1
|
Martinez-Canton M, Galvan-Alvarez V, Martin-Rincon M, Calbet JAL, Gallego-Selles A. Unlocking peak performance: The role of Nrf2 in enhancing exercise outcomes and training adaptation in humans. Free Radic Biol Med 2024; 224:168-181. [PMID: 39151836 DOI: 10.1016/j.freeradbiomed.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/30/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Since the discovery of the nuclear factor erythroid-derived 2-like 2 (Nrf2) transcription factor thirty years ago, it has been shown that it regulates more than 250 genes involved in a multitude of biological processes, including redox balance, mitochondrial biogenesis, metabolism, detoxification, cytoprotection, inflammation, immunity, autophagy, cell differentiation, and xenobiotic metabolism. In skeletal muscle, Nrf2 signalling is primarily activated in response to perturbation of redox balance by reactive oxygen species or electrophiles. Initial investigations into human skeletal muscle Nrf2 responses to exercise, dating back roughly a decade, have consistently indicated that exercise-induced ROS production stimulates Nrf2 signalling. Notably, recent studies employing Nrf2 knockout mice have revealed impaired skeletal muscle contractile function characterised by reduced force output and increased fatigue susceptibility compared to wild-type counterparts. These deficiencies partially stem from diminished basal mitochondrial respiratory capacity and an impaired capacity to upregulate specific mitochondrial proteins in response to training, findings corroborated by inducible muscle-specific Nrf2 knockout models. In humans, baseline Nrf2 expression in skeletal muscle correlates with maximal oxygen uptake and high-intensity exercise performance. This manuscript delves into the mechanisms underpinning Nrf2 signalling in response to acute exercise in human skeletal muscle, highlighting the involvement of ROS, antioxidants and Keap1/Nrf2 signalling in exercise performance. Furthermore, it explores Nrf2's role in mediating adaptations to chronic exercise and its impact on overall exercise performance. Additionally, the influence of diet and certain supplements on basal Nrf2 expression and its role in modulating acute and chronic exercise responses are briefly addressed.
Collapse
Affiliation(s)
- Miriam Martinez-Canton
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain; Department of Physical Performance, The Norwegian School of Sport Sciences, Postboks, 4014 Ulleval Stadion, 0806, Oslo, Norway; School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada.
| | - Angel Gallego-Selles
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
2
|
Ban Q, Chi W, Wang X, Wang S, Hai D, Zhao G, Zhao Q, Granato D, Huang X. (-)-Epigallocatechin-3-Gallate Attenuates the Adverse Reactions Triggered by Selenium Nanoparticles without Compromising Their Suppressing Effect on Peritoneal Carcinomatosis in Mice Bearing Hepatocarcinoma 22 Cells. Molecules 2023; 28:molecules28093904. [PMID: 37175313 PMCID: PMC10180376 DOI: 10.3390/molecules28093904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Increasing evidence shows that selenium and polyphenols are two types of the most reported compounds in tumor chemoprevention due to their remarkable antitumor activity and high safety profile. The cross-talk between polyphenols and selenium is a hot research topic, and the combination of polyphenols and selenium is a valuable strategy for fighting cancer. The current work investigated the combination anti-peritoneal carcinomatosis (PC) effect of selenium nanoparticles (SeNPs) and green tea (Camellia sinensis) polyphenol (-)-epigallocatechin-3-gallate (EGCG) in mice bearing murine hepatocarcinoma 22 (H22) cells. Results showed that SeNPs alone significantly inhibited cancer cell proliferation and extended the survival time of mice bearing H22 cells. Still, the potential therapeutic efficacy is accompanied by an approximately eighty percent diarrhea rate. When EGCG was combined with SeNPs, EGCG did not affect the tumor proliferation inhibition effect but eliminated diarrhea triggered by SeNPs. In addition, both the intracellular selectively accumulated EGCG without killing effect on cancer cells and the enhanced antioxidant enzyme levels in ascites after EGCG was delivered alone by intraperitoneal injection indicated that H22 cells were insensitive to EGCG. Moreover, EGCG could prevent SeNP-caused systemic oxidative damage by enhancing serum superoxide dismutase, glutathione, and glutathione peroxidase levels in healthy mice. Overall, we found that H22 cells are insensitive to EGCG, but combining EGCG with SeNPs could protect against SeNP-triggered diarrhea without compromising the suppressing efficacy of SeNPs on PC in mice bearing H22 cells and attenuate SeNP-caused systemic toxicity in healthy mice. These results suggest that EGCG could be employed as a promising candidate for preventing the adverse reactions of chemotherapy including chemotherapy-induced diarrhea and systemic toxicity in cancer individuals.
Collapse
Affiliation(s)
- Qiuyan Ban
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenjing Chi
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoxiao Wang
- College of Food Science & Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Shiqiong Wang
- College of Food Science & Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Dan Hai
- College of Food Science & Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Guangshan Zhao
- College of Food Science & Technology, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qiuyan Zhao
- College of Food Science & Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Daniel Granato
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland
| | - Xianqing Huang
- College of Food Science & Technology, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
3
|
Dong R, Pan J, Zhao G, Zhao Q, Wang S, Li N, Song L, Huang X, Miao S, Ying J, Wu F, Wang D, Cheng K, Granato D, Ban Q. Antioxidant, antihyperglycemic, and antihyperlipidemic properties of Chimonanthus salicifolius S. Y. Hu leaves in experimental animals: modulation of thioredoxin and glutathione systems, renal water reabsorption, and gut microbiota. Front Nutr 2023; 10:1168049. [PMID: 37187875 PMCID: PMC10176510 DOI: 10.3389/fnut.2023.1168049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction Excessive calorie intake and physical inactivity have dramatically increased nutrient overload-associated disease, becoming a global public health issue. Chimonanthus salicifolius S. Y. Hu (CHI) is a homology plant of food and medicine in China and shows several health benefits. Methods This work investigated the antioxidant activity, the alleviating effects, and the mechanism of action on diabetes and hyperlipidemia of CHI leaves. Results and discussion Results showed that CHI leaves infusion displayed in vitro antioxidant activity measured by ABTS and ferric reducing antioxidant power methods. In wild-type Kunming mice, CHI leaves infusion consumption activated the hepatic antioxidant enzymes, including glutathione reductase, glutathione S-transferase, glutathione peroxidase and thioredoxin reductase as well as thioredoxin reductase 1. In alloxan-induced type 1 diabetic mice, CHI leaves infusion ameliorated diabetic symptoms, including polyuria, polydipsia, polyphagia and hyperglycemia, in a dose-dependent and time-course manners. The mechanism involved CHI leaves up-regulating renal water reabsorption associated protein - urine transporter A1-and promoting the trafficking of urine transporter A1 and aquaporin 2 to the apical plasma membrane. Despite this, in high-fat diet-induced hyperlipidemic golden hamsters, CHI leaves powder did not significantly effect on hyperlipidemia and body weight gain. This might be attributed to CHI leaves powder increasing the calorie intake. Interestingly, we found that CHI leaves extract containing a lower dose of total flavonoid than CHI leaves powder pronouncedly reduced the levels of total cholesterol, triglyceride, and low-density lipoprotein cholesterol in serum in golden hamsters fed a high-fat diet. Furthermore, CHI leaves extract elevated the diversity of gut microbiota and the abundance of Bifidobacterium and Ruminococcaceae_UCG-014. It also decreased the abundance of Lactobacillus at the genus level in golden hamsters fed a high-fat diet. Overall, CHI leaves benefit oxidative stress prevention and metabolic syndrome amelioration in vivo.
