
Collapse
Affiliation(s)
- P Jaswani
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - S Prakash
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - A Dhar
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - R K Sharma
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - N Prasad
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - S Agrawal
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
5
|
Martin S, Bellora N, González-Vallinas J, Irimia M, Chebli K, de Toledo M, Raabe M, Eyras E, Urlaub H, Blencowe BJ, Tazi J. Preferential binding of a stable G3BP ribonucleoprotein complex to intron-retaining transcripts in mouse brain and modulation of their expression in the cerebellum. J Neurochem 2016; 139:349-368. [PMID: 27513819 DOI: 10.1111/jnc.13768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/02/2016] [Accepted: 08/02/2016] [Indexed: 12/13/2022]
Abstract
Neuronal granules play an important role in the localization and transport of translationally silenced messenger ribonucleoproteins in neurons. Among the factors associated with these granules, the RNA-binding protein G3BP1 (stress-granules assembly factor) is involved in neuronal plasticity and is induced in Alzheimer's disease. We immunopurified a stable complex containing G3BP1 from mouse brain and performed high-throughput sequencing and cross-linking immunoprecipitation to identify the associated RNAs. The G3BP-complex contained the deubiquitinating protease USP10, CtBP1 and the RNA-binding proteins Caprin-1, G3BP2a and splicing factor proline and glutamine rich, or PSF. The G3BP-complex binds preferentially to transcripts that retain introns, and to non-coding sequences like 3'-untranslated region and long non-coding RNAs. Specific transcripts with retained introns appear to be enriched in the cerebellum compared to the rest of the brain and G3BP1 depletion decreased this intron retention in the cerebellum of G3BP1 knockout mice. Among the enriched transcripts, we found an overrepresentation of genes involved in synaptic transmission, especially glutamate-related neuronal transmission. Notably, G3BP1 seems to repress the expression of the mature Grm5 (metabotropic glutamate receptor 5) transcript, by promoting the retention of an intron in the immature transcript in the cerebellum. Our results suggest that G3BP is involved in a new functional mechanism to regulate non-coding RNAs including intron-retaining transcripts, and thus have broad implications for neuronal gene regulation, where intron retention is widespread.
Collapse
Affiliation(s)
- Sophie Martin
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR5535, Montpellier, France
| | - Nicolas Bellora
- Computational Genomics Group Universitat Pompeu Fabra PRBB, Barcelona, Spain.,Laboratorio de Microbiología Aplicada y Biotecnología, Instituto Andino-Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET - UNComahue, Bariloche, Argentina
| | | | - Manuel Irimia
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Karim Chebli
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR5535, Montpellier, France
| | - Marion de Toledo
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR5535, Montpellier, France
| | - Monika Raabe
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Eduardo Eyras
- Computational Genomics Group Universitat Pompeu Fabra PRBB, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, Barcelona, Spain
| | - Henning Urlaub
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ben J Blencowe
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jamal Tazi
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR5535, Montpellier, France.
| |
Collapse
|
6
|
Chorev M, Carmel L. Computational identification of functional introns: high positional conservation of introns that harbor RNA genes. Nucleic Acids Res 2013; 41:5604-13. [PMID: 23605046 PMCID: PMC3675471 DOI: 10.1093/nar/gkt244] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
An appreciable fraction of introns is thought to have some function, but there is no obvious way to predict which specific intron is likely to be functional. We hypothesize that functional introns experience a different selection regime than non-functional ones and will therefore show distinct evolutionary histories. In particular, we expect functional introns to be more resistant to loss, and that this would be reflected in high conservation of their position with respect to the coding sequence. To test this hypothesis, we focused on introns whose function comes about from microRNAs and snoRNAs that are embedded within their sequence. We built a data set of orthologous genes across 28 eukaryotic species, reconstructed the evolutionary histories of their introns and compared functional introns with the rest of the introns. We found that, indeed, the position of microRNA- and snoRNA-bearing introns is significantly more conserved. In addition, we found that both families of RNA genes settled within introns early during metazoan evolution. We identified several easily computable intronic properties that can be used to detect functional introns in general, thereby suggesting a new strategy to pinpoint non-coding cellular functions.
