1
|
Jiang X, Xu C, Xu C, Liu Y, Li L, Li Q, Huang C, Hu J. 2-Ethylhexyl Diphenyl Phosphate Induces Autism Spectrum Disorder-Like Behaviors in Offspring Mice by Disrupting Postsynaptic Development. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16347-16356. [PMID: 39234944 DOI: 10.1021/acs.est.4c06087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
As organophosphorus flame retardants (OPFRs) are constantly detected in human samples, the neurotoxicity of OPFRs is of concern. In this study, pregnant ICR mice were exposed to 2-ethylhexyl diphenyl phosphate (EHDPP) in drinking water from gestation to lactation to investigate its effects on autism spectrum disorder-like (ASD-like) behaviors in offspring. Serum EHDPP concentrations in dams in the 0.4, 2, and 10 mg/kg groups were 0.282 ± 0.051, 0.713 ± 0.115, and 0.974 ± 0.048 ng/mL, respectively, within the concentration range in humans. At the highest dose, EHDPP exposure induced ASD-like behaviors in both female and male offspring. Significant reductions in mature dendritic spines and structural damage to the postsynaptic density zone were noted in all but the lowest exposure groups, indicating postsynaptic membrane impairment. Mechanistically, EHDPP significantly downregulated disc large MAGUK scaffold protein 4 expression by inhibiting protein kinase B and type 1 insulin-like growth factor receptor phosphorylation. In the heterologous synapse formation assay in vivo, EHDPP significantly reduced the levels of postsynaptic density protein 95 expression in neurons at 1 μM. Overall, the study utilized in vitro and in vivo experiments to confirm that EHDPP damaged postsynaptic membrane formation and might increase the incidence of ASD in offspring.
Collapse
Affiliation(s)
- Xianlei Jiang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Chenke Xu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Cheng Xu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yanan Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Linwan Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Qiang Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Chong Huang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
2
|
Matsui Y, Imai A, Izumi H, Yasumura M, Makino T, Shimizu T, Sato M, Mori H, Yoshida T. Cancer-associated point mutations within the extracellular domain of PTPRD affect protein stability and HSPG interaction. FASEB J 2024; 38:e23609. [PMID: 38593345 DOI: 10.1096/fj.202302279rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
PTPRD, a well-established tumor suppressor gene, encodes the protein tyrosine phosphatase-type D. This protein consists of three immunoglobulin-like (Ig) domains, four to eight fibronectin type 3 (FN) domains, a single transmembrane segment, and two cytoplasmic tandem tyrosine phosphatase domains. PTPRD is known to harbor various cancer-associated point mutations. While it is assumed that PTPRD regulates cellular functions as a tumor suppressor through the tyrosine phosphatase activity in the intracellular region, the function of its extracellular domain (ECD) in cancer is not well understood. In this study, we systematically examined the impact of 92 cancer-associated point mutations within the ECD. We found that 69.6% (64 out of 92) of these mutations suppressed total protein expression and/or plasma membrane localization. Notably, almost all mutations (20 out of 21) within the region between the last FN domain and transmembrane segment affected protein expression and/or localization, highlighting the importance of this region for protein stability. We further found that some mutations within the Ig domains adjacent to the glycosaminoglycan-binding pocket enhanced PTPRD's binding ability to heparan sulfate proteoglycans (HSPGs). This interaction is proposed to suppress phosphatase activity. Our findings therefore suggest that HSPG-mediated attenuation of phosphatase activity may be involved in tumorigenic processes through PTPRD dysregulation.
Collapse
Affiliation(s)
- Yu Matsui
- Department of Dermatology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Ayako Imai
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Hironori Izumi
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Misato Yasumura
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
- Division of Developmental Neuroscience, United Graduate School of Child Development (UGSCD), Osaka University, Osaka, Japan
| | - Teruhiko Makino
- Department of Dermatology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tadamichi Shimizu
- Department of Dermatology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Makoto Sato
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
- Division of Developmental Neuroscience, United Graduate School of Child Development (UGSCD), Osaka University, Osaka, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
3
|
Lin PY, Chen LY, Zhou P, Lee SJ, Trotter JH, Südhof TC. Neurexin-2 restricts synapse numbers and restrains the presynaptic release probability by an alternative splicing-dependent mechanism. Proc Natl Acad Sci U S A 2023; 120:e2300363120. [PMID: 36961922 PMCID: PMC10068831 DOI: 10.1073/pnas.2300363120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/21/2023] [Indexed: 03/26/2023] Open
Abstract
α- and β-neurexins are extensively alternatively spliced, presynaptic cell-adhesion molecules that are thought to organize synapse assembly. However, recent data revealed that, in the hippocampus in vivo, the deletion of one neurexin isoform, Nrxn2, surprisingly increased excitatory synapse numbers and enhanced their presynaptic release probability, suggesting that Nrxn2 restricts, instead of enabling, synapse assembly. To delineate the synaptic function and mechanism of action of Nrxn2, we examined cultured hippocampal neurons as a reduced system. In heterologous synapse formation assays, different alternatively spliced Nrxn2β isoforms robustly promoted synapse assembly similar to Nrxn1β and Nrxn3β, consistent with a general synaptogenic function of neurexins. Deletion of Nrxn2 from cultured hippocampal neurons, however, caused a significant increase in synapse density and release probability, replicating the in vivo data that suggested a synapse-restricting function. Rescue experiments revealed that two of the four Nrxn2β splice variants (Nrxn2β-SS4+/SS5- and Nrxn2β-SS4+/SS5+) reversed the increase in synapse density in Nrxn2-deficient neurons, whereas only one of the four Nrxn2β splice variants (Nrxn2β-SS4+/SS5+) normalized the increase in release probability in Nrxn2-deficient neurons. Thus, a subset of Nrxn2 splice variants restricts synapse numbers and restrains their release probability in cultured neurons.
Collapse
Affiliation(s)
- Pei-Yi Lin
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA94305
| | - Lulu Y. Chen
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA94305
| | - Peng Zhou
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA94305
- HHMI, Stanford University School of Medicine, Stanford, CA94305
| | - Sung-Jin Lee
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA94305
| | - Justin H. Trotter
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA94305
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA94305
- HHMI, Stanford University School of Medicine, Stanford, CA94305
| |
Collapse
|
4
|
Lin PY, Chen LY, Jiang M, Trotter JH, Seigneur E, Südhof TC. Neurexin-2: An inhibitory neurexin that restricts excitatory synapse formation in the hippocampus. SCIENCE ADVANCES 2023; 9:eadd8856. [PMID: 36608123 PMCID: PMC9821874 DOI: 10.1126/sciadv.add8856] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Neurexins are widely thought to promote synapse formation and to organize synapse properties. Here we found that in contrast to neurexin-1 and neurexin-3, neurexin-2 unexpectedly restricts synapse formation. In the hippocampus, constitutive or neuron-specific deletions of neurexin-2 nearly doubled the strength of excitatory CA3➔CA1 region synaptic connections and markedly increased their release probability. No effect on inhibitory synapses was detected. Stochastic optical reconstruction microscopy (STORM) superresolution microscopy revealed that the neuron-specific neurexin-2 deletion elevated the density of excitatory CA1 region synapses nearly twofold. Moreover, hippocampal neurexin-2 deletions also increased synaptic connectivity in the CA1 region when induced in mature mice and impaired the cognitive flexibility of spatial memory. Thus, neurexin-2 controls the dynamics of hippocampal synaptic circuits by repressing synapse assembly throughout life, a restrictive function that markedly differs from that of neurexin-1 and neurexin-3 and of other synaptic adhesion molecules, suggesting that neurexins evolutionarily diverged into opposing pro- and antisynaptogenic organizers.