Collapse
Affiliation(s)
- Ruixia Dong
- College of Horticulture, Jinling Institute of Technology, Nanjing, China
- College of Forestry Science and Technology, Lishui Vocational and Technical College, Lishui, China
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Junjie Pan
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui, China
| | - Guangshan Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
- Innovation Team of Food Nutrition and Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Guangshan Zhao,
| | - Qiuyan Zhao
- Innovation Team of Food Nutrition and Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Shiqiong Wang
- Innovation Team of Food Nutrition and Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ning Li
- Innovation Team of Food Nutrition and Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Lianjun Song
- Innovation Team of Food Nutrition and Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xianqing Huang
- Innovation Team of Food Nutrition and Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Shuxing Miao
- College of Horticulture, Jinling Institute of Technology, Nanjing, China
| | - Junhui Ying
- College of Forestry Science and Technology, Lishui Vocational and Technical College, Lishui, China
| | - Fangying Wu
- College of Forestry Science and Technology, Lishui Vocational and Technical College, Lishui, China
| | - Dongxu Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Dongxu Wang,
| | - Kejun Cheng
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui, China
- Kejun Cheng,
| | - Daniel Granato
- Bioactivity and Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
- Daniel Granato,
| | - Qiuyan Ban
- Department of Tea Science, College of Horticulture, Henan Agricultural University, Zhengzhou, China
- Qiuyan Ban,
| |
Collapse
|
4
|
Talebi M, Talebi M, Farkhondeh T, Mishra G, İlgün S, Samarghandian S. New insights into the role of the Nrf2 signaling pathway in green tea catechin applications. Phytother Res 2021; 35:3078-3112. [PMID: 33569875 DOI: 10.1002/ptr.7033] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/13/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022]
Abstract
Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a transcriptional signaling pathway that plays a crucial role in numerous clinical complications. Pivotal roles of Nrf2 have been proved in cancer, autoimmune diseases, neurodegeneration, cardiovascular diseases, diabetes mellitus, renal injuries, respiratory conditions, gastrointestinal disturbances, and general disorders related to oxidative stress, inflammation, apoptosis, gelatinolysis, autophagy, and fibrogenesis processes. Green tea catechins as a rich source of phenolic compounds can deal with various clinical problems and manifestations. In this review, we attempted to focus on intervention between green tea catechins and Nrf2. Green tea catechins especially epigallocatechin gallate (EGCG) elucidated the protective role of Nrf2 and its downstream molecules in various disorders through Keap-1, HO-1, NQO-1, GPx, GCLc, GCLm, NF-kB cross-link, kinases, and apoptotic proteins. Subsequently, we compiled an updated expansions of the Nrf2 role as a gate to manage and protect different disorders and feasible indications of green tea catechins through this signaling pathway. The present review highlighted recent evidence-based data in silico, in vitro, and in vivo studies on an outline for future clinical trials.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA.,Department of Research & Development, Viatris Pharmaceuticals Inc., San Antonio, Texas, USA
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran.,Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Gaurav Mishra
- Institute of Medical Sciences, Faculty of Ayurveda, Department of Medicinal Chemistry, Banaras Hindu University, Varanasi, India
| | - Selen İlgün
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
5
|
Villalpando DM, Verdasco-Martín CM, Plaza I, Gómez-Rivas J, R de Bethencourt F, Villarroel M, García JL, Otero C, Ferrer M. Beneficial Effects of Spirulina Aqueous Extract on Vasodilator Function of Arteries from Hypertensive Rats. Int J Vasc Med 2020; 2020:6657077. [PMID: 33457015 PMCID: PMC7787865 DOI: 10.1155/2020/6657077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/07/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022] Open
Abstract
Hypertension is a multifactorial disorder considered one of the major causes of premature death worldwide. This pathology is associated with vascular functional/structural alterations in which nitric oxide (NO) and oxygen reactive species participate. On the other hand, the use of microalgae extracts in the treatment of cardiovascular diseases is increasing. Based on the antioxidant and antihypertensive properties of Spirulina, this study aims to investigate the effect of an aqueous extract of Spirulina on the vasodilator function of the aorta from spontaneously hypertensive rats (SHR), analyzing the functional role of NO. For this, aortic segments from male SHR were divided into two groups, one control and the other exposed to an Spirulina aqueous extract (0.1% w/v, for 3 hours), to analyze (i) the production of NO, superoxide anion, and hydrogen peroxide; (ii) the vasodilator response induced by acetylcholine (ACh), by the NO donor and sodium nitroprusside (SNP), and by the KATP channel opener and pinacidil; and (iii) the expression of the p-Akt, p-eNOS, and HO-1 proteins. The results showed that the aqueous Spirulina extract (i) increased the production of NO, did not significantly modify that of superoxide, while decreased that of hydrogen peroxide; (ii) increased the vasodilatory responses induced by ACh, NPS, and pinacidil; and (iii) increased the expression of p-Akt and HO-1. These results suggest that incubation with the aqueous Spirulina extract improves the vascular function of arteries from SHR by increasing the release/bioavailability/function of NO. Increased KATP channel activation and expression of pAkt and HO-1 appear to be participating in these actions.
Collapse
Affiliation(s)
- Diva M. Villalpando
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos M. Verdasco-Martín
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ignacio Plaza
- Departamento de Producción Agraria, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - Juan Gómez-Rivas
- Servicio de Urología, Hospital Universitario La Paz, Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Fermín R de Bethencourt
- Servicio de Urología, Hospital Universitario La Paz, Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Morris Villarroel
- Departamento de Producción Agraria, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - José L. García
- Centro de Investigaciones Biológicas Margarita Salas, Biotecnología Medioambiental, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Cristina Otero
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mercedes Ferrer
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| |
Collapse
|
6
|
Li Q, Wang G, Xiong SH, Cao Y, Liu B, Sun J, Li L, Mohammadtursun N, Yu H, Dong J, Wu J. Bu-Shen-Fang-Chuan formula attenuates cigarette smoke-induced inflammation by modulating the PI3K/Akt-Nrf2 and NF-κB signalling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113095. [PMID: 32531410 DOI: 10.1016/j.jep.2020.113095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/19/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic obstructive pulmonary disease (COPD) is a respiratory inflammatory disease. Unlike asthma, COPD is insensitive to glucocorticoid treatment; thus, it is of great importance to find alternative medications, including Chinese medicine, to suppress inflammation. Bu-Shen-Fang-Chuan formula (BSFCF) is commonly used for the treatment of COPD in China. However, the mechanisms of BSFCF in COPD treatment are still unclear. AIM OF THE STUDY To verify the anti-inflammatory efficacy of BSFCF in COPD and to explore the possible mechanisms underlying its anti-inflammatory efficacy based on the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt)-Nuclear factor erythroid 2-related factor 2 (Nrf2) and Nuclear factor (NF)-κB signalling pathways. MATERIALS AND METHODS A rat model of COPD was established by chronic exposure to cigarette smoke (CS) for 6 months. Bronchoalveolar lavage fluid (BALF) and blood were obtained to detect inflammatory cytokines. Lung samples were harvested, and part of each sample was fixed for subsequent H&E staining and immunohistochemical (IHC) analysis. The remaining lung tissues were used for RNA sequencing analysis and western blotting. RESULTS BSFCF significantly reduced inflammatory infiltration in the lungs of CS-exposed rats and decreased the concentrations of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in both the BALF and serum. Additionally, BSFCF evidently attenuated NF-κB activation and downregulation of glucocorticoid receptor (GR) caused by CS. Furthermore, BSFCF increased the activation of PI3K/Akt-Nrf2 signalling in response to CS. CONCLUSIONS BSFCF attenuated CS-induced inflammation in COPD, which was partially achieved through the PI3K/Akt-Nrf2 and NF-κB signalling pathways.
Collapse
Affiliation(s)
- Qiuping Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Guifang Wang
- Department of Respiratory Diseases, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Shi Hang Xiong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yuxue Cao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China; Institutes of Integrative Medicine, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Baojun Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China; Institutes of Integrative Medicine, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China; Institutes of Integrative Medicine, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Lulu Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China; Institutes of Integrative Medicine, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Nabijan Mohammadtursun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China; Institutes of Integrative Medicine, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China; Institutes of Integrative Medicine, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China.
| | - Jinfeng Wu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China; Department of Dermatology, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China.
| |
Collapse
|
7
|
Medina MV, Sapochnik D, Garcia Solá M, Coso O. Regulation of the Expression of Heme Oxygenase-1: Signal Transduction, Gene Promoter Activation, and Beyond. Antioxid Redox Signal 2020; 32:1033-1044. [PMID: 31861960 PMCID: PMC7153632 DOI: 10.1089/ars.2019.7991] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023]
Abstract
Significance: Heme oxygenase-1 (HO-1) is a ubiquitous 32-kDa protein expressed in many tissues and highly inducible. They catalyze the degradation of the heme group and the release of free iron, carbon monoxide, and biliverdin; the latter converted to bilirubin by biliverdin reductase. Its role in the regulation of cellular homeostasis is widely documented. Studying regulation of HO-1 expression is important not only to understand the life of healthy cells but also the unbalances in cell metabolism that lead to disease. Recent Advances: The regulation of its enzymatic activity depends heavily upon changes in expression studied mainly at the transcriptional level. Current knowledge regarding HO-1 gene expression focuses primarily on transcription factors such as Nrf2 (nuclear factor erythroid 2-related factor 2), AP-1 (activator protein-1), and hypoxia-inducible factor, which collect signal transduction pathway information at the HO-1 gene promoter. Understanding of gene expression regulation is not limited to transcription factor activity but also involves an extended range of post- or cotranscriptional regulated events. Critical Issues: In addition to the regulation of gene promoter activity, alternative splicing, alternative polyadenylation, and regulation of messenger RNA stability play critical roles in changes in HO-1 gene expression levels, involving specific factors, proteins, and microRNAs. All potential targets for diagnosis or treatment of diseases are related to HO-1 dysregulation. Future Directions: Unbalances in the tightly regulated gene expression mechanisms lead to cell transformation and cancer development. Knowledge of these events and signal transduction cascades triggered by oncogenes in which HO-1 plays a critical role is of upmost importance for research in this field.
Collapse
Affiliation(s)
- María Victoria Medina
- Departamento de Fisiología, Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daiana Sapochnik
- Departamento de Fisiología, Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Garcia Solá
- Departamento de Fisiología, Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Omar Coso
- Departamento de Fisiología, Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
8
|
Umme Hani, Kandagalla S, Sharath BS, Jyothsna K, Manjunatha H. Network Pharmacology Approach Uncovering Pathways Involved in Targeting Hsp90 Through Curcumin and Epigallocatechin to Control Inflammation. Curr Drug Discov Technol 2019; 18:127-138. [PMID: 31820701 DOI: 10.2174/1570163816666191210145652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 11/22/2022]
Abstract
AIMS To fetch pathways involved in targetting Hsp90 through Curcumin and Epigallocatechin through Network pharmacological approach. BACKGROUND Hsp90 is a molecular chaperone involved in stabilizing inflammatory protein which may lead to chronic diseases. The herbal compounds Curcumin and Epigallocatechin processing antiinflammatory properties are known to follow a common pathway and control the expression of Hsp90. OBJECTIVE To collect the gene targets of Hsp90, Curcumin and Epigallocatechin in order to understand protein-protein interactions of gene targets by constructing the interactome to identify the hub proteins. Hub proteins docking was performed with curcumin and epigallocatechin. Finally, hub proteins involvement with various human diseases were identified. METHODS The gene targets of Hsp90, Curcumin and Epigallocatechin were obtained from there respective databases. Protein-protein interactions of Pkcδ-Nrf2 and Tlr4 pathway gene targets were collected from String database. Protein interaction network was constructed and merged to get intercession network in cytoscape and Cluego was used to predict the disease related target genes. Docking of ligands to target proteins was carried out using Autodock vina tool. RESULT The main key regulators of Curcumin and Epigallocatechin were identified particularly from Pkcδ-Nrf2 and Tlr4 pathway. CONCLUSION The combined action of Curcumin and Epigallocatechin can reduce the expression of Hsp90 eventually controlling the inflammation.