Collapse
Affiliation(s)
- Michal Chorev
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | | |
Collapse
|
7
|
Association of intronic repetition of SLC26A4 gene with Hashimoto thyroiditis disease. Genet Res (Camb) 2013; 95:38-44. [PMID: 23452581 DOI: 10.1017/s0016672313000037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Intronic microsatellites repeats were implicated in the pathogenic mechanisms of several diseases. SLC26A4 gene, involved in the genetic susceptibility of autoimmune thyroid disease (AITD), harbours large non-coding introns. Using the tandem repeat finder (TRF) Software, two new polymorphic microsatellite markers, rs59736472 and rs57250751, located at introns 10 and 20, respectively, were identified. A case-control design including 308 patients affected with AITD (146 GD, 90 HT and 72 PIM) and 212 unmatched healthy controls were performed for each marker (rs59736472, D7S2459 and rs57250751). Furthermore, we used PHASE 2.0 version to reconstruct haplotypes, Kolmogorov-Smirnov (KS) and the Clump analysis program for multivariate analysis. The fluorescent genotyping revealed three alleles (106,112 and 115 bp) for rs57250751 and 12 alleles for both D7S2459 and rs59736472 ranging from 134 to 156 bp and from 144 to 168 bp, respectively. The case-control analysis confirmed the positive association of D7S2459 with Hashimoto thyroiditis (HT) disease previously reported. Moreover, a significant association was found only with rs59736472 and HT disease. Haplotype-specific analysis showed that the 140-148-115 haplotype may increase the risk of HT (χ2=9.8, 1 df, P=0.0017, OR=2.07, IC [1.27-3.36]). Consequently, considering the number of repetitions of both D7S2459 and rs59736472, we found 15 alleles ranging from 45 to 59 repetitions. The case-control analysis showed a significant association of the 55 repetition with HT disease (χ2=6.32, 1 df, p c=0.012, OR=1.74, IC [1.1-2.76]). In conclusion, we suggest the association of longer alleles of intron 10 of SLC26A4 gene with HT disease.
Collapse
|
8
|
Bovolenta M, Erriquez D, Valli E, Brioschi S, Scotton C, Neri M, Falzarano MS, Gherardi S, Fabris M, Rimessi P, Gualandi F, Perini G, Ferlini A. The DMD locus harbours multiple long non-coding RNAs which orchestrate and control transcription of muscle dystrophin mRNA isoforms. PLoS One 2012; 7:e45328. [PMID: 23028937 PMCID: PMC3448672 DOI: 10.1371/journal.pone.0045328] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 08/20/2012] [Indexed: 11/18/2022] Open
Abstract
The 2.2 Mb long dystrophin (DMD) gene, the largest gene in the human genome, corresponds to roughly 0.1% of the entire human DNA sequence. Mutations in this gene cause Duchenne muscular dystrophy and other milder X-linked, recessive dystrophinopathies. Using a custom-made tiling array, specifically designed for the DMD locus, we identified a variety of novel long non-coding RNAs (lncRNAs), both sense and antisense oriented, whose expression profiles mirror that of DMD gene. Importantly, these transcripts are intronic in origin and specifically localized to the nucleus and are transcribed contextually with dystrophin isoforms or primed by MyoD-induced myogenic differentiation. Furthermore, their forced ectopic expression in both human muscle and neuronal cells causes a specific and negative regulation of endogenous dystrophin full length isoforms and significantly down-regulate the activity of a luciferase reporter construct carrying the minimal promoter regions of the muscle dystrophin isoform. Consistent with this apparently repressive role, we found that, in muscle samples of dystrophinopathic female carriers, lncRNAs expression levels inversely correlate with those of muscle full length DMD isoforms. Overall these findings unveil an unprecedented complexity of the transcriptional pattern of the DMD locus and reveal that DMD lncRNAs may contribute to the orchestration and homeostasis of the muscle dystrophin expression pattern by either selective targeting and down-modulating the dystrophin promoter transcriptional activity.