Collapse
Affiliation(s)
- Pei-Yi Lin
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Dr., Stanford, CA 94305, USA
| | - Lulu Y. Chen
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Dr., Stanford, CA 94305, USA
| | - Man Jiang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Dr., Stanford, CA 94305, USA
| | - Justin H. Trotter
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Dr., Stanford, CA 94305, USA
| | - Erica Seigneur
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Dr., Stanford, CA 94305, USA
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Dr., Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Duan GF, Tang XH, Jia M, Wu D, Shi YS. Kainate receptors GluK1 and GluK2 differentially regulate synapse morphology. Synapse 2023; 77:e22255. [PMID: 36121930 DOI: 10.1002/syn.22255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 01/29/2023]
Abstract
The regulation of dendritic spine morphology is a critical aspect of neuronal network refinement during development and modulation of neurotransmission. Previous studies revealed that glutamatergic transmission plays a central role in synapse development. AMPA receptors and NMDA receptors regulate spine morphology in an activity dependent manner. However, whether and how Kainate receptors (KARs) regulate synapse development remains poorly understood. In this study, we found that GluK1 and GluK2 may play distinct roles in synapse development. In primary cultured hippocampal neurons, we found overexpression of the calcium-permeable GluK2(Q) receptor variant increased spine length and spine head area compared to overexpression of the calcium-impermeable GluK2(R) variant or EGFP transfected, control neurons, indicating that Q/R editing may play a role in GluK2 regulation of synapse development. Intriguingly, neurons transfected with GluK1(Q) showed decreased spine length and spine head area, while the density of dendritic spines was increased, suggesting that GluK1(Q) and GluK2(Q) have different effects on synaptic development. Swapping the critical domains between GluK2 and GluK1 demonstrated the N-terminal domain (NTD) is responsible for the different effects of GluK1 and GluK2. In conclusion, Kainate receptors GluK1 and GluK2 have distinct roles in regulating spine morphology and development, a process likely relying on the NTD.
Collapse
Affiliation(s)
- Gui-Fang Duan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Xiao-Hui Tang
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Min Jia
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Dan Wu
- Minister of Education Key Laboratory of Model Animal for Disease Study, Department of Neurology, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Yun Stone Shi
- Minister of Education Key Laboratory of Model Animal for Disease Study, Department of Neurology, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Uemura T, Suzuki-Kouyama E, Kawase S, Kurihara T, Yasumura M, Yoshida T, Fukai S, Yamazaki M, Fei P, Abe M, Watanabe M, Sakimura K, Mishina M, Tabuchi K. Neurexins play a crucial role in cerebellar granule cell survival by organizing autocrine machinery for neurotrophins. Cell Rep 2022; 39:110624. [PMID: 35385735 DOI: 10.1016/j.celrep.2022.110624] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 01/22/2023] Open
Abstract
Neurexins (NRXNs) are key presynaptic cell adhesion molecules that regulate synapse formation and function via trans-synaptic interaction with postsynaptic ligands. Here, we generate cerebellar granule cell (CGC)-specific Nrxn triple-knockout (TKO) mice for complete deletion of all NRXNs. Unexpectedly, most CGCs die in these mice, and this requirement for NRXNs for cell survival is reproduced in cultured CGCs. The axons of cultured Nrxn TKO CGCs that are not in contact with a postsynaptic structure show defects in the formation of presynaptic protein clusters and in action-potential-induced Ca2+ influxes. These cells also show impaired secretion of depolarization-induced, fluorescence-tagged brain-derived neurotrophic factor (BDNF) from their axons, and the cell-survival defect is rescued by the application of BDNF. These results suggest that CGC survival is maintained by autocrine neurotrophic factors and that NRXNs organize the presynaptic protein clusters and the autocrine neurotrophic-factor secretory machinery independent of contact with postsynaptic ligands.
Collapse
Affiliation(s)
- Takeshi Uemura
- Division of Gene Research, Research Center for Advanced Science, Shinshu University, Nagano 390-8621, Japan; Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 390-8621, Japan; Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano 390-8621, Japan; Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan; JST CREST, Saitama 332-0012, Japan.
| | - Emi Suzuki-Kouyama
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano 390-8621, Japan; JST CREST, Saitama 332-0012, Japan
| | - Shiori Kawase
- Division of Gene Research, Research Center for Advanced Science, Shinshu University, Nagano 390-8621, Japan; Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano 390-8621, Japan; JST CREST, Saitama 332-0012, Japan
| | - Taiga Kurihara
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano 390-8621, Japan
| | - Misato Yasumura
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan; Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan; Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; JST PRESTO, Saitama 332-0012, Japan
| | - Shuya Fukai
- JST CREST, Saitama 332-0012, Japan; Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Peng Fei
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Masayoshi Mishina
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan; Brain Science Laboratory, Research Organization of Science and Technology, Ritsumeikan University, Shiga 525-8577, Japan
| | - Katsuhiko Tabuchi
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 390-8621, Japan; Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano 390-8621, Japan; JST PRESTO, Saitama 332-0012, Japan.
| |
Collapse
|
7
|
Yoshida T, Yamagata A, Imai A, Kim J, Izumi H, Nakashima S, Shiroshima T, Maeda A, Iwasawa-Okamoto S, Azechi K, Osaka F, Saitoh T, Maenaka K, Shimada T, Fukata Y, Fukata M, Matsumoto J, Nishijo H, Takao K, Tanaka S, Okabe S, Tabuchi K, Uemura T, Mishina M, Mori H, Fukai S. Canonical versus non-canonical transsynaptic signaling of neuroligin 3 tunes development of sociality in mice. Nat Commun 2021; 12:1848. [PMID: 33758193 PMCID: PMC7988105 DOI: 10.1038/s41467-021-22059-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Neuroligin 3 (NLGN3) and neurexins (NRXNs) constitute a canonical transsynaptic cell-adhesion pair, which has been implicated in autism. In autism spectrum disorder (ASD) development of sociality can be impaired. However, the molecular mechanism underlying NLGN3-mediated social development is unclear. Here, we identify non-canonical interactions between NLGN3 and protein tyrosine phosphatase δ (PTPδ) splice variants, competing with NRXN binding. NLGN3-PTPδ complex structure revealed a splicing-dependent interaction mode and competition mechanism between PTPδ and NRXNs. Mice carrying a NLGN3 mutation that selectively impairs NLGN3-NRXN interaction show increased sociability, whereas mice where the NLGN3-PTPδ interaction is impaired exhibit impaired social behavior and enhanced motor learning, with imbalance in excitatory/inhibitory synaptic protein expressions, as reported in the Nlgn3 R451C autism model. At neuronal level, the autism-related Nlgn3 R451C mutation causes selective impairment in the non-canonical pathway. Our findings suggest that canonical and non-canonical NLGN3 pathways compete and regulate the development of sociality.
Collapse
Affiliation(s)
- Tomoyuki Yoshida
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan. .,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan. .,JST PRESTO, Saitama, Japan.
| | | | - Ayako Imai
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Juhyon Kim
- Division of Bio-Information Engineering, Faculty of Engineering, University of Toyama, Toyama, Japan
| | - Hironori Izumi
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Shogo Nakashima
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tomoko Shiroshima
- Department of Anatomy, Kitasato University School of Medicine, Kanagawa, Japan
| | - Asami Maeda
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shiho Iwasawa-Okamoto
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Kenji Azechi
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Fumina Osaka
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takashi Saitoh
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Katsumi Maenaka
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.,Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takashi Shimada
- SHIMADZU Bioscience Research Partnership, Innovation Center, Shimadzu Scientific Instruments, Bothell, WA, USA
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Jumpei Matsumoto
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.,Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hisao Nishijo
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.,Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Keizo Takao
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.,Life Science Research Center, University of Toyama, Toyama, Japan
| | - Shinji Tanaka
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsuhiko Tabuchi
- JST PRESTO, Saitama, Japan.,Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan.,Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan
| | - Takeshi Uemura
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan.,Division of Gene Research, Research Center for Supports to Advanced Science, Shinshu University, Nagano, Japan
| | - Masayoshi Mishina
- Brain Science Laboratory, Research Organization of Science and Technology, Ritsumeikan University, Shiga, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Shuya Fukai
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
8
|
Prestori F, Moccia F, D’Angelo E. Disrupted Calcium Signaling in Animal Models of Human Spinocerebellar Ataxia (SCA). Int J Mol Sci 2019; 21:ijms21010216. [PMID: 31892274 PMCID: PMC6981692 DOI: 10.3390/ijms21010216] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
Spinocerebellar ataxias (SCAs) constitute a heterogeneous group of more than 40 autosomal-dominant genetic and neurodegenerative diseases characterized by loss of balance and motor coordination due to dysfunction of the cerebellum and its efferent connections. Despite a well-described clinical and pathological phenotype, the molecular and cellular events that underlie neurodegeneration are still poorly undaerstood. Emerging research suggests that mutations in SCA genes cause disruptions in multiple cellular pathways but the characteristic SCA pathogenesis does not begin until calcium signaling pathways are disrupted in cerebellar Purkinje cells. Ca2+ signaling in Purkinje cells is important for normal cellular function as these neurons express a variety of Ca2+ channels, Ca2+-dependent kinases and phosphatases, and Ca2+-binding proteins to tightly maintain Ca2+ homeostasis and regulate physiological Ca2+-dependent processes. Abnormal Ca2+ levels can activate toxic cascades leading to characteristic death of Purkinje cells, cerebellar atrophy, and ataxia that occur in many SCAs. The output of the cerebellar cortex is conveyed to the deep cerebellar nuclei (DCN) by Purkinje cells via inhibitory signals; thus, Purkinje cell dysfunction or degeneration would partially or completely impair the cerebellar output in SCAs. In the absence of the inhibitory signal emanating from Purkinje cells, DCN will become more excitable, thereby affecting the motor areas receiving DCN input and resulting in uncoordinated movements. An outstanding advantage in studying the pathogenesis of SCAs is represented by the availability of a large number of animal models which mimic the phenotype observed in humans. By mainly focusing on mouse models displaying mutations or deletions in genes which encode for Ca2+ signaling-related proteins, in this review we will discuss the several pathogenic mechanisms related to deranged Ca2+ homeostasis that leads to significant Purkinje cell degeneration and dysfunction.