Collapse
Affiliation(s)
- Umme Hani
- Department of Biotechnology, Janana Sahyadri, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka 577451, India
| | - Shivananda Kandagalla
- Department of Biotechnology, Janana Sahyadri, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka 577451, India
| | - B S Sharath
- Department of Biotechnology, Janana Sahyadri, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka 577451, India
| | - K Jyothsna
- Department of Biotechnology, Janana Sahyadri, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka 577451, India
| | - Hanumanthappa Manjunatha
- Department of Biotechnology, Janana Sahyadri, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka 577451, India
| |
Collapse
|
9
|
Li AL, Shen T, Wang T, Zhou MX, Wang B, Song JT, Zhang PL, Wang XL, Ren DM, Lou HX, Wang XN. Novel diterpenoid-type activators of the Keap1/Nrf2/ARE signaling pathway and their regulation of redox homeostasis. Free Radic Biol Med 2019; 141:21-33. [PMID: 31167117 DOI: 10.1016/j.freeradbiomed.2019.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/15/2019] [Accepted: 06/01/2019] [Indexed: 12/25/2022]
Abstract
Oxidative stress is involved in the onset and progression of many human diseases. Activators of the Keap1/Nrf2/ARE pathway effectively inhibit the progression of oxidative stress-induced diseases. Herein, a small library of diterpenoids was established by means of phytochemical isolation, and chemical modification on naturally occurring molecules. The diterpenoids were subjected to a NAD(P)H: quinone reductase (QR) assay to evaluate its potential inhibition against oxidative stress. Sixteen diterpenoids were found to be novel potential activators of Nrf2-mediated defensive response. Of which, an isopimarane-type diterpenoid, sphaeropsidin A (SA), was identified as a potent activator of the Keap1/Nrf2/ARE pathway, and displayed approximately 5-folds potency than that of sulforaphane (SF). SA activated Nrf2 and its downstream cytoprotective genes through enhancing the stabilization of Nrf2 in a process involving PI3K, PKC, and PERK, as well as potentially interrupting Nrf2-Keap1 protein-protein interaction. In addition, SA conferred protection against sodium arsenite [As(III)]- and cigarette smoke extract (CSE)-induced redox imbalance and cytotoxicity in human lung epithelial cells, as wells as inhibited metronidazole (MTZ)-induced oxidative insult in Tg (krt4: NTR-hKikGR)cy17 transgenic zebrafish and lipopolysaccharide (LPS)-induced oxidative damage in wild-type AB zebrafish. These results imply that SA is a lead compound for therapeutic agent against oxidative stress-induced diseases, and diterpenoid is a good resource for discovering drug candidates and leads of antioxidant therapy.
Collapse
Affiliation(s)
- Ai-Ling Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, People's Republic of China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, People's Republic of China
| | - Tian Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, People's Republic of China
| | - Ming-Xing Zhou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, People's Republic of China
| | - Bin Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, People's Republic of China
| | - Jin-Tong Song
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, People's Republic of China
| | - Peng-Liang Zhang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, People's Republic of China
| | - Xiao-Ling Wang
- The Second Hospital of Shandong University, No. 247 Bei-Yuan Street, Jinan, 250033, People's Republic of China
| | - Dong-Mei Ren
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, People's Republic of China
| | - Hong-Xiang Lou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, People's Republic of China
| | - Xiao-Ning Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, People's Republic of China.
| |
Collapse
|
10
|
Nonaka S, Kawakami S, Maruki-Uchida H, Mori S, Morita M. Piceatannol markedly upregulates heme oxygenase-1 expression and alleviates oxidative stress in skeletal muscle cells. Biochem Biophys Rep 2019; 18:100643. [PMID: 31080897 PMCID: PMC6500920 DOI: 10.1016/j.bbrep.2019.100643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023] Open
Abstract
Piceatannol (PIC), a phytochemical, is abundant in passion fruit (Passiflora edulis) seeds. In this study, we investigated the effects of PIC on the expression levels of antioxidant enzymes in C2C12 skeletal muscle cells and compared its effects with those of PIC analogues and polyphenols. We also evaluated its effects on hydrogen peroxide–induced accumulation of reactive oxygen species in C2C12 myotubes. Treatment with PIC led to dose-dependent upregulation of heme oxygenase-1 (Ho-1) and superoxide dismutase 1 (Sod1) mRNA expression in C2C12 myotubes. PIC was the most potent inducer of Ho-1 among the PIC analogues and major polyphenols tested. In addition, treatment with PIC suppressed the hydrogen peroxide–induced increase in intracellular reactive oxygen species levels. Our results suggest that PIC protects skeletal muscles from oxidative stress by activating antioxidant enzymes such as HO-1 and SOD1 and can therefore help prevent oxidative stress–induced muscle dysfunction such as muscle fatigue and sarcopenia. PIC induced antioxidant enzymes in C2C12 skeletal muscle cell line. PIC was the most potent inducer of Ho-1 among other polyphenols tested. Induction potency of PIC for Sod1 was similar level with those of other polyphenols. PIC suppressed the hydrogen peroxide-induced increase in intracellular ROS levels.
Collapse
Affiliation(s)
- Shiori Nonaka
- Research and Development Institute, Health Science Research Center, Morinaga & Co., Ltd., 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama, Kanagawa, 230-8504, Japan
| | - Shinpei Kawakami
- Research and Development Institute, Health Science Research Center, Morinaga & Co., Ltd., 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama, Kanagawa, 230-8504, Japan
| | - Hiroko Maruki-Uchida
- Research and Development Institute, Health Science Research Center, Morinaga & Co., Ltd., 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama, Kanagawa, 230-8504, Japan
| | - Sadao Mori
- Research and Development Institute, Health Science Research Center, Morinaga & Co., Ltd., 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama, Kanagawa, 230-8504, Japan
| | - Minoru Morita
- Research and Development Institute, Health Science Research Center, Morinaga & Co., Ltd., 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama, Kanagawa, 230-8504, Japan
| |
Collapse
|
11
|
Zhou MX, Li GH, Wu XY, Sun L, Li YR, Yang WJ, Ren DM, Wang XN, Xiang L, Lou HX, Shen T. (2S)-5,6,7,3′,4′-pentamethoxyflavanone, a citrus polymethoxyflavone ameliorates arsenic- and cigarette smoke extract-induced cytotoxicity via activating Nrf2-mediated defense system. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
12
|
Feng JH, Hu XL, Lv XY, Wang BL, Lin J, Zhang XQ, Ye WC, Xiong F, Wang H. Synthesis and biological evaluation of clovamide analogues with catechol functionality as potent Parkinson's disease agents in vitro and in vivo. Bioorg Med Chem Lett 2018; 29:302-312. [PMID: 30470490 DOI: 10.1016/j.bmcl.2018.11.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/23/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Jia-Hao Feng
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiao-Long Hu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xian-Yu Lv
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Bao-Lin Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Jun Lin
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiao-Qi Zhang
- Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou 510632, People's Republic of China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, People's Republic of China.