Collapse
Affiliation(s)
- Matteo Bovolenta
- Department of Medical Science, Section of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Daniela Erriquez
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Emanuele Valli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Simona Brioschi
- Department of Medical Science, Section of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Chiara Scotton
- Department of Medical Science, Section of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Marcella Neri
- Department of Medical Science, Section of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Maria Sofia Falzarano
- Department of Medical Science, Section of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Samuele Gherardi
- Department of Pharmacy and Biotechnology, Health Sciences and Technologies – Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy
| | - Marina Fabris
- Department of Medical Science, Section of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Paola Rimessi
- Department of Medical Science, Section of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Francesca Gualandi
- Department of Medical Science, Section of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, Health Sciences and Technologies – Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy
| | - Alessandra Ferlini
- Department of Medical Science, Section of Medical Genetics, University of Ferrara, Ferrara, Italy
| |
Collapse
|
9
|
Abstract
Most human genes transcribed by RNA Pol II (polymerase II) contain short exons separated by long tracts of non-coding intronic sequences. In addition to their role in generating proteomic diversity through the process of alternative splicing, intronic sequences host many ncRNAs (non-coding RNAs), involved in various gene regulation processes. miRNAs (microRNAs) are short ncRNAs that mediate either mRNA transcript translational repression and/or degradation. Between 50 and 80% of miRNAs are encoded within introns of host mRNA genes. This observation suggests that there is co-regulation between the miRNA biogenesis and pre-mRNA splicing processes. The present review summarizes current advances in this field and discusses possible roles for intronic co-transcriptional cleavage events in the regulation of human gene expression.
Collapse
|
10
|
Downing C, Marks MJ, Larson C, Johnson TE. The metabotropic glutamate receptor subtype 5 mediates sensitivity to the sedative properties of ethanol. Pharmacogenet Genomics 2010; 20:553-64. [PMID: 20657349 PMCID: PMC2933419 DOI: 10.1097/fpc.0b013e32833d8c20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Inbred long-sleep and short-sleep mice (ILS and ISS) were selectively bred for differential sensitivity to the sedative effects of ethanol. Lines of mice derived from these progenitors have been used to identify several quantitative trait loci (QTLs) mediating loss of the righting reflex due to ethanol (LORE). This study investigated the metabotropic glutamate receptor subtype 5 (mGluR5) as a candidate gene underlying Lore7, a QTL mediating differential LORE sensitivity. METHODS We used knockout mice, a quantitative complementation test, pharmacological antagonism of mGluR5, real-time quantitative PCR, radioligand binding, DNA sequencing, and bioinformatics to examine the role of mGluR5 in ethanol-induced sedation. RESULTS mGluR5 knockout mice had a significantly longer LORE duration than wildtype controls. Administration of the mGluR5 antagonist 2-methyl-6-(phenylethyl)-pyridine (MPEP) had differential effects on LORE in ILS and ISS mice. A quantitative complementation test also supported mGluR5 mediating LORE. Two intronic single-nucleotide polymorphisms in mGluR5 were highly correlated with LORE in recombinant inbred mice derived from a cross between ILS and ISS (LXS RIs). Differences in mGluR5 mRNA level and receptor density were observed between ILS and ISS in distinct brain regions. Finally, data from WebQTL showed that mGluR5 expression was highly correlated with several LORE phenotypes in the LXS RIs. CONCLUSION Altogether, this data provides convincing evidence that mGluR5 mediates differential sensitivity to the sedative effects of ethanol. Studies from the human literature have also identified mGluR5 as a potential candidate gene for ethanol sensitivity.
Collapse
Affiliation(s)
- Chris Downing
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA.
| | | | | | | |
Collapse
|
11
|
Arancio W. RNA memory model: a RNA-mediated transcriptional activation mechanism involved in cell identity. Rejuvenation Res 2010; 13:365-72. [PMID: 20370500 DOI: 10.1089/rej.2009.0957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
I propose a new model, called the "RNA memory" model, for the possible role of RNAs in the maintenance and establishment of cell identity. This is cytoplasmic memory obtained by the transmission of mother noncoding (nc) RNAs to daughter cells. These RNAs are able to activate transcription via sequence homology in daughter cells. Regulation of RNA memory is strictly linked to the regulation of ncRNAs with repressive features, such as the RNAs involved in RNA interference (RNAi). Misregulation of this system could lead to misidentity, and thus it could be involved in cancer transformation, progression of viral or genetic diseases, and progression of senescence.
Collapse
|
12
|
Abstract
MOTIVATION MicroRNAs (miRNAs) are involved in an abundant class of post-transcriptional regulation activated through binding to the 3(') -untranslated region (UTR) of mRNAs. The current wealth of mammalian miRNA genes results mostly from genomic duplication events. Many of these events are located within introns of transcriptional units. In order to better understand the genomic expansion of miRNA genes, we investigated the distribution of intronic miRNAs. RESULTS We observe that miRNA genes are hosted within introns of short genes much larger than expected by chance. IMPLEMENTATION We explore several explanations for this phenomenon and conclude that miRNA integration into short genes might be evolutionary favorable due to interaction with the pre-mRNA splicing mechanism.