Collapse
Affiliation(s)
- Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- Correspondence:
| | - Francesco Moccia
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy;
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| |
Collapse
|
9
|
Uemura T, Shiroshima T, Maeda A, Yasumura M, Shimada T, Fukata Y, Fukata M, Yoshida T. In situ screening for postsynaptic cell adhesion molecules during synapse formation. J Biochem 2017; 162:295-302. [PMID: 28449070 DOI: 10.1093/jb/mvx030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 01/01/2023] Open
Abstract
Neuronal synapse formation is regulated by pre- and postsynaptic cell adhesion molecules. Presynaptic neurexins (NRXNs) and receptor protein tyrosine phosphatases (RPTPs; PTPδ, PTPσ and LAR in mammals) can induce postsynaptic differentiation through the interaction with various postsynaptic cell adhesion molecules. Here, we developed a novel in situ screening method to identify postsynaptic membranous proteins involved in synaptogenesis. Magnetic beads coated with the extracellular domains of NRXN1β(-S4) and PTPδ-A6 variants preferentially induced excitatory postsynaptic differentiation on the beads' surface when co-cultured with cortical neurons. After inducing postsynaptic sites on these beads, protein complexes including NRXN1β(-S4)/PTPδ-A6 and their ligands on the neuronal membrane were chemically cross-linked and purified using a magnetic separator. Liquid chromatography-tandem mass spectrometry analysis of the complexes revealed two types of postsynaptic ligands for NRXN1β(-S4) and PTPδ-A6, one has an activity to induce presynaptic differentiation in a trans manner, whereas the other has no such activity. These results suggest that synapse formation is regulated by the interplay between presynaptic NRXN/PTPδ and their postsynaptic ligands with functionally different impacts on pre- and postsynaptic differentiation. Thus, our in situ screening method for identifying synapse-organizing complexes will help to understand the molecular basis for elaborate neuronal networks.
Collapse
Affiliation(s)
- Takeshi Uemura
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.,Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.,CREST, JST, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Tomoko Shiroshima
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0073, Japan
| | - Asami Maeda
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0073, Japan
| | - Misato Yasumura
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takashi Shimada
- Technology Research Laboratory, SHIMADZU Corporation, 380-1 Horiyamashita, Hadano, Kanagawa 259-1304, Japan
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan.,PRESTO, JST, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
10
|
Valbuena S, Lerma J. Non-canonical Signaling, the Hidden Life of Ligand-Gated Ion Channels. Neuron 2017; 92:316-329. [PMID: 27764665 DOI: 10.1016/j.neuron.2016.10.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 12/25/2022]
Abstract
Neurotransmitter receptors are responsible for the transfer of information across the synapse. While ionotropic receptors form ion channels and mediate rapid membrane depolarization, so-called metabotropic receptors exert their action though slower, less direct intracellular signaling pathways. Glutamate, GABA, and acetylcholine can activate both ionotropic and metabotropic receptors, yet the distinction between these "canonical" signaling systems has become less clear since ionotropic receptors were proposed to also activate second messenger systems, defining a "non-canonical" signaling pathway. How these alternative pathways affect neuronal circuit activity is not well understood, and their influence could be more significant than previously anticipated. In this review, we examine the evidence available that supports the existence of parallel and unsuspected signaling pathways used by ionotropic neurotransmitter receptors.
Collapse
Affiliation(s)
- Sergio Valbuena
- Instituto de Neurociencias CSIC-UMH, 03550 San Juan de Alicante, Spain
| | - Juan Lerma
- Instituto de Neurociencias CSIC-UMH, 03550 San Juan de Alicante, Spain.
| |
Collapse
|
11
|
Presynaptic Neuronal Pentraxin Receptor Organizes Excitatory and Inhibitory Synapses. J Neurosci 2016; 37:1062-1080. [PMID: 27986928 DOI: 10.1523/jneurosci.2768-16.2016] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/23/2016] [Accepted: 12/12/2016] [Indexed: 01/05/2023] Open
Abstract
Three neuronal pentraxins are expressed in brain, the membrane-bound "neuronal pentraxin receptor" (NPR) and the secreted proteins NP1 and NARP (i.e., NP2). Neuronal pentraxins bind to AMPARs at excitatory synapses and play important, well-documented roles in the activity-dependent regulation of neural circuits via this binding activity. However, it is unknown whether neuronal pentraxins perform roles in synapses beyond modulating postsynaptic AMPAR-dependent plasticity, and whether they may even act in inhibitory synapses. Here, we show that NPR expressed in non-neuronal cells potently induces formation of both excitatory and inhibitory postsynaptic specializations in cocultured hippocampal neurons. Knockdown of NPR in hippocampal neurons, conversely, dramatically decreased assembly and function of both excitatory and inhibitory postsynaptic specializations. Overexpression of NPR rescued the NPR knockdown phenotype but did not in itself change synapse numbers or properties. However, the NPR knockdown decreased the levels of NARP, whereas NPR overexpression produced a dramatic increase in the levels of NP1 and NARP, suggesting that NPR recruits and stabilizes NP1 and NARP on the presynaptic plasma membrane. Mechanistically, NPR acted in excitatory synapse assembly by binding to the N-terminal domain of AMPARs; antagonists of AMPA and GABA receptors selectively inhibited NPR-induced heterologous excitatory and inhibitory synapse assembly, respectively, but did not affect neurexin-1β-induced synapse assembly as a control. Our data suggest that neuronal pentraxins act as signaling complexes that function as general trans-synaptic organizers of both excitatory and inhibitory synapses by a mechanism that depends, at least in part, on the activity of the neurotransmitter receptors at these synapses. SIGNIFICANCE STATEMENT Neuronal pentraxins comprise three neuronal proteins, neuronal pentraxin receptor (NPR) which is a type-II transmembrane protein on the neuronal surface, and secreted neuronal pentraxin-1 and NARP. The general functions of neuronal pentraxins at synapses have not been explored, except for their basic AMPAR binding properties. Here, we examined the functional role of NPR at synapses because it is the only neuronal pentraxin that is anchored to the neuronal cell-surface membrane. We find that NPR is a potent inducer of both excitatory and inhibitory heterologous synapses, and that knockdown of NPR in cultured neurons decreases the density of both excitatory and inhibitory synapses. Our data suggest that NPR performs a general, previously unrecognized function as a universal organizer of synapses.