| | - Hao Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
13
|
Nishibori N, Kishibuchi R, Her S, Lee MS, Morita K. Lotus Root Extract Stimulates BDNF Gene Expression Through Potential Mechanism Depending on HO-1 Activity in C6 Glioma Cells. J Diet Suppl 2017; 15:11-23. [DOI: 10.1080/19390211.2017.1310782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Naoyoshi Nishibori
- Department of Food Science and Nutrition, Shikoku Junior College, Ohjin, Tokushima, Japan
- Life Science Research Group, Shikoku University School of Health Sciences, Ohjin, Tokushima, Japan
| | - Reina Kishibuchi
- Life Science Research Group, Shikoku University School of Health Sciences, Ohjin, Tokushima, Japan
| | - Song Her
- Division of Bio-Imaging, Chuncheon Center, Korea Basic Science Institute, Chuncheon, Republic of Korea
| | - Mi-Sook Lee
- Division of Bio-Imaging, Chuncheon Center, Korea Basic Science Institute, Chuncheon, Republic of Korea
| | - Kyoji Morita
- Life Science Research Group, Shikoku University School of Health Sciences, Ohjin, Tokushima, Japan
| |
Collapse
|
14
|
Jeon W, Park SJ, Kim BC. n -Propyl gallate suppresses lipopolysaccharide-induced inducible nitric oxide synthase activation through protein kinase Cδ-mediated up-regulation of heme oxygenase-1 in RAW264.7 macrophages. Eur J Pharmacol 2017; 801:86-94. [DOI: 10.1016/j.ejphar.2017.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/19/2017] [Accepted: 03/08/2017] [Indexed: 02/07/2023]
|
15
|
Chen HH, Wang TC, Lee YC, Shen PT, Chang JY, Yeh TK, Huang CH, Chang HH, Cheng SY, Lin CY, Shih C, Chen CT, Liu WM, Chen CH, Kuo CC. Novel Nrf2/ARE Activator, trans-Coniferylaldehyde, Induces a HO-1-Mediated Defense Mechanism through a Dual p38α/MAPKAPK-2 and PK-N3 Signaling Pathway. Chem Res Toxicol 2015; 28:1681-92. [DOI: 10.1021/acs.chemrestox.5b00085] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Huang-Hui Chen
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
- Department
of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Tai-Chi Wang
- Department
of Pharmacy, Tajen University, Pingtung 90741, Taiwan
| | - Yen-Chen Lee
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Pei-Ting Shen
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Jang-Yang Chang
- National
Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan
- Institute
of Clinical Pharmacy and Pharmaceutical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| | - Teng-Kuang Yeh
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chih-Hsiang Huang
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Hsin-Huei Chang
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Shu-Ying Cheng
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chin-Yu Lin
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chuan Shih
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chiung-Tong Chen
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Wei-Min Liu
- Department
of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department
of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Hui Chen
- Department
of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department
of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Chuan Kuo
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
- Institute
of Clinical Pharmacy and Pharmaceutical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
- Graduate
Program for Aging, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
16
|
di Gesso JL, Kerr JS, Zhang Q, Raheem S, Yalamanchili SK, O'Hagan D, Kay CD, O'Connell MA. Flavonoid metabolites reduce tumor necrosis factor-α secretion to a greater extent than their precursor compounds in human THP-1 monocytes. Mol Nutr Food Res 2015; 59:1143-54. [PMID: 25801720 PMCID: PMC4973837 DOI: 10.1002/mnfr.201400799] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/16/2015] [Accepted: 03/12/2015] [Indexed: 11/12/2022]
Abstract
Scope Flavonoids are generally studied in vitro, in isolation, and as unmetabolized precursor structures. However, in the habitual diet, multiple flavonoids are consumed together and found present in the circulation as complex mixtures of metabolites. Using a unique study design, we investigated the potential for singular or additive anti‐inflammatory effects of flavonoid metabolites relative to their precursor structures. Methods and results Six flavonoids, 14 flavonoid metabolites, and 29 combinations of flavonoids and their metabolites (0.1–10 μM) were screened for their ability to reduce LPS‐induced tumor necrosis factor‐α (TNF‐α) secretion in THP‐1 monocytes. One micromolar peonidin‐3‐glucoside, cyanidin‐3‐glucoside, and the metabolites isovanillic acid (IVA), IVA‐glucuronide, vanillic acid‐glucuronide, protocatechuic acid‐3‐sulfate, and benzoic acid‐sulfate significantly reduced TNF‐α secretion when in isolation, while there was no effect on TNF‐α mRNA expression. Four combinations of metabolites that included 4‐hydroxybenzoic acid (4HBA) and/or protocatechuic acid also significantly reduced TNF‐α secretion to a greater extent than the precursors or metabolites alone. The effects on LPS‐induced IL‐1β and IL‐10 secretion and mRNA expression were also examined. 4HBA significantly reduced IL‐1β secretion but none of the flavonoids or metabolites significantly modified IL‐10 secretion. Conclusion This study provides novel evidence suggesting flavonoid bioactivity results from cumulative or additive effects of circulating metabolites.
Collapse
Affiliation(s)
- Jessica L di Gesso
- School of Pharmacy, University of East Anglia, Norwich, UK.,Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Jason S Kerr
- School of Pharmacy, University of East Anglia, Norwich, UK.,Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Qingzhi Zhang
- School of Chemistry, University of St. Andrews, St. Andrews, UK
| | - Saki Raheem
- School of Chemistry, University of St. Andrews, St. Andrews, UK
| | | | - David O'Hagan
- School of Chemistry, University of St. Andrews, St. Andrews, UK
| | - Colin D Kay
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| | | |
Collapse
|
17
|
Pine bark extract prevents low-density lipoprotein oxidation and regulates monocytic expression of antioxidant enzymes. Nutr Res 2015; 35:56-64. [DOI: 10.1016/j.nutres.2014.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/29/2014] [Accepted: 10/15/2014] [Indexed: 12/20/2022]
|
18
|
Epigallocatechin gallate attenuates proliferation and oxidative stress in human vascular smooth muscle cells induced by interleukin-1β via heme oxygenase-1. Mediators Inflamm 2014; 2014:523684. [PMID: 25386047 PMCID: PMC4214103 DOI: 10.1155/2014/523684] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/08/2014] [Indexed: 11/17/2022] Open
Abstract
Proliferation of vascular smooth muscle cells (VSMCs) triggered by inflammatory stimuli and oxidative stress contributes importantly to atherogenesis. The association of green tea consumption with cardiovascular protection has been well documented in epidemiological observations, however, the underlying mechanisms remain unclear. This study aimed to elucidate the effects of the most active green tea catechin derivative, (−)-epigallocatechin-3-gallate (EGCG), in human aortic smooth muscle cells (HASMCs), focusing particularly on the role of a potent anti-inflammatory and antioxidative enzyme heme oxygenase-1 (HO-1). We found that pretreatment of EGCG dose- and time-dependently induced HO-1 protein levels in HASMCs. EGCG inhibited interleukin- (IL-)1β-induced HASMC proliferation and oxidative stress in a dose-dependent manner. The HO-1 inducer CoPPIX decreased IL-1β-induced cell proliferation, whereas the HO-1 enzyme inhibitor ZnPPIX significantly reversed EGCG-caused growth inhibition in IL-1β-treated HASMCs. At the molecular level, EGCG treatment significantly activated nuclear factor erythroid-2-related factor (Nrf2) transcription activities. These results suggest that EGCG might serve as a complementary and alternative medicine in the treatment of these pathologies by inducing HO-1 expression and subsequently decreasing VSMC proliferation.
Collapse
|
19
|
Monosodium urate crystals trigger Nrf2- and heme oxygenase-1-dependent inflammation in THP-1 cells. Cell Mol Immunol 2014; 12:424-34. [PMID: 25109682 DOI: 10.1038/cmi.2014.65] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/23/2014] [Accepted: 06/23/2014] [Indexed: 01/21/2023] Open
Abstract
Gouty arthritis is an inflammatory disease that is caused by an accumulation of monosodium urate (MSU) crystals in the joints. MSU is capable of activating the nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome, leading to interleukin-1β (IL-1β) secretion. Reactive oxygen species (ROS) are major mediators of the NLRP3/IL-1β interaction. Although nuclear factor E2-related factor 2 (Nrf2) is recognized as a transcription factor that is involved in the response to oxidative stress, the effect of MSU on Nrf2 and on Nrf2-mediated antioxidant enzymes remains unclear. The treatment of THP-1 monocytes using phorbol 12-myristate 13-acetate (PMA) was shown to initiate inflammatory responses. Here, we showed that THP-1 cells, following treatment with MSU crystals, significantly increased IL-1β release, NLRP3 inflammasome activation and ROS production. MSU also promoted the nuclear translocation of Nrf2 and activated lysosomal destabilization. Moreover, the levels of heme oxygenase-1 (HO-1) in gene and protein expressions were upregulated by MSU. MSU-induced IL-1β secretion and NLRP3 inflammasome activation were inhibited by the knockdown of Nrf2 and via the HO-1 inhibitor zinc (II) protoporphyrin IX (ZnPP). In addition, HO-1 inhibition increased the level of superoxide anion production and the consumption of glutathione. These findings suggest that Nrf2 and HO-1 mediate redox homeostasis and interact with pro-inflammatory factors in MSU-challenged THP-1 cells, thereby providing new insight into how MSU-induced gouty inflammation is mediated by specific mechanisms that are involved in the Nrf2/Ho-1 antioxidant signaling pathway.Cellular & Molecular Immunology advance online publication, 11 August 2014; doi:10.1038/cmi.2014.65.
Collapse
|
20
|
Zhao S, Wu J, Zhang L, Ai Y. Post-conditioning with sevoflurane induces heme oxygenase-1 expression via the PI3K/Akt pathway in lipopolysaccharide-induced acute lung injury. Mol Med Rep 2014; 9:2435-40. [PMID: 24691522 DOI: 10.3892/mmr.2014.2094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 03/03/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to explore the regulatory mechanism of heme oxygenase-1 (HO-1) expression induced by sevoflurane (Sevo) in lipopolysaccharide (LPS)‑induced acute lung injury (ALI). Sprague-Dawley rats were divided randomly into six groups: (A) Control, (B) 2.4% Sevo only, (C) LY294002 (PI3K inhibitor) only, (D) LPS + 2.4% Sevo, (E) LY294002 + LPS + 2.4% Sevo and (F) LPS only. The pathological changes in wet/dry weight ratio (W/D), the activities of superoxide dismutase, myeloperoxidase (MPO), malondialdehyde, and HO-1, as well as the expression of intercellular adhesion molecule (ICAM-1), HO-1, phospho-phosphatidylinositol 3-kinase (pPI3K) and phospho-Akt (pAkt) were recorded. Sevo post-conditioning was able to effectively protect from ALI with decreasing pathomorphological scores, MPO activity, W/D and the mRNA and protein expression levels of ICAM-1. Sevo promotes HO-1 expression via the PI3K/protein kinase B (PI3K/Akt) pathway with activation of pPI3K and pAkt. Inhibition of the PI3K/Akt pathway by LY294002 partly eliminates the protective effects of Sevo. It is concluded that Sevo post-conditioning has a vital role in inducing the upregulation of HO-1 expression via the PI3K/Akt pathway to alleviate ALI.