Collapse
Affiliation(s)
- David Golan
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
13
|
Wang PPS, Ruvinsky I. Computational prediction of Caenorhabditis box H/ACA snoRNAs using genomic properties of their host genes. RNA (NEW YORK, N.Y.) 2010; 16:290-298. [PMID: 20038629 PMCID: PMC2811658 DOI: 10.1261/rna.1876210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 10/27/2009] [Indexed: 05/28/2023]
Abstract
Identification of small nucleolar RNAs (snoRNAs) in genomic sequences has been challenging due to the relative paucity of sequence features. Many current prediction algorithms rely on detection of snoRNA motifs complementary to target sites in snRNAs and rRNAs. However, recent discovery of snoRNAs without apparent targets requires development of alternative prediction methods. We present an approach that combines rule-based filters and a Bayesian Classifier to identify a class of snoRNAs (H/ACA) without requiring target sequence information. It takes advantage of unique attributes of their genomic organization and improved species-specific motif characterization to predict snoRNAs that may otherwise be difficult to discover. Searches in the genomes of Caenorhabditis elegans and the closely related Caenorhabditis briggsae suggest that our method performs well compared to recent benchmark algorithms. Our results illustrate the benefits of training gene discovery engines on features restricted to particular phylogenetic groups and the utility of incorporating diverse data types in gene prediction.
Collapse
Affiliation(s)
- Paul Po-Shen Wang
- Department of Ecology and Evolution , University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
14
|
Abstract
microRNAs (miRNAs) are small ( approximately 22 nt) noncoding RNAs that have been shown to regulate gene expression post-transcriptionally. They function by pairing with the 3' UTR of target mRNAs and repressing translation or by targeting the mRNA for degradation. miRNAs are involved in diverse aspects of development, maintenance, and disease, and are largely evolutionarily conserved in metazoans. Searching the genomes of organisms from viruses to worms to humans has revealed potentially thousands of miRNA genes. Understanding the patterns of genomic organization between species cannot only help to refine tools to identify new miRNAs, but also provide insight into miRNA biogenesis and function.
Collapse
Affiliation(s)
- Abigail F Olena
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | | |
Collapse
|
15
|
Wang D, Lu M, Miao J, Li T, Wang E, Cui Q. Cepred: predicting the co-expression patterns of the human intronic microRNAs with their host genes. PLoS One 2009; 4:e4421. [PMID: 19204784 PMCID: PMC2635472 DOI: 10.1371/journal.pone.0004421] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 01/08/2009] [Indexed: 11/30/2022] Open
Abstract
Identifying the tissues in which a microRNA is expressed could enhance the understanding of the functions, the biological processes, and the diseases associated with that microRNA. However, the mechanisms of microRNA biogenesis and expression remain largely unclear and the identification of the tissues in which a microRNA is expressed is limited. Here, we present a machine learning based approach to predict whether an intronic microRNA show high co-expression with its host gene, by doing so, we could infer the tissues in which a microRNA is high expressed through the expression profile of its host gene. Our approach is able to achieve an accuracy of 79% in the leave-one-out cross validation and 95% on an independent testing dataset. We further estimated our method through comparing the predicted tissue specific microRNAs and the tissue specific microRNAs identified by biological experiments. This study presented a valuable tool to predict the co-expression patterns between human intronic microRNAs and their host genes, which would also help to understand the microRNA expression and regulation mechanisms. Finally, this framework can be easily extended to other species.