Collapse
|
12
|
Pinto MJ, Almeida RD. Puzzling out presynaptic differentiation. J Neurochem 2016; 139:921-942. [PMID: 27315450 DOI: 10.1111/jnc.13702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/27/2016] [Accepted: 06/10/2016] [Indexed: 12/24/2022]
Abstract
Proper brain function in the nervous system relies on the accurate establishment of synaptic contacts during development. Countless synapses populate the adult brain in an orderly fashion. In each synapse, a presynaptic terminal loaded with neurotransmitters-containing synaptic vesicles is perfectly aligned to an array of receptors in the postsynaptic membrane. Presynaptic differentiation, which encompasses the events underlying assembly of new presynaptic units, has seen notable advances in recent years. It is now consensual that as a growing axon encounters the receptive dendrites of its partner, presynaptic assembly will be triggered and specified by multiple postsynaptically-derived factors including soluble molecules and cell adhesion complexes. Presynaptic material that reaches these distant sites by axonal transport in the form of pre-assembled packets will be retained and clustered, ultimately giving rise to a presynaptic bouton. This review focuses on the cellular and molecular aspects of presynaptic differentiation in the central nervous system, with a particular emphasis on the identity of the instructive factors and the intracellular processes used by neuronal cells to assemble functional presynaptic terminals. We provide a detailed description of the mechanisms leading to the formation of new presynaptic terminals. In brief, soma-derived packets of pre-assembled material are trafficked to distant axonal sites. Synaptogenic factors from dendritic or glial provenance activate downstream intra-axonal mediators to trigger clustering of passing material and their correct organization into a new presynaptic bouton. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Collapse
Affiliation(s)
- Maria J Pinto
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ramiro D Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,School of Allied Health Technologies, Polytechnic Institute of Oporto, Vila Nova de Gaia, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
13
|
Pathogenic mechanism of an autism-associated neuroligin mutation involves altered AMPA-receptor trafficking. Mol Psychiatry 2016; 21:169-77. [PMID: 25778475 PMCID: PMC4573762 DOI: 10.1038/mp.2015.20] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 02/01/2023]
Abstract
Neuroligins are postsynaptic cell-adhesion molecules that bind to presynaptic neurexins. Although the general synaptic role of neuroligins is undisputed, their specific functions at a synapse remain unclear, even controversial. Moreover, many neuroligin gene mutations were associated with autism, but the pathophysiological relevance of these mutations is often unknown, and their mechanisms of action uninvestigated. Here, we examine the synaptic effects of an autism-associated neuroligin-4 substitution (called R704C), which mutates a cytoplasmic arginine residue that is conserved in all neuroligins. We show that the R704C mutation, when introduced into neuroligin-3, enhances the interaction between neuroligin-3 and AMPA receptors, increases AMPA-receptor internalization and decreases postsynaptic AMPA-receptor levels. When introduced into neuroligin-4, conversely, the R704C mutation unexpectedly elevated AMPA-receptor-mediated synaptic responses. These results suggest a general functional link between neuroligins and AMPA receptors, indicate that both neuroligin-3 and -4 act at excitatory synapses but perform surprisingly distinct functions, and demonstrate that the R704C mutation significantly impairs the normal function of neuroligin-4, thereby validating its pathogenicity.
Collapse
|
14
|
Yamagata A, Yoshida T, Sato Y, Goto-Ito S, Uemura T, Maeda A, Shiroshima T, Iwasawa-Okamoto S, Mori H, Mishina M, Fukai S. Mechanisms of splicing-dependent trans-synaptic adhesion by PTPδ-IL1RAPL1/IL-1RAcP for synaptic differentiation. Nat Commun 2015; 6:6926. [PMID: 25908590 PMCID: PMC4423211 DOI: 10.1038/ncomms7926] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/16/2015] [Indexed: 01/07/2023] Open
Abstract
Synapse formation is triggered through trans-synaptic interaction between pairs of pre- and postsynaptic adhesion molecules, the specificity of which depends on splice inserts known as 'splice-insert signaling codes'. Receptor protein tyrosine phosphatase δ (PTPδ) can bidirectionally induce pre- and postsynaptic differentiation of neurons by trans-synaptically binding to interleukin-1 receptor accessory protein (IL-1RAcP) and IL-1RAcP-like-1 (IL1RAPL1) in a splicing-dependent manner. Here, we report crystal structures of PTPδ in complex with IL1RAPL1 and IL-1RAcP. The first immunoglobulin-like (Ig) domain of IL1RAPL1 directly recognizes the first splice insert, which is critical for binding to IL1RAPL1. The second splice insert functions as an adjustable linker that positions the Ig2 and Ig3 domains of PTPδ for simultaneously interacting with the Ig1 domain of IL1RAPL1 or IL-1RAcP. We further identified the IL1RAPL1-specific interaction, which appears coupled to the first-splice-insert-mediated interaction. Our results thus reveal the decoding mechanism of splice-insert signaling codes for synaptic differentiation induced by trans-synaptic adhesion between PTPδ and IL1RAPL1/IL-1RAcP.
Collapse
Affiliation(s)
- Atsushi Yamagata
- Structural Biology Laboratory, Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan,Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8501, Japan,CREST, JST, Saitama 332-0012, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan,PRESTO, JST, Saitama 332-0012, Japan,
| | - Yusuke Sato
- Structural Biology Laboratory, Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan,Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8501, Japan,CREST, JST, Saitama 332-0012, Japan
| | - Sakurako Goto-Ito
- Structural Biology Laboratory, Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Takeshi Uemura
- CREST, JST, Saitama 332-0012, Japan,Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan,Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Nagano 390-8621, Japan,Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 390-8621, Japan
| | - Asami Maeda
- Structural Biology Laboratory, Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan,CREST, JST, Saitama 332-0012, Japan
| | - Tomoko Shiroshima
- Structural Biology Laboratory, Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan,CREST, JST, Saitama 332-0012, Japan
| | - Shiho Iwasawa-Okamoto
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,PRESTO, JST, Saitama 332-0012, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Masayoshi Mishina
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan,Brain Science Laboratory, The Research Organization of Science and Technology, Ritsumeikan University, Shiga 525-8577, Japan
| | - Shuya Fukai
- Structural Biology Laboratory, Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan,Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8501, Japan,CREST, JST, Saitama 332-0012, Japan,
| |
Collapse
|
15
|
Samsom JN, Wong AHC. Schizophrenia and Depression Co-Morbidity: What We have Learned from Animal Models. Front Psychiatry 2015; 6:13. [PMID: 25762938 PMCID: PMC4332163 DOI: 10.3389/fpsyt.2015.00013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/24/2015] [Indexed: 12/15/2022] Open
Abstract
Patients with schizophrenia are at an increased risk for the development of depression. Overlap in the symptoms and genetic risk factors between the two disorders suggests a common etiological mechanism may underlie the presentation of comorbid depression in schizophrenia. Understanding these shared mechanisms will be important in informing the development of new treatments. Rodent models are powerful tools for understanding gene function as it relates to behavior. Examining rodent models relevant to both schizophrenia and depression reveals a number of common mechanisms. Current models which demonstrate endophenotypes of both schizophrenia and depression are reviewed here, including models of CUB and SUSHI multiple domains 1, PDZ and LIM domain 5, glutamate Delta 1 receptor, diabetic db/db mice, neuropeptide Y, disrupted in schizophrenia 1, and its interacting partners, reelin, maternal immune activation, and social isolation. Neurotransmission, brain connectivity, the immune system, the environment, and metabolism emerge as potential common mechanisms linking these models and potentially explaining comorbid depression in schizophrenia.