Collapse
Affiliation(s)
- Shuangping Zhao
- Department of Critical Care Medicine, Hunan Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jiao Wu
- Hunan Provincial Tumor Hospital, Changsha, Hunan 410013, P.R. China
| | - Lemeng Zhang
- Department of Critical Care Medicine, Hunan Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yuhang Ai
- Department of Critical Care Medicine, Hunan Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
21
|
Yang Y, Cai X, Yang J, Sun X, Hu C, Yan Z, Xu X, Lu W, Wang X, Cao P. Chemoprevention of dietary digitoflavone on colitis-associated colon tumorigenesis through inducing Nrf2 signaling pathway and inhibition of inflammation. Mol Cancer 2014; 13:48. [PMID: 24602443 PMCID: PMC3973863 DOI: 10.1186/1476-4598-13-48] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/01/2014] [Indexed: 12/12/2022] Open
Abstract
Background Nuclear factor-erythroid 2-related factor 2 (Nrf2) has emerged as a novel target for the prevention of colorectal cancer (CRC). Many chemopreventive compounds associated with Nrf2 activation are effective in preclinical systems and many on-going clinical trials are showing promising findings. In present study we evaluated the cytoprotective effect and chemopreventive properties of dietary digitoflavone. Method A cell based Antioxidant Response Element (ARE)-driven luciferase reporter system was applied to screen potential Nrf2 activators. Activation of Nrf2 by digitoflavone was confirmed through mRNA, protein and GSH level assay in Caco-2 cell line. The cytoprotective effect of digitoflavone was evaluated in H2O2-induced oxidative stress model and further signaling pathways analysis was used to determine the target of digitoflavone induced Nrf2 activation. An AOM-DSS induced colorectal cancer model was used to assess the chemopreventive effect of digitoflavone. Result Micromolarity (10 μM) level of digitoflavone increased Nrf2 expressing, nuclear translocation and expression of downstream phase II antioxidant enzymes. Furthermore, digitoflavone decreased H2O2-induced oxidative stress and cell death via p38 MAPK-Nrf2/ARE pathway. In vivo study, 50 mg/kg digitoflavone significantly reduced AOM-DSS induced tumor incidence, number and size. Conclusion These observations suggest that digitoflavone is a novel Nrf2 pathway activator, and protects against oxidative stress-induced cell injury. The results of the present study add further evidence of the molecular mechanisms that allow digitoflavone to exert protective effects and reaffirm its potential role as a chemopreventive agent in colorectal carcinogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Peng Cao
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Institute of Traditional Chinese Medicine, 100#, Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu, China.
| |
Collapse
|
22
|
Liu W, Xu Z, Deng Y, Xu B, Yang H, Wei Y, Feng S. Excitotoxicity and oxidative damages induced by methylmercury in rat cerebral cortex and the protective effects of tea polyphenols. ENVIRONMENTAL TOXICOLOGY 2014; 29:269-283. [PMID: 22223486 DOI: 10.1002/tox.21755] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/28/2011] [Accepted: 12/03/2011] [Indexed: 05/31/2023]
Abstract
Methylmercury (MeHg) is a highly neurotoxic environmental pollutant that has a high appetency to the central nervous system. The underlying mechanisms of MeHg-induced neurotoxicity have not been elucidated clearly until now. Therefore, to explore the mechanisms contribute to MeHg-induced neurotoxicity, rats were exposed to different dosage of methylmercury chloride (CH3 ClHg) (0, 4, and 12 μmol kg(-1)) for 4 weeks to evaluate the neurotoxic effects of MeHg. In addition, considering the antioxidative properties of tea polyphenols (TP), 1 mmol kg(-1) TP was pretreated to observe the possible protective effects on MeHg-induced neurotoxicity. Then Hg, glutamate (Glu) and glutamine (Gln) levels, glutamine synthetase (GS), phosphate-activated glutaminase (PAG), Na(+)-K(+)-ATPase, and Ca(2+)-ATPase activities, intracellular Ca(2+) level were examined, glutathione (GSH), malondialdehyde (MDA), protein sulfhydryl, carbonyl, 8-hydroxy-2-deoxyguanosine (8-OHdG), and reactive oxygen species (ROS) levels, N-methyl-D-aspartate receptors (NMDARs) mRNA and protein expressions, apoptosis level and morphological changes in the cerebral cortex were also investigated. Study results showed that compared with those in control, exposure to CH3 ClHg resulted in excitotoxicity in a concentration-dependent manner, which was shown by the Glu-Gln cycle disruption and intracellular Ca(2+) homeostasis disturbance. On the other hand, CH3 ClHg exposure resulted in oxidative damages of brain, which were supported by the significant changes on GSH, MDA, sulfhydryl, carbonyl, 8-OHdG, and ROS levels. Moreover, apoptosis rate increased obviously and many morphological changes were found after CH3 ClHg exposure. Furthermore, this research indicated that TP pretreatment significantly mitigated the toxic effects of MeHg. In conclusion, findings from this study indicated that exposure to MeHg could induce excitotoxicity and oxidative damage in cerebral cortex while TP might antagonize the MeHg-induced neurotoxicity.
Collapse
Affiliation(s)
- Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, North 2nd Road 92, Heping Ward, Shenyang 110001, Liaoning Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
23
|
Icaritin attenuates cigarette smoke-mediated oxidative stress in human lung epithelial cells via activation of PI3K-AKT and Nrf2 signaling. Food Chem Toxicol 2014; 64:307-13. [DOI: 10.1016/j.fct.2013.12.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/26/2013] [Accepted: 12/03/2013] [Indexed: 11/23/2022]
|
24
|
Eggler AL, Savinov SN. Chemical and biological mechanisms of phytochemical activation of Nrf2 and importance in disease prevention. RECENT ADVANCES IN PHYTOCHEMISTRY 2013; 43:121-155. [PMID: 26855455 DOI: 10.1007/978-3-319-00581-2_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Plants are an incredibly rich source of compounds that activate the Nrf2 transcription factor, leading to upregulation of a battery of cytoprotective genes. This perspective surveys established and proposed molecular mechanisms of Nrf2 activation by phytochemicals with a special emphasis on a common chemical property of Nrf2 activators: the ability as "soft" electrophiles to modify cellular thiols, either directly or as oxidized biotransformants. In addition, the role of reactive oxygen/nitrogen species as secondary messengers in Nrf2 activation is discussed. While the uniquely reactive C151 of Keap1, an Nrf2 repressor protein, is highlighted as a key target of cytoprotective phytochemicals, also reviewed are other stress-responsive proteins, including kinases, which play non-redundant roles in the activation of Nrf2 by plant-derived agents. Finally, the perspective presents two key factors accounting for the enhanced therapeutic windows of effective phytochemical activators of the Keap1-Nrf2 axis: enhanced selectivity toward sensor cysteines and reversibility of addition to thiolate molecules.
Collapse
Affiliation(s)
- Aimee L Eggler
- Department of Chemistry, Villanova University, 215a Mendel Science Hall, 800 Lancaster Avenue, Villanova, PA 19085
| | - Sergey N Savinov
- Purdue University Center for Cancer Research, West Lafayette, Indiana, 47907
| |
Collapse
|
25
|
Low and medium but not high doses of green tea polyphenols ameliorated dextran sodium sulfate-induced hepatotoxicity and nephrotoxicity. Biosci Biotechnol Biochem 2013; 77:1223-8. [PMID: 23748761 DOI: 10.1271/bbb.121003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Our previous study indicated that a diet containing a high dose (1%) of green tea polyphenols (GTPs) disrupted liver and kidney function via a reduction in antioxidant enzyme and heat shock protein (HSP) levels in both colitis and non-treated ICR mice. In the present study, we assessed the effects of 0.01%, 0.1%, and 1% dietary GTPs on liver and kidney physiological functioning in dextran sulfate sodium (DSS)-exposed and normal mice. GTPs at 0.01% and 0.1% significantly suppressed DSS-increased serum aspartate 2-oxoglutarate aminotransferase (AST) and alanine aminotransferase (ALT) levels. In contrast, GTPs at 1% increased kidney weight, serum creatinine levels, and thiobarbituric acid-reactive substances (TBARs) in both the kidney and the liver in normal mice, as compared with DSS-exposed mice. GTPs at 0.01% and 0.1% remarkably upregulated the expression of heme oxygenase-1 (HO-1) and heat shock protein 70 (HSP70) mRNA in the liver and kidney of mice exposed to DSS, whereas GTPs at 1% abolished it. Our results indicate that low and medium doses of GTPs have beneficial effects on DSS-induced hepatotoxicity and nephrotoxicity via upregulation of self-protective enzymes, while these effects disappeared at a high dose.