Collapse
Affiliation(s)
- Dong Wang
- Department of Medical Informatics, Peking University Health Science Center, Beijing, China
- MOE Key Laboratory of Molecular Cardiology, Peking University, Beijing, China
| | - Ming Lu
- Department of Medical Informatics, Peking University Health Science Center, Beijing, China
- MOE Key Laboratory of Molecular Cardiology, Peking University, Beijing, China
| | - Jing Miao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Tingting Li
- MOE key laboratory of Bioinformatics, Tsinghua University, Beijing, China
| | - Edwin Wang
- Computational Chemistry and Biology Group, Biotechnology Research Institute, National Research Council Canada, Montreal, Québec, Canada
| | - Qinghua Cui
- Department of Medical Informatics, Peking University Health Science Center, Beijing, China
- MOE Key Laboratory of Molecular Cardiology, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
16
|
Louro R, Smirnova AS, Verjovski-Almeida S. Long intronic noncoding RNA transcription: expression noise or expression choice? Genomics 2008; 93:291-8. [PMID: 19071207 DOI: 10.1016/j.ygeno.2008.11.009] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Accepted: 11/16/2008] [Indexed: 02/07/2023]
Abstract
Recently, it was discovered that non-protein-coding RNAs (ncRNAs) represent the majority of the human transcripts. Regulatory role of many classes of ncRNAs is broadly recognized; however, long intronic ncRNAs have received little attention. In the past few years, evidence that intronic regions are key sources of regulatory ncRNAs has first appeared. Here we present an updated vision of the intronic ncRNA world, giving special attention to the long intronic ncRNAs. We summarize aspects of their expression pattern, evolutionary constraints, biogenesis, and responsiveness to physiological stimuli, and postulate their mechanisms of action. Deciphering nature's choice of different types of messages conveyed by ncRNAs will shed light on the RNA-based layer of regulatory processes in eukaryotic cells.
Collapse
Affiliation(s)
- Rodrigo Louro
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, 05508-900 São Paulo, SP, Brazil
| | | | | |
Collapse
|
17
|
Morlando M, Ballarino M, Gromak N, Pagano F, Bozzoni I, Proudfoot NJ. Primary microRNA transcripts are processed co-transcriptionally. Nat Struct Mol Biol 2008; 15:902-9. [PMID: 19172742 PMCID: PMC6952270 DOI: 10.1038/nsmb.1475] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
microRNAs (miRNAs) are generated from long primary (pri-) RNA polymerase II (Pol II)-derived transcripts by two RNase III processing reactions: Drosha cleavage of nuclear pri-miRNAs and Dicer cleavage of cytoplasmic pre-miRNAs. Here we show that Drosha cleavage occurs during transcription acting on both independently transcribed and intron-encoded miRNAs. We also show that both 5'-3' and 3'-5' exonucleases associate with the sites where co-transcriptional Drosha cleavage occurs, promoting intron degradation before splicing. We finally demonstrate that miRNAs can also derive from 3' flanking transcripts of Pol II genes. Our results demonstrate that multiple miRNA-containing transcripts are co-transcriptionally cleaved during their synthesis and suggest that exonucleolytic degradation from Drosha cleavage sites in pre-mRNAs may influence the splicing and maturation of numerous mRNAs.
Collapse
Affiliation(s)
- Mariangela Morlando
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | | | | | |
Collapse
|
18
|
Epstein-Barr virus BART microRNAs are produced from a large intron prior to splicing. J Virol 2008; 82:9094-106. [PMID: 18614630 DOI: 10.1128/jvi.00785-08] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Latent Epstein-Barr virus (EBV) infection is associated with several lymphoproliferative disorders, including posttransplant lymphoma, Hodgkin's disease, and Burkitt's lymphoma, as well as nasopharyngeal carcinoma (NPC). Twenty-nine microRNAs (miRNAs) have been identified that are transcribed during latent infection from three clusters in the EBV genome. Two of the three clusters of miRNAs are made from the BamHI A rightward transcripts (BARTs), a set of alternatively spliced transcripts that are highly abundant in NPC but have not been shown to produce a detectable protein. This study indicates that while the BART miRNAs are located in the first four introns of the transcripts, processing of the pre-miRNAs from the primary transcript occurs prior to completion of the splicing reaction. Additionally, production of the BART miRNAs correlates with accumulation of a spliced mRNA in which exon 1 is joined directly to exon 3, suggesting that this form of the transcript may favor production of miRNAs. Sequence variations and processing of pre-miRNAs to the mature form also may account for various differences in miRNA abundance. Importantly, residual intronic pieces that result from processing of the pre-miRNAs were detected in the nucleus. The predicted structures of these pieces suggest there is a bias or temporal pattern to the production of the individual pre-miRNAs. These findings indicate that multiple factors contribute to the production of the BART miRNAs and to the apparent differences in abundance between the individual miRNAs of the cluster.
Collapse
|