Collapse
Affiliation(s)
- James N Samsom
- Department of Molecular Neuroscience, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute , Toronto, ON , Canada ; Department of Pharmacology, Faculty of Medicine, University of Toronto , Toronto, ON , Canada
| | - Albert H C Wong
- Department of Molecular Neuroscience, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute , Toronto, ON , Canada ; Department of Pharmacology, Faculty of Medicine, University of Toronto , Toronto, ON , Canada ; Department of Psychiatry, Faculty of Medicine, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
16
|
Cagle MC, Honig MG. Parcellation of cerebellins 1, 2, and 4 among different subpopulations of dorsal horn neurons in mouse spinal cord. J Comp Neurol 2014; 522:479-97. [PMID: 23853053 DOI: 10.1002/cne.23422] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/24/2013] [Accepted: 07/03/2013] [Indexed: 12/15/2022]
Abstract
The cerebellins (Cblns) are a family of secreted proteins that are widely expressed throughout the nervous system, but whose functions have been studied only in the cerebellum and striatum. Two members of the family, Cbln1 and Cbln2, bind to neurexins on presynaptic terminals and to GluRδs postsynaptically, forming trans-synaptic triads that promote synapse formation. Cbln1 has a higher binding affinity for GluRδs and exhibits greater synaptogenic activity than Cbln2. In contrast, Cbln4 does not form such triads and its function is unknown. The different properties of the three Cblns suggest that each plays a distinct role in synapse formation. To begin to elucidate Cbln function in other neuronal systems, we used in situ hybridization to examine Cbln expression in the mouse spinal cord. We find that neurons expressing Cblns 1, 2, and 4 tend to occupy different laminar positions within the dorsal spinal cord, and that Cbln expression is limited almost exclusively to excitatory neurons. Combined in situ hybridization and immunofluorescent staining shows that Cblns 1, 2, and 4 are expressed by largely distinct neuronal subpopulations, defined in part by sensory input, although there is some overlap and some individual neurons coexpress two Cblns. Our results suggest that differences in connectivity between subpopulations of dorsal spinal cord neurons may be influenced by which Cbln each subpopulation contains. Competitive interactions between axon terminals may determine the number of synapses each forms in any given region, and thereby contribute to the development of precise patterns of connectivity in the dorsal gray matter.
Collapse
Affiliation(s)
- Michael C Cagle
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, 38163
| | | |
Collapse
|
17
|
Hirano K, Kinoshita T, Uemura T, Motohashi H, Watanabe Y, Ebihara T, Nishiyama H, Sato M, Suga M, Maruyama Y, Tsuji NM, Yamamoto M, Nishihara S, Sato C. Electron microscopy of primary cell cultures in solution and correlative optical microscopy using ASEM. Ultramicroscopy 2014; 143:52-66. [DOI: 10.1016/j.ultramic.2013.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
|
18
|
Glutamate receptor δ2 associates with metabotropic glutamate receptor 1 (mGluR1), protein kinase Cγ, and canonical transient receptor potential 3 and regulates mGluR1-mediated synaptic transmission in cerebellar Purkinje neurons. J Neurosci 2013; 32:15296-308. [PMID: 23115168 DOI: 10.1523/jneurosci.0705-12.2012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cerebellar motor coordination and cerebellar Purkinje cell synaptic function require metabotropic glutamate receptor 1 (mGluR1, Grm1). We used an unbiased proteomic approach to identify protein partners for mGluR1 in cerebellum and discovered glutamate receptor δ2 (GluRδ2, Grid2, GluΔ2) and protein kinase Cγ (PKCγ) as major interactors. We also found canonical transient receptor potential 3 (TRPC3), which is also needed for mGluR1-dependent slow EPSCs and motor coordination and associates with mGluR1, GluRδ2, and PKCγ. Mutation of GluRδ2 changes subcellular fractionation of mGluR1 and TRPC3 to increase their surface expression. Fitting with this, mGluR1-evoked inward currents are increased in GluRδ2 mutant mice. Moreover, loss of GluRδ2 disrupts the time course of mGluR1-dependent synaptic transmission at parallel fiber-Purkinje cells synapses. Thus, GluRδ2 is part of the mGluR1 signaling complex needed for cerebellar synaptic function and motor coordination, explaining the shared cerebellar motor phenotype that manifests in mutants of the mGluR1 and GluRδ2 signaling pathways.
Collapse
|
19
|
Matsuda K, Yuzaki M. Cbln1 and the δ2 glutamate receptor--an orphan ligand and an orphan receptor find their partners. THE CEREBELLUM 2012; 11:78-84. [PMID: 20535596 DOI: 10.1007/s12311-010-0186-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cerebellin was originally discovered as a Purkinje cell-specific peptide more than two decades ago. Later, its precursor protein precerebellin (Cbln1) was found to be produced in cerebellar granule cells. It has become increasingly clear that although the cerebellin peptide may have certain functions, Cbln1 is an actual signaling molecule that belongs to the C1q family. However, the precise function of Cbln1 has been unresolved. Cbln1 is released from granule cells, and disruption of the cbln1 gene in mice causes a severe reduction in the number of synapses between Purkinje cells and parallel fibers (PFs; axons of granule cells) and results in cerebellar ataxia. The glutamate receptor δ2 (GluD2) is highly expressed on Purkinje cells' dendritic spines which make synapses with PFs. Although GluD2 was identified as a member of the ionotropic glutamate receptors more than 15 years ago, it has been referred to as an orphan receptor because its endogenous ligands are unclear. Interestingly, GluD2-null mice phenocopy cbln1-null mice precisely. Cbln1 and GluD2 have therefore been thought to participate in a common signaling pathway that is required for the formation of PF synapses. We recently established a direct ligand-receptor relationship between Cbln1 and GluD2. The Cbln1-GluD2 complex is located at the cleft of PF-Purkinje cell synapses and bidirectionally regulates both presynaptic and postsynaptic differentiation.
Collapse
Affiliation(s)
- Keiko Matsuda
- Department of Neurophysiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | |
Collapse
|
20
|
Glutamate-receptor-like molecule GluRδ2 involved in synapse formation at parallel fiber-Purkinje neuron synapses. THE CEREBELLUM 2012; 11:71-7. [PMID: 20387025 DOI: 10.1007/s12311-010-0170-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glutamate-receptor-like molecule δ2 (GluRδ2, GluD2) has been classified as an ionotropic glutamate receptor subunit. It is selectively expressed on the postsynaptic membrane at parallel fiber-Purkinje neuron synapses in the cerebellum. Mutant mice deficient in GluRδ2 show impaired synaptic plasticity, the decrease in the number of parallel fiber-Purkinje neuron synapses, multiple innervation of climbing fibers on a Purkinje neuron, and defects in motor control and learning. Thus, GluRδ2 plays crucial roles in the cerebellar function. Recent studies on GluRδ2 have shown that it has synaptogenic activity. GluRδ2 expressed in a non-neuronal cell induces presynaptic differentiation of granule neurons in a co-culture preparation. This synaptogenic activity depends on an extracellular N-terminal leucine/isoleucine/valine binding protein-like domain of GluRδ2. GluRδ2 plays critical roles in formation, maturation, and/or maintenance of granule neuron-Purkinje neuron synapses.
Collapse
|
21
|
Mishina M, Uemura T, Yasumura M, Yoshida T. Molecular mechanism of parallel fiber-Purkinje cell synapse formation. Front Neural Circuits 2012. [PMID: 23189042 PMCID: PMC3505014 DOI: 10.3389/fncir.2012.00090] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The cerebellum receives two excitatory afferents, the climbing fiber (CF) and the mossy fiber-parallel fiber (PF) pathway, both converging onto Purkinje cells (PCs) that are the sole neurons sending outputs from the cerebellar cortex. Glutamate receptor δ2 (GluRδ2) is expressed selectively in cerebellar PCs and localized exclusively at the PF-PC synapses. We found that a significant number of PC spines lack synaptic contacts with PF terminals and some of residual PF-PC synapses show mismatching between pre- and postsynaptic specializations in conventional and conditional GluRδ2 knockout mice. Studies with mutant mice revealed that in addition to PF-PC synapse formation, GluRδ2 is essential for synaptic plasticity, motor learning, and the restriction of CF territory. GluRδ2 regulates synapse formation through the amino-terminal domain, while the control of synaptic plasticity, motor learning, and CF territory is mediated through the carboxyl-terminal domain. Thus, GluRδ2 is the molecule that bridges synapse formation and motor learning. We found that the trans-synaptic interaction of postsynaptic GluRδ2 and presynaptic neurexins (NRXNs) through cerebellin 1 (Cbln1) mediates PF-PC synapse formation. The synaptogenic triad is composed of one molecule of tetrameric GluRδ2, two molecules of hexameric Cbln1 and four molecules of monomeric NRXN. Thus, GluRδ2 triggers synapse formation by clustering four NRXNs. These findings provide a molecular insight into the mechanism of synapse formation in the brain.