Collapse
|
26
|
Dietz BM, Hagos GK, Eskra JN, Wijewickrama GT, Anderson JR, Nikolic D, Guo J, Wright B, Chen SN, Pauli GF, van Breemen RB, Bolton JL. Differential regulation of detoxification enzymes in hepatic and mammary tissue by hops (Humulus lupulus) in vitro and in vivo. Mol Nutr Food Res 2013; 57:1055-66. [PMID: 23512484 PMCID: PMC3864769 DOI: 10.1002/mnfr.201200534] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 12/21/2012] [Accepted: 01/03/2013] [Indexed: 12/21/2022]
Abstract
SCOPE Hops contain the phytoestrogen, 8-prenylnaringenin, and the cytoprotective compound, xanthohumol (XH). XH induces the detoxification enzyme, NAD(P)H-quinone oxidoreductase (NQO1) in vitro; however, the tissue distribution of XH and 8-prenylnaringenin and their tissue-specific activity have not been analyzed. METHODS AND RESULTS An orally administered hop extract and subcutaneously injected XH were administered to Sprague-Dawley rats over 4 days. LC-MS-MS analysis of plasma, liver, and mammary gland revealed that XH accumulated in liver and mammary glands. Compared with the low level in the original extract, 8-prenylnaringenin was enriched in the tissues. Hops and XH-induced NQO1 in the liver, while only hops reduced NQO1 activity in the mammary gland. Mechanistic studies revealed that hops modulated NQO1 through three mechanisms. In liver cells, (i) XH modified Kelch-like ECH-associated protein leading to nuclear factor (erythroid-derived 2)-like 2 (Nrf2) translocation and antioxidant response element (ARE) activation; (ii) hop-mediated ARE induction was partially mediated through phosphorylation of Nrf2 by PKC; (iii) in breast cells, 8-prenylnaringenin reduced NQO1 likely through binding to estrogen receptorα, recruiting Nrf2, and downregulating ARE-regulated genes. CONCLUSION XH and 8-prenylnaringenin in dietary hops are bioavailable to the target tissues. While hops and XH might be cytoprotective in the liver, 8-prenylnaringenin seems responsible for hop-mediated NQO1 reduction in the mammary gland.
Collapse
Affiliation(s)
- Birgit M Dietz
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lee C, Park GH, Ahn EM, Kim BA, Park CI, Jang JH. Protective effect of Codium fragile against UVB-induced pro-inflammatory and oxidative damages in HaCaT cells and BALB/c mice. Fitoterapia 2013; 86:54-63. [DOI: 10.1016/j.fitote.2013.01.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 01/15/2013] [Accepted: 01/23/2013] [Indexed: 01/19/2023]
|
28
|
Zinc Protoporphyrin Upregulates Heme Oxygenase-1 in PC-3 Cells via the Stress Response Pathway. Int J Cell Biol 2013; 2013:162094. [PMID: 23476651 PMCID: PMC3586522 DOI: 10.1155/2013/162094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 01/04/2013] [Accepted: 01/08/2013] [Indexed: 11/18/2022] Open
Abstract
Zinc protoporphyrin IX (ZnPP), a naturally occurring molecule formed in iron deficiency or lead poisoning, is a potent competitive inhibitor of heme oxygenase-1 (HO-1). It also regulates expression of HO-1 at the transcriptional level. However, the effect of ZnPP on HO-1 expression is controversial. It was shown to induce HO-1 expression in some cells, but suppress it in others. The objective of this study is to investigate the effect of ZnPP on HO-1 expression in prostate cancer PC-3 cells. Incubation of PC-3 cells with 10 μM ZnPP for 4 h showed only a slight induction of HO-1 mRNA and protein, but the induction was high after 16 h and was maintained through 48 h of incubation. Of all the known responsive elements in the HO-1 promoter, ZnPP activated mainly the stress response elements. Of the various protein kinase inhibitors and antioxidant tested, only Ro 31-8220 abrogated ZnPP-induced HO-1 expression, suggesting that activation of HO-1 gene by ZnPP may involve protein kinase C (PKC). The involvement of PKC α, β, δ, η, θ, and ζ isoforms was ruled out by the use of specific inhibitors. The isoform of PKC involved and participation of other transcription factors remain to be studied.
Collapse
|
29
|
Lee BH, Hsu WH, Chang YY, Kuo HF, Hsu YW, Pan TM. Ankaflavin: a natural novel PPARγ agonist upregulates Nrf2 to attenuate methylglyoxal-induced diabetes in vivo. Free Radic Biol Med 2012; 53:2008-16. [PMID: 23022408 DOI: 10.1016/j.freeradbiomed.2012.09.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/04/2012] [Accepted: 09/15/2012] [Indexed: 12/15/2022]
Abstract
Ankaflavin (AK) is an active compound having anti-inflammatory, anti-cancer, antiatherosclerotic, and hypolipidemic effects. We have previously reported that AK acts as an antioxidant and antidiabetic drug; however, the mechanism by which AK prevents diabetes remains unknown. Hyperglycemia is associated with protein glycation, which produces advanced glycation end-products (AGEs). Methylglyoxal (MG)-a metabolite of carbohydrates-is believed to cause insulin resistance by inducing inflammation and pancreas damage. In this work, diabetes was induced in Wistar rats (4 weeks of age) by treating them with MG (600 mg/kg bw) for 4 weeks. We observed that AK (10mg/kg bw) exerted peroxisome proliferator-activated receptor-γ (PPARγ) agonist activity, thereby enhancing insulin sensitivity (as indicated by hepatic GLUT2 translocation, PTP1B suppression, and glucose uptake) by downregulating blood glucose and upregulating pancreatic and duodenal homeobox-1 and Maf-A expression and increasing insulin production in MG-induced rats. However, these effects were abolished by the administration of GW9662 (PPARγ antagonist), but the expression of hepatic heme oxygenase-1 (HO-1) and glutamate-cysteine ligase (GCL) was not suppressed in MG-induced rats. Therefore, the nuclear factor erythroid-related factor-2 (Nrf2) activation was investigated. AK did not affect hepatic Nrf2 mRNA or protein expression but significantly increased Nrf2 phosphorylation (serine 40), which was accompanied by increased transcriptional activation of hepatic HO-1 and GCL. These data indicated that AK protected rats from oxidative stress resulting from MG-induced insulin resistance. In contrast, these effects were not detected when the rats were treated with the antidiabetic drug rosiglitazone (10mg/kg bw). Moreover, we found that AK did not inhibit the generation of AGEs in vitro; however, the glutathione (GSH) levels in liver and pancreas of MG-induced rats were elevated in rats administered AK. Therefore, we believe that GSH may lower the MG level, which attenuates the formation of AGEs in the serum, kidney, liver, and pancreas of MG-induced rats. We also found that AK treatment reduced the production of inflammatory factors, such as tumor necrosis factor-α and interleukin-1β. Taken together, the results of our mechanistic study of MG-induced rats suggest that the protective effects of AK against diabetes are mediated by the upregulation of the signaling pathway of Nrf2, which enhances antioxidant activity and serves as a PPARγ agonist to enhance insulin sensitivity.
Collapse
MESH Headings
- Anilides/pharmacology
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Blood Glucose
- Cytokines/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/drug therapy
- Flavins/pharmacology
- Flavins/therapeutic use
- Gene Expression/drug effects
- Gene Expression Regulation
- Glycation End Products, Advanced/blood
- Glycation End Products, Advanced/metabolism
- Heme Oxygenase-1/genetics
- Heme Oxygenase-1/metabolism
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Insulin/blood
- Insulin Resistance
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Liver/drug effects
- Liver/enzymology
- Liver/physiopathology
- Male
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/metabolism
- Oxidative Stress/drug effects
- PPAR gamma/agonists
- PPAR gamma/antagonists & inhibitors
- PPAR gamma/metabolism
- Pancreas/drug effects
- Pancreas/metabolism
- Pancreas/physiopathology
- Phosphorylation
- Protein Processing, Post-Translational
- Pyruvaldehyde
- Rats
- Rats, Wistar
- Receptor for Advanced Glycation End Products
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Bao-Hong Lee
- Department of Biochemical Science & Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | | | | | | | | | | |
Collapse
|
30
|
Cheng AS, Cheng YH, Chiou CH, Chang TL. Resveratrol upregulates Nrf2 expression to attenuate methylglyoxal-induced insulin resistance in Hep G2 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9180-7. [PMID: 22917016 DOI: 10.1021/jf302831d] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Oxidative stress can result in insulin resistance, a primary cause of type-2 diabetes. Methylglyoxal (MG), a highly reactive dicarbonyl metabolite generated during glucose metabolism, has also been confirmed to cause pancreatic injury and induce inflammation, thereby resulting in insulin resistance. Recently, resveratrol has been reported to exert antioxidant properties, protecting cells from the generation of reactive oxygen species (ROS). The aim of this study was to evaluate resveratrol activation of nuclear factor erythroid 2-related factor 2 (Nrf2) to attenuate MG-induced insulin resistance in Hep G2 cells. Therefore, the molecular signaling events affecting resveratrol-mediated heme oxygenase-1 (HO-1) and glyoxalase expression levels were further investigated in this study. Our findings indicated that resveratrol activated the extracellular signal-regulated kinase (ERK) pathway but not the p38 or c-Jun N-terminal kinase (JNK) pathways, subsequently leading to Nrf2 nuclear translocation and elevation of HO-1 and glyoxalase expression levels. Moreover, resveratrol significantly elevated glucose uptake and protected against MG-induced insulin resistance in Hep G2 cells. In contrast, depletion of Nrf2 by small interfering RNA (si-RNA) resulted in the abrogation of HO-1 and glyoxalase expression in the MG-treated resveratrol group in Hep G2 cells. Administration of an appropriate chemopreventive agent, such as resveratrol, may be an alternative strategy for protecting against MG-induced diabetes.
Collapse
Affiliation(s)
- An-Sheng Cheng
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| | | | | | | |
Collapse
|
31
|
Chen HH, Chen YT, Huang YW, Tsai HJ, Kuo CC. 4-Ketopinoresinol, a novel naturally occurring ARE activator, induces the Nrf2/HO-1 axis and protects against oxidative stress-induced cell injury via activation of PI3K/AKT signaling. Free Radic Biol Med 2012; 52:1054-66. [PMID: 22245092 DOI: 10.1016/j.freeradbiomed.2011.12.012] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 12/06/2011] [Accepted: 12/06/2011] [Indexed: 02/07/2023]
Abstract
The Nrf2/ARE pathway plays an important role in inducing phase II detoxifying enzymes and antioxidant proteins and has been considered a potential target for cancer chemoprevention because it eliminates harmful reactive oxygen species or reactive intermediates generated from carcinogens. The objectives of this study were to identify novel Nrf2/ARE activators and to investigate the mechanistic signaling pathway involved in the activation of Nrf2-mediated cytoprotective effects against oxidative-induced cell injury. A stable ARE-driven luciferase reporter cell line was established to screen a potentially cytoprotective compound. 4-Ketopinoresinol (4-KPR), the (α-γ) double-cyclized type of lignan obtained from adlay (Coix lachryma-jobi L. var. ma-yuen Stapf), activates ARE-driven luciferase activity more effectively than the classical ARE activator tert-butylhydroquinone. 4-KPR treatment resulted in a transient increase in AKT phosphorylation and subsequent phosphorylation and nuclear translocation of Nrf2, along with increased expression of ARE-dependent cytoprotective genes, such as heme oxygenase-1 (HO-1), aldo-keto reductases, and glutathione synthetic enzyme. 4-KPR suppresses oxidative stress-induced DNA damage and cell death via upregulation of HO-1. Inhibition of PI3K/AKT signaling by chemical inhibitors or RNA interference not only suppressed 4-KPR-induced Nrf2/HO-1 activation, but also eliminated the cytoprotective effect against oxidative damage. These observations in an ARE-regulated gene system suggest that 4-KPR is a novel Nrf2/ARE-mediated transcription activator, activates the Nrf2/HO-1 axis, and protects against oxidative stress-induced cell injury via activation of PI3K/AKT signaling.
Collapse
Affiliation(s)
- Huang-Hui Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | | | | | | | | |
Collapse
|
32
|
Inoue H, Akiyama S, Maeda-Yamamoto M, Nesumi A, Tanaka T, Murakami A. High-dose green tea polyphenols induce nephrotoxicity in dextran sulfate sodium-induced colitis mice by down-regulation of antioxidant enzymes and heat-shock protein expressions. Cell Stress Chaperones 2011; 16:653-62. [PMID: 21766215 PMCID: PMC3220383 DOI: 10.1007/s12192-011-0280-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 06/27/2011] [Accepted: 06/30/2011] [Indexed: 01/17/2023] Open
Abstract
Previously, we reported that oral feeding of 1% green tea polyphenols (GTPs) aggravated the dextran sulfate sodium (DSS)-induced colitis in mice. In the present study, we assessed the toxicity of 1% GTPs in several organs from normal and DSS-exposed mice. Sixty-two male ICR mice were initially divided into four groups. Non-treated group (group 1, n = 15) was given standard diet and water, GTPs (group 2, n = 15) received 1% GTPs in diet and water, DSS (group 3, n = 15) received diet and 5% DSS in water, and GTPs + DSS group (group 4, n = 17) received 1% GTPs in diet and 5% DSS in water. We found that group 4 significantly increased (P < 0.05) kidney weight, the levels of serum creatinine and thiobarbituric acid-reactive substances in both kidney and liver, as compared with those in group 3. The mRNA expression levels of antioxidant enzymes and heat-shock proteins (HSPs) in group 4 were lower than those of group 3. For instance, heme oxygenase-1 (HO-1), HSP27, and 90 mRNA in the kidney of group 4 were dramatically down-regulated as compared with those of group 3. Furthermore, 1% GTPs diet decreased the expression of HO-1, NAD(P)H:quinone oxidoreductase 1 (NQO1) and HSP90 in kidney and liver of non-treated mice. Taken together, our results indicate that high-dose GTPs diet disrupts kidney functions through the reduction of antioxidant enzymes and heat-shock protein expressions in not only colitis but also non-treated ICR mice.
Collapse
Affiliation(s)
- Hirofumi Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Satoko Akiyama
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Mari Maeda-Yamamoto
- National Institute of Vegetable and Tea Sciences, National Agriculture and Food Research Organization, 2769 Kanaya, Shimada, Shizuoka 428-8501 Japan
| | - Atsushi Nesumi
- National Institute of Vegetable and Tea Sciences, National Agriculture and Food Research Organization, 2769 Kanaya, Shimada, Shizuoka 428-8501 Japan
| | - Takuji Tanaka
- The Tohkai Cytopathology Institute: Cancer Research and Prevention (TCI-CaPP), 4-33 Minami-Uzura, Gifu, 500-8285 Japan
| | - Akira Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
33
|
González R, Ballester I, López-Posadas R, Suárez MD, Zarzuelo A, Martínez-Augustin O, Sánchez de Medina F. Effects of flavonoids and other polyphenols on inflammation. Crit Rev Food Sci Nutr 2011; 51:331-62. [PMID: 21432698 DOI: 10.1080/10408390903584094] [Citation(s) in RCA: 366] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flavonoids are a family of polyphenolic compounds which are widespread in nature (vegetables) and are consumed as part of the human diet in significant amounts. There are other types of polyphenols, including, for example, tannins and resveratrol. Flavonoids and related polyphenolic compounds have significant antiinflammatory activity, among others. This short review summarizes the current knowledge on the effects of flavonoids and related polyphenolic compounds on inflammation, with a focus on structural requirements, the mechanisms involved, and pharmacokinetic considerations. Different molecular (cyclooxygenase, lipoxygenase) and cellular targets (macrophages, lymphocytes, epithelial cells, endothelium) have been identified. In addition, many flavonoids display significant antioxidant/radical scavenging properties. There is substantial structural variation in these compounds, which is bound to have an impact on their biological profile, and specifically on their effects on inflammatory conditions. However, in general terms there is substantial consistency in the effects of these compounds despite considerable structural variations. The mechanisms have been studied mainly in myeloid cells, where the predominant effect is an inhibition of NF-κB signaling and the downregulation of the expression of proinflammatory markers. At present there is a gap in knowledge of in vitro and in vivo effects, although the pharmacokinetics of flavonoids has advanced considerably in the last decade. Many flavonoids have been studied for their intestinal antiinflammatory activity which is only logical, since the gastrointestinal tract is naturally exposed to them. However, their potential therapeutic application in inflammation is not restricted to this organ and extends to other sites and conditions, including arthritis, asthma, encephalomyelitis, and atherosclerosis, among others.
Collapse
Affiliation(s)
- R González
- Department of Pharmacology, CIBERehd, School of Pharmacy, University of Granada, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
34
|
Zrelli H, Matsuoka M, Kitazaki S, Araki M, Kusunoki M, Zarrouk M, Miyazaki H. Hydroxytyrosol induces proliferation and cytoprotection against oxidative injury in vascular endothelial cells: role of Nrf2 activation and HO-1 induction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:4473-4482. [PMID: 21438539 DOI: 10.1021/jf104151d] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Hydroxytyrosol (HT), a phenolic compound in olive oil and leaves, has been reported to prevent various human pathologies including cardiovascular diseases. This study investigated the effects of HT on proliferation and protection against oxidative stress-induced damage in vascular endothelial cells (VECs) and the molecular mechanism(s) involved. Treatment of VECs with HT increased cell proliferation, promoted wound repair, and protected cells against H(2)O(2) cytotoxicity through the activation of Akt and ERK1/2, but not p38 MAPK. HT increased the expression and nuclear translocation of nuclear factor-E2-related factor-2 (Nrf2). Nrf2 expression was attenuated by LY294002 and U0126, inhibitors of phosphatidylinositol-3-kinase and MEK1/2, respectively. Nrf2 siRNA decreased both proliferative and cytoprotective effects of HT and abrogated HO-1 induction. Moreover, HO-1 inhibition with HO-1 siRNA or zinc protoporphyrin IX significantly prevented HT-induced cell proliferation, cytoprotection, and reduction in intracellular reactive oxygen species (ROS), suggesting that HO-1 is involved in these HT functions. The findings demonstrate that HT positively regulates the antioxidant defense system in VECs through the activation of Nrf2 followed by cell proliferation and resistance to vascular injury. The present study provides a molecular basis for the contribution of HT in the Mediterranean diet to the prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Houda Zrelli
- Graduate School of Life and Environment Sciences, Alliance for Research on North Africa, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Jeong JC, Shin WY, Kim TH, Kwon CH, Kim JH, Kim YK, Kim KH. Silibinin induces apoptosis via calpain-dependent AIF nuclear translocation in U87MG human glioma cell death. J Exp Clin Cancer Res 2011; 30:44. [PMID: 21501525 PMCID: PMC3108340 DOI: 10.1186/1756-9966-30-44] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 04/19/2011] [Indexed: 11/25/2022] Open
Abstract
Background Silibinin, a natural polyphenolic flavonoid, has been reported to induce cell death in various cancer cell types. However, the molecular mechanism is not clearly defined. Our previous study showed that silibinin induces glioma cell death and its effect was effectively prevented by calpain inhibitor. The present study was therefore undertaken to examine the role of calpain in the silibinin-induced glioma cell death. Methods U87MG cells were grown on well tissue culture plates and cell viability was measured by MTT assay. ROS generation and △ψm were estimated using the fluorescence dyes. PKC activation and Bax expression were measured by Western blot analysis. AIF nuclear translocation was determined by Western blot and immunocytochemistry. Results Silibinin induced activation of calpain, which was blocked by EGTA and the calpain inhibitor Z-Leu-Leu-CHO. Silibinin caused ROS generation and its effect was inhibited by calpain inhibitor, the general PKC inhibitor GF 109203X, the specific PKCδ inhibitor rottlerin, and catalase. Silibinin-induce cell death was blocked by calpain inhibitor and PKC inhibitors. Silibinin-induced PKCδ activation and disruption of △ψm were prevented by the calpain inhibitor. Silibinin induced AIF nuclear translocation and its effect was prevented by calpain inhibitor. Transfection of vector expressing microRNA of AIF prevented the silibinin-induced cell death. Conclusions Silibinin induces apoptotic cell death through a calpain-dependent mechanism involving PKC, ROS, and AIF nuclear translocation in U87MG human glioma cells.