Collapse
Affiliation(s)
- Masayoshi Mishina
- Brain Science Laboratory, The Research Organization of Science and Technology, Ritsumeikan University Shiga, Japan ; Molecular Neurobiology and Pharmacology, Graduate School of Medicine, The University of Tokyo Tokyo, Japan
| | | | | | | |
Collapse
|
22
|
Abstract
Elucidation of molecular mechanisms of synapse formation is a prerequisite for the understanding of neural wiring, higher brain functions, and mental disorders. The trans-synaptic interaction of postsynaptic glutamate receptor δ2 (GluRδ2) and presynaptic neurexins (NRXNs) through cerebellin precursor protein 1 (Cbln1) mediates synapse formation in vivo in the cerebellum. Here, we asked how the trans-synaptic triad induces synapse formation. Native GluRδ2 existed as a tetramer in the membrane, whereas the N-terminal domain (NTD) of GluRδ2 formed a stable homodimer. When incubated with cultured mouse cerebellar granule cells (GCs), dimeric GluRδ2-NTD and Cbln1 exerted little effect on the accumulation of punctate immunostaining signals for Bassoon and vesicular glutamate transporter 1 in GC axons. However, tetramerized GluRδ2-NTD stimulated the accumulation of these presynaptic proteins in the axons. Analysis of Cbln1 mutants suggested that the binding sites of GluRδ2 and NRXN1β on Cbln1 are differential. Furthermore, there was no competition in the binding to Cbln1 between GluRδ2-NTD and the extracellular domain (ECD) of NRXN1β. Thus, GluRδ2 and Cbln1 interacted with each other rather independently of Cbln1-NRXN1β interaction and vice versa. Gel filtration and isothermal titration calorimetry analyses consistently showed that dimeric GluRδ2-NTD and hexameric Cbln1 assembled in the 1:1 ratio, whereas hexameric Cbln1 and the laminin-neurexin-sex hormone-binding globulin domain of NRXN1β-ECD assembled in the 1:2 ratio. Thus, the synaptogenic triad is assembled from tetrameric GluRδ2, hexameric Cbln1, and monomeric NRXN in the ratio of 1:2:4. These results suggest that GluRδ2 triggers synapse formation by clustering four NRXNs through triad formation.
Collapse
|
23
|
Interleukin-1 receptor accessory protein organizes neuronal synaptogenesis as a cell adhesion molecule. J Neurosci 2012; 32:2588-600. [PMID: 22357843 DOI: 10.1523/jneurosci.4637-11.2012] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Interleukin-1 receptor accessory protein (IL-1RAcP) is the essential component of receptor complexes mediating immune responses to interleukin-1 family cytokines. IL-1RAcP in the brain exists in two isoforms, IL-1RAcP and IL-1RAcPb, differing only in the C-terminal region. Here, we found robust synaptogenic activities of IL-1RAcP in cultured cortical neurons. Knockdown of IL-1RAcP isoforms in cultured cortical neurons suppressed synapse formation as indicated by decreases of active zone protein Bassoon puncta and dendritic protrusions. IL-1RAcP recovered the accumulation of presynaptic Bassoon puncta, while IL-1RAcPb rescued both Bassoon puncta and dendritic protrusions. Consistently, the expression of IL-1RAcP in cortical neurons enhances the accumulation of Bassoon puncta and that of IL-1RAcPb stimulated both Bassoon puncta accumulation and spinogenesis. IL-1RAcP interacted with protein tyrosine phosphatase (PTP) δ through the extracellular domain. Mini-exon peptides in the Ig-like domains of PTPδ splice variants were critical for their efficient binding to IL-1RAcP. The synaptogenic activities of IL-1RAcP isoforms were diminished in cortical neurons from PTPδ knock-out mice. Correspondingly, PTPδ required IL-1RAcPb to induce postsynaptic differentiation. Thus, IL-1RAcPb bidirectionally regulated synapse formation of cortical neurons. Furthermore, the spine densities of cortical and hippocampal pyramidal neurons were reduced in IL-1RAcP knock-out mice lacking both isoforms. These results suggest that IL-1RAcP isoforms function as trans-synaptic cell adhesion molecules in the brain and organize synapse formation. Thus, IL-1RAcP represents an interesting molecular link between immune systems and synapse formation in the brain.
Collapse
|
24
|
Deletion of glutamate delta-1 receptor in mouse leads to aberrant emotional and social behaviors. PLoS One 2012; 7:e32969. [PMID: 22412961 PMCID: PMC3296759 DOI: 10.1371/journal.pone.0032969] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 02/02/2012] [Indexed: 12/27/2022] Open
Abstract
The delta family of ionotropic glutamate receptors consists of glutamate δ1 (GluD1) and glutamate δ2 (GluD2) receptors. While the role of GluD2 in the regulation of cerebellar physiology is well understood, the function of GluD1 in the central nervous system remains elusive. We demonstrate for the first time that deletion of GluD1 leads to abnormal emotional and social behaviors. We found that GluD1 knockout mice (GluD1 KO) were hyperactive, manifested lower anxiety-like behavior, depression-like behavior in a forced swim test and robust aggression in the resident-intruder test. Chronic lithium rescued the depression-like behavior in GluD1 KO. GluD1 KO mice also manifested deficits in social interaction. In the sociability test, GluD1 KO mice spent more time interacting with an inanimate object compared to a conspecific mouse. D-Cycloserine (DCS) administration was able to rescue social interaction deficits observed in GluD1 KO mice. At a molecular level synaptoneurosome preparations revealed lower GluA1 and GluA2 subunit expression in the prefrontal cortex and higher GluA1, GluK2 and PSD95 expression in the amygdala of GluD1 KO. Moreover, DCS normalized the lower GluA1 expression in prefrontal cortex of GluD1 KO. We propose that deletion of GluD1 leads to aberrant circuitry in prefrontal cortex and amygdala owing to its potential role in presynaptic differentiation and synapse formation. Furthermore, these findings are in agreement with the human genetic studies suggesting a strong association of GRID1 gene with several neuropsychiatric disorders including schizophrenia, bipolar disorder, autism spectrum disorders and major depressive disorder.
Collapse
|
25
|
Yasumura M, Yoshida T, Lee SJ, Uemura T, Joo JY, Mishina M. Glutamate receptor δ1 induces preferentially inhibitory presynaptic differentiation of cortical neurons by interacting with neurexins through cerebellin precursor protein subtypes. J Neurochem 2012; 121:705-16. [PMID: 22191730 DOI: 10.1111/j.1471-4159.2011.07631.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glutamate receptor (GluR) δ1 is widely expressed in the developing forebrain, whereas GluRδ2 is selectively expressed in cerebellar Purkinje cells. Recently, we found that trans-synaptic interaction of postsynaptic GluRδ2 and pre-synaptic neurexins (NRXNs) through cerebellin precursor protein (Cbln) 1 mediates excitatory synapse formation in the cerebellum. Thus, a question arises whether GluRδ1 regulates synapse formation in the forebrain. In this study, we showed that the N-terminal domain of GluRδ1 induced inhibitory presynaptic differentiation of some populations of cultured cortical neurons. When Cbln1 or Cbln2 was added to cultures, GluRδ1 expressed in HEK293T cells induced preferentially inhibitory presynaptic differentiation of cultured cortical neurons. The synaptogenic activity of GluRδ1 was suppressed by the addition of the extracellular domain of NRXN1α or NRXN1β containing splice segment 4. Cbln subtypes directly bound to the N-terminal domain of GluRδ1. The synaptogenic activity of GluRδ1 in the presence of Cbln subtypes correlated well with their binding affinities. When transfected to cortical neurons, GluRδ1 stimulated inhibitory synapse formation in the presence of Cbln1 or Cbln2. These results together with differential interactions of Cbln subtypes with NRXN variants suggest that GluRδ1 induces preferentially inhibitory presynaptic differentiation of cortical neurons by interacting with NRXNs containing splice segment 4 through Cbln subtypes.