Collapse
Affiliation(s)
- Ji C Jeong
- Department of Oriental Medicine, Dongguk University, Kyung Ju, 780-714, Korea
| | | | | | | | | | | | | |
Collapse
|
36
|
Rushworth SA, Bowles KM, MacEwan DJ. High basal nuclear levels of Nrf2 in acute myeloid leukemia reduces sensitivity to proteasome inhibitors. Cancer Res 2011; 71:1999-2009. [PMID: 21212410 DOI: 10.1158/0008-5472.can-10-3018] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Proteasome inhibitors such as bortezomib exhibit clinical efficacy in multiple myeloma, but studies in acute myeloid leukemia (AML) have been disappointing to date. The apparent failure in AML likely reflects a lack of biological understanding that might clarify applications of proteosome inhibitors in this disease. Here we show that AML cells are considerably less sensitive than control noncancerous cells to bortezomib-induced cytotoxicity, permitting most bortezomib-treated AML cells to survive treatment. We traced reduced bortezomib sensitivity to increased basal levels of nuclear Nrf2, a transcription factor that stimulates protective antioxidant enzymes. Bortezomib stimulates cytotoxicity through accumulation of reactive oxygen species (ROS) but elevated basal levels of nuclear Nrf2 present in AML cells reduced ROS levels, permitting AML cells to survive drug treatment. We further found that the Nrf2 transcriptional repressor Bach1 is rapidly inactivated by bortezomib, allowing rapid induction of Nrf2-regulated cytoprotective and detoxification genes that protect AML cells from bortezomib-induced apoptosis. By contrast, nonmalignant control cells lacked constitutive activation of Nrf2, such that bortezomib-mediated inactivation of Bach1 led to a delay in induction of Nrf2-regulated genes, effectively preventing the manifestation of apoptotic protection that is seen in AML cells. Together, our findings argue that AML might be rendered sensitive to proteasome inhibitors by cotreatment with either an Nrf2-inhibitory or Bach1-inhibitory treatment, rationalizing a targeted therapy against AML.
Collapse
|
37
|
Yun BR, Lee MJ, Kim JH, Kim IH, Yu GR, Kim DG. Enhancement of parthenolide-induced apoptosis by a PKC-alpha inhibition through heme oxygenase-1 blockage in cholangiocarcinoma cells. Exp Mol Med 2010; 42:787-797. [PMID: 20938215 PMCID: PMC2992858 DOI: 10.3858/emm.2010.42.11.082] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2010] [Indexed: 11/04/2022] Open
Abstract
Cholangiocarcinoma (CC) is a chemoresistant intrahepatic bile duct carcinoma with a poor prognosis. The aims of this study were to identify molecular pathways that enhance sesquiterpene lactone parthenolide (PTL)-induced anticancer effects on CC cells. The effects of PTL on apoptosis and hemoxygenase-1 (HO-1) induction were examined in CC cell lines. The enhancement of PTL-mediated apoptosis by modulation of HO-1 expression and the mechanisms involved were also examined in an in vitro cell system. Low PTL concentrations (5 to 10 microM) led to Nrf2-dependent HO-1 induction, which attenuated the apoptogenic effect of PTL in Choi-CK and SCK cells. PTL-mediated apoptosis was enhanced by the protein kinase C-alpha inhibitor Ro317549 (Ro) through inhibition of expression and nuclear translocation of Nrf2, resulting in blockage of HO-1 expression. Finally, HO-1 silencing resulted in enhancement of apoptotic cell death in CC cells. The combination of PTL and Ro efficiently improved tumor growth inhibition compared to treatment with either agent alone in an in vivo subcutaneous tumor model. In conclusion, the modulation of HO-1 expression substantially improved the anticancer effect of PTL. The combination of PTL and Ro could prove to be a valuable chemotherapeutic strategy for CC.
Collapse
Affiliation(s)
- Bo-Ra Yun
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chonbuk National University Medical School and Hospital, Jeonju 561-712, Korea
| | | | | | | | | | | |
Collapse
|
38
|
Leonarduzzi G, Sottero B, Poli G. Targeting tissue oxidative damage by means of cell signaling modulators: The antioxidant concept revisited. Pharmacol Ther 2010; 128:336-74. [DOI: 10.1016/j.pharmthera.2010.08.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 08/02/2010] [Indexed: 12/25/2022]
|
39
|
Bastianetto S, Quirion R. Heme oxygenase 1: another possible target to explain the neuroprotective action of resveratrol, a multifaceted nutrient-based molecule. Exp Neurol 2010; 225:237-9. [PMID: 20603117 DOI: 10.1016/j.expneurol.2010.06.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 06/25/2010] [Indexed: 11/27/2022]
Abstract
Resveratrol, a polyphenol present in red wine, has received much attention lately because of its putative preventive role in the purported link between moderate red wine consumption and lower incidence of neurological disorders such as dementia and stroke. Numerous animal and in vitro studies have shown that this polyphenol is neuroprotective and can reverse various types of cognitive deficits. However, the mechanism(s) of action involved in the multiple effects of resveratrol is not fully understood. In a recent article by Sakata and colleagues in Experimental Neurology (Sakata, Y., Zhuang, H., Kwansa, H., Koehler, R.C., Doré, S., 2010. Resveratrol protects against experimental stroke: putative neuroprotective role of heme oxygenase 1. Exp. Neurol. 224, 325-329.), the authors raise a hypothesis that the induction of heme oxygenase 1, an endogenous enzyme that provides resistance against oxidative stress-related neuronal damage, contributes, at least in part, to the neuroprotective action of resveratrol. Our brief commentary summarizes recent findings on intracellular pathways possibly involved in the effects of a multi-functional molecule, such as resveratrol, and highlights their relevance in various age-related neurological disorders.
Collapse
Affiliation(s)
- Stéphane Bastianetto
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montréal, QC, Canada
| | | |
Collapse
|
40
|
Quercetin-3-O-β-d-glucuronopyranoside (QGC)-induced HO-1 expression through ERK and PI3K activation in cultured feline esophageal epithelial cells. Fitoterapia 2010; 81:85-92. [DOI: 10.1016/j.fitote.2009.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 07/27/2009] [Accepted: 08/08/2009] [Indexed: 11/17/2022]
|
41
|
Seo JY, Lee YS, Kim HJ, Lim SS, Lim JS, Lee IA, Lee CH, Yoon Park JH, Kim JS. Dehydroglyasperin C isolated from licorice caused Nrf2-mediated induction of detoxifying enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:1603-1608. [PMID: 20088509 DOI: 10.1021/jf9036062] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Our preliminary experiment demonstrated that a n-hexane/EtOH (9:1, volume) extract of Glycyrrhiza uralensis (licorice) caused a significant induction of NAD(P)H:oxidoquinone reductase (NQO1), one of the well-known phase 2 detoxifying enzymes. We isolated dehydroglyasperin C (DGC) as a potent phase 2 enzyme inducer from licorice. DGC induced NQO1 both in wild-type murine hepatoma Hepa1c1c7 and ARNT-lacking BPRc1 cells, indicating that the compound is a monofunctional inducer. The compound induced not only NQO1 but also some other phase 2 detoxifying/antioxidant enzymes, such as glutathione S-transferase, gamma-glutamylcysteine synthase, glutathione reductase, and heme oxygenase 1. Similar to most monofunctional inducers, DGC caused the accumulation of Nrf2 in the nucleus in dose- and time-dependent manners and thereby activated expression of phase 2 detoxifying enzymes. It also resulted in a dose-dependent increase in the luciferase activity in the reporter assay, in which HepG2-C8 cells transfected with antioxidant response element (ARE)-luciferase construct were used, suggesting that the induction of phase 2 detoxifying and antioxidant enzymes could be achieved through the interaction of Nrf2 with the ARE sequence in the promoter region of their genes.
Collapse
Affiliation(s)
- Ji Yeon Seo
- School of Applied Biosciences, Kyungpook National University, Deagu 702-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
PKCδ mediates Nrf2-dependent protection of neuronal cells from NO-induced apoptosis. Biochem Biophys Res Commun 2009; 386:750-6. [DOI: 10.1016/j.bbrc.2009.06.129] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 06/24/2009] [Indexed: 11/22/2022]
|