Collapse
Affiliation(s)
- Misato Yasumura
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
26
|
IL-1 receptor accessory protein-like 1 associated with mental retardation and autism mediates synapse formation by trans-synaptic interaction with protein tyrosine phosphatase δ. J Neurosci 2011; 31:13485-99. [PMID: 21940441 DOI: 10.1523/jneurosci.2136-11.2011] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mental retardation (MR) and autism are highly heterogeneous neurodevelopmental disorders. IL-1-receptor accessory protein-like 1 (IL1RAPL1) is responsible for nonsyndromic MR and is associated with autism. Thus, the elucidation of the functional role of IL1RAPL1 will contribute to our understanding of the pathogenesis of these mental disorders. Here, we showed that knockdown of endogenous IL1RAPL1 in cultured cortical neurons suppressed the accumulation of punctate staining signals for active zone protein Bassoon and decreased the number of dendritic protrusions. Consistently, the expression of IL1RAPL1 in cultured neurons stimulated the accumulation of Bassoon and spinogenesis. The extracellular domain (ECD) of IL1RAPL1 was required and sufficient for the presynaptic differentiation-inducing activity, while both the ECD and cytoplasmic domain were essential for the spinogenic activity. Notably, the synaptogenic activity of IL1RAPL1 was specific for excitatory synapses. Furthermore, we identified presynaptic protein tyrosine phosphatase (PTP) δ as a major IL1RAPL1-ECD interacting protein by affinity chromatography. IL1RAPL1 interacted selectively with certain forms of PTPδ splice variants carrying mini-exon peptides in Ig-like domains. The synaptogenic activity of IL1RAPL1 was abolished in primary neurons from PTPδ knock-out mice. IL1RAPL1 showed robust synaptogenic activity in vivo when transfected into the cortical neurons of wild-type mice but not in PTPδ knock-out mice. These results suggest that IL1RAPL1 mediates synapse formation through trans-synaptic interaction with PTPδ. Our findings raise an intriguing possibility that the impairment of synapse formation may underlie certain forms of MR and autism as a common pathogenic pathway shared by these mental disorders.
Collapse
|
27
|
Nishimune H. Transsynaptic channelosomes: non-conducting roles of ion channels in synapse formation. Channels (Austin) 2011; 5:432-9. [PMID: 21654201 PMCID: PMC3265764 DOI: 10.4161/chan.5.5.16472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/14/2011] [Accepted: 04/14/2011] [Indexed: 11/19/2022] Open
Abstract
Recent findings demonstrate that synaptic channels are directly involved in the formation and maintenance of synapses by interacting with synapse organizers. The synaptic channels on the pre- and postsynaptic membranes possess non-conducting roles in addition to their functional roles as ion-conducting channels required for synaptic transmission. For example, presynaptic voltage-dependent calcium channels link the target-derived synapse organizer laminin β2 to cytomatrix of the active zone and function as scaffolding proteins to organize the presynaptic active zones. Furthermore, postsynaptic δ2-type glutamate receptors organize the synapses by forming transsynaptic protein complexes with presynaptic neurexins through synapse organizer cerebellin 1 precursor proteins. Interestingly, the synaptic clustering of AMPA receptors is regulated by neuronal activity-regulated pentraxins, while postsynaptic differentiation is induced by the interaction of postsynaptic calcium channels and thrombospondins. This review will focus on the non-conducting functions of ion-channels that contribute to the synapse formation in concert with synapse organizers and active-zone-specific proteins.
Collapse
Affiliation(s)
- Hiroshi Nishimune
- Department of Anatomy and Cell Biology, Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical School, Kansas City, KS, USA.
| |
Collapse
|
28
|
Joo JY, Lee SJ, Uemura T, Yoshida T, Yasumura M, Watanabe M, Mishina M. Differential interactions of cerebellin precursor protein (Cbln) subtypes and neurexin variants for synapse formation of cortical neurons. Biochem Biophys Res Commun 2011; 406:627-32. [DOI: 10.1016/j.bbrc.2011.02.108] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
|
29
|
Yadav R, Rimerman R, Scofield MA, Dravid SM. Mutations in the transmembrane domain M3 generate spontaneously open orphan glutamate δ1 receptor. Brain Res 2011; 1382:1-8. [PMID: 21215726 DOI: 10.1016/j.brainres.2010.12.086] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 12/28/2010] [Accepted: 12/30/2010] [Indexed: 12/22/2022]
Abstract
Glutamate delta-1 receptors (GluRδ1) are expressed in the adult hippocampus and inner ear and have recently been shown to be important for high-frequency hearing. Similar to the closest homolog glutamate delta-2 receptor (GluRδ2), no agonist-induced currents are observed from GluRδ1 receptors. In an effort to understand the function of the GluRδ1 subunit, we probed the conserved transmembrane 3 (TM3) region of the GluRδ1 subunit, where the GluRδ2 lurcher mutation is localized. Four mutations in the TM3 domain A650C, L652A, A654C, and F655A resulted in spontaneously open GluRδ1 channels suggesting that GluRδ1 receptors can form homomeric receptors. The leak currents were partially blocked by pentamidine but showed negligible inhibition by NASP. It has been demonstrated that extracellular Ca(2+) binds and stabilizes the ligand binding domain (LBD) dimer interface leading to potentiation of currents through GluRδ2(Lc) channels. We found that extracellular Ca(2+) potentiated the spontaneous currents through GluRδ1F655A suggesting that extracellular Ca(2+) may interact with the conserved residues at GluRδ1 LBD dimer interface. A recent study suggested that d-serine and glycine bind to the GluRδ2 LBD and reduce spontaneous currents through the GluRδ2(Lc) channels. d-Serine and glycine produced only a modest reduction of spontaneous currents through GluRδ1F655A and had no effect on the spontaneous current through GluRδ1L652A. However, spontaneous currents in a chimeric GluRδ1-δ2(Lc) were robustly inhibited by d-serine. These results suggest that the activation gate is conserved in GluRδ1 receptors. Moreover, the conformational changes induced by d-serine and extracellular Ca(2+) are conserved among GluRδ1 and GluRδ2 receptors.
Collapse
Affiliation(s)
- Roopali Yadav
- Department of Pharmacology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | | | | | | |
Collapse
|
30
|
Ablation of glutamate receptor GluRδ2 in adult Purkinje cells causes multiple innervation of climbing fibers by inducing aberrant invasion to parallel fiber innervation territory. J Neurosci 2010; 30:15196-209. [PMID: 21068325 DOI: 10.1523/jneurosci.0934-10.2010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Glutamate receptor GluRδ2 is exclusively expressed in Purkinje cells (PCs) from early development and plays key roles in parallel fiber (PF) synapse formation, elimination of surplus climbing fibers (CFs), long-term depression, motor coordination, and motor learning. To address its role in adulthood, we previously developed a mouse model of drug-induced GluRδ2 ablation in adult PCs (Takeuchi et al., 2005). In that study, we demonstrated an essential role to maintain the connectivity of PF-PC synapses, based on the observation that both mismatching of presynaptic and postsynaptic specializations and disconnection of PF-PC synapses are progressively increased after GluRδ2 ablation. Here, we pursued its role for CF wiring in adult cerebellum. In parallel with the disconnection of PF-PC synapses, ascending CF branches exhibited distal extension to innervate distal dendrites of the target and neighboring PCs. Furthermore, transverse CF branches, a short motile collateral rarely forming synapses in wild-type animals, displayed aberrant mediolateral extension to innervate distal dendrites of neighboring and remote PCs. Consequently, many PCs were wired by single main CF and other surplus CFs innervating a small part of distal dendrites. Electrophysiological recording further revealed that surplus CF-EPSCs characterized with slow rise time and small amplitude emerged after GluRδ2 ablation, and increased progressively both in number and amplitude. Therefore, GluRδ2 is essential for maintaining CF monoinnervation in adult cerebellum by suppressing aberrant invasion of CF branches to the territory of PF innervation. Thus, GluRδ2 fuels heterosynaptic competition and gives PFs the competitive advantages over CFs throughout the animal's life.
Collapse
|
31
|
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010; 62:405-96. [PMID: 20716669 PMCID: PMC2964903 DOI: 10.1124/pr.109.002451] [Citation(s) in RCA: 2711] [Impact Index Per Article: 180.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.
Collapse
Affiliation(s)
- Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322-3090, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
For neurons to communicate, signals must cross the cell-to-cell distance at their points of contact. At the predominant cell-cell contact in the central nervous system, the chemical synapse, the synaptic cleft spans roughly 20 nanometers. To signal across this distance, the presynaptic neuron secretes a diffusible neurotransmitter, which is detected by receptors on the postsynaptic neuron. Although this signaling mechanism has become common knowledge, it remains unclear how synapses are maintained when they are not in immediate use. New evidence reveals how Nature solved this problem at a particular type of synapse in the cerebellum: Three old acquaintances bridge the cleft. The ionotropic glutamate receptor GluD2 constitutes the postsynaptic anchor that indirectly interacts with the presynaptic anchor neurexin through a presynaptically secreted soluble factor, a member of the C1q protein family named Cbln1. This trio collaborates to align pre- and postsynaptic sides.
Collapse
Affiliation(s)
- Sabine M Schmid
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
33
|
Yuzaki M. Synapse formation and maintenance by C1q family proteins: a new class of secreted synapse organizers. Eur J Neurosci 2010; 32:191-7. [PMID: 20646056 DOI: 10.1111/j.1460-9568.2010.07346.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several C1q family members, especially the Cbln and C1q-like subfamilies, are highly and predominantly expressed in the central nervous system. Cbln1, a member of the Cbln subfamily, plays two unique roles at parallel fiber (PF)-Purkinje cell synapses in the cerebellum: the formation and stabilization of synaptic contact, and the control of functional synaptic plasticity by regulating the postsynaptic endocytotic pathway. The delta2 glutamate receptor (GluD2), which is predominantly expressed in Purkinje cells, plays similar critical roles in the cerebellum. In addition, viral expression of GluD2 or the application of recombinant Cbln1 induces PF-Purkinje cell synaptogenesis in vitro and in vivo. Antigen-unmasking methods were necessary to reveal the immunoreactivities for endogenous Cbln1 and GluD2 at the synaptic junction of PF synapses. We propose that Cbln1 and GluD2 are located at the synaptic cleft, where various proteins undergo intricate molecular interactions with each other, and serve as a bidirectional synaptic organizer.
Collapse
Affiliation(s)
- Michisuke Yuzaki
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
34
|
Kuroyanagi T, Hirano T. Flap loop of GluD2 binds to Cbln1 and induces presynaptic differentiation. Biochem Biophys Res Commun 2010; 398:537-41. [DOI: 10.1016/j.bbrc.2010.06.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 06/27/2010] [Indexed: 11/28/2022]
|
35
|
Trans-synaptic interaction of GluRdelta2 and Neurexin through Cbln1 mediates synapse formation in the cerebellum. Cell 2010; 141:1068-79. [PMID: 20537373 DOI: 10.1016/j.cell.2010.04.035] [Citation(s) in RCA: 378] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 03/10/2010] [Accepted: 04/09/2010] [Indexed: 11/24/2022]
Abstract
Elucidation of molecular mechanisms that regulate synapse formation is required for the understanding of neural wiring, higher brain functions, and mental disorders. Despite the wealth of in vitro information, fundamental questions about how glutamatergic synapses are formed in the mammalian brain remain unanswered. Glutamate receptor (GluR) delta2 is essential for cerebellar synapse formation in vivo. Here, we show that the N-terminal domain (NTD) of GluRdelta2 interacts with presynaptic neurexins (NRXNs) through cerebellin 1 precursor protein (Cbln1). The synaptogenic activity of GluRdelta2 is abolished in cerebellar primary cultures from Cbln1 knockout mice and is restored by recombinant Cbln1. Knockdown of NRXNs in cerebellar granule cells also hinders the synaptogenic activity of GluRdelta2. Both the NTD of GluRdelta2 and the extracellular domain of NRXN1beta suppressed the synaptogenic activity of Cbln1 in cerebellar primary cultures and in vivo. These results suggest that GluRdelta2 mediates cerebellar synapse formation by interacting with presynaptic NRXNs through Cbln1.
Collapse
|
36
|
Matsuda K, Miura E, Miyazaki T, Kakegawa W, Emi K, Narumi S, Fukazawa Y, Ito-Ishida A, Kondo T, Shigemoto R, Watanabe M, Yuzaki M. Cbln1 Is a Ligand for an Orphan Glutamate Receptor 2, a Bidirectional Synapse Organizer. Science 2010; 328:363-8. [DOI: 10.1126/science.1185152] [Citation(s) in RCA: 270] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
37
|
Abstract
The assembly of specific synaptic connections during development of the nervous system represents a remarkable example of cellular recognition and differentiation. Neurons employ several different cellular signaling strategies to solve this puzzle, which successively limit unwanted interactions and reduce the number of direct recognition events that are required to result in a specific connectivity pattern. Specificity mechanisms include the action of contact-mediated and long-range signals that support or inhibit synapse formation, which can take place directly between synaptic partners or with transient partners and transient cell populations. The molecular signals that drive the synaptic differentiation process at individual synapses in the central nervous system are similarly diverse and act through multiple, parallel differentiation pathways. This molecular complexity balances the need for central circuits to be assembled with high accuracy during development while retaining plasticity for local and dynamic regulation.
Collapse
Affiliation(s)
- Kang Shen
- Howard Hughes Medical Institute, Department of Biology and Pathology, Stanford University, Stanford, California 94305;
| | - Peter Scheiffele
- Department of Cell Biology, Biozentrum of the University of Basel, Basel 4056, Switzerland;
| |
Collapse
|
38
|
Torashima T, Iizuka A, Horiuchi H, Mitsumura K, Yamasaki M, Koyama C, Takayama K, Iino M, Watanabe M, Hirai H. Rescue of abnormal phenotypes in δ2 glutamate receptor-deficient mice by the extracellular N-terminal and intracellular C-terminal domains of the δ2 glutamate receptor. Eur J Neurosci 2009; 30:355-65. [DOI: 10.1111/j.1460-9568.2009.06841.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Schmid SM, Kott S, Sager C, Huelsken T, Hollmann M. The glutamate receptor subunit delta2 is capable of gating its intrinsic ion channel as revealed by ligand binding domain transplantation. Proc Natl Acad Sci U S A 2009; 106:10320-5. [PMID: 19506248 PMCID: PMC2700928 DOI: 10.1073/pnas.0900329106] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Indexed: 11/18/2022] Open
Abstract
The family of ionotropic glutamate receptors includes 2 subunits, delta1 and delta2, the physiological relevance of which remains poorly understood. Both are nonfunctional in heterologous expression systems, although the isolated, crystallized ligand binding domain (LBD) of delta2 is capable of binding D-serine. To investigate these seemingly contradictory observations we tested whether delta receptors can be ligand gated at all. We used a strategy that replaced the native LBD of delta2 by a proven glutamate-binding LBD. Test transplantations between alpha-amino-3-hydroxy-5-methylisoxazole propionate (AMPA) and kainate receptors (GluR1 and GluR6, respectively) showed that this approach can produce functional chimeras even if only one part of the bipartite LBD is swapped. Upon outfitting delta2 with the LBD of GluR6, the chimera formed glutamate-gated ion channels with low Ca(2+) permeability and unique rectification properties. Ligand-induced conformational changes can thus gate delta2, suggesting that the LBD of this receptor works fundamentally differently from that of other ionotropic glutamate receptors.
Collapse
Affiliation(s)
- Sabine M. Schmid
- Department of Biochemistry I–Receptor Biochemistry
- International Graduate School of Neuroscience
| | - Sabine Kott
- Department of Biochemistry I–Receptor Biochemistry
| | - Charlotte Sager
- Department of Biochemistry I–Receptor Biochemistry
- Ruhr University Research School, Ruhr University Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
| | | | - Michael Hollmann
- Department of Biochemistry I–Receptor Biochemistry
- International Graduate School of Neuroscience
| |
Collapse
|
40
|
The N-terminal domain of GluD2 (GluRdelta2) recruits presynaptic terminals and regulates synaptogenesis in the cerebellum in vivo. J Neurosci 2009; 29:5738-48. [PMID: 19420242 DOI: 10.1523/jneurosci.6013-08.2009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The delta2 glutamate receptor (GluRdelta2; GluD2), which is predominantly expressed on postsynaptic sites at parallel fiber (PF)-Purkinje cell synapses in the cerebellum, plays two crucial roles in the cerebellum: the formation of PF synapses and the regulation of long-term depression (LTD), a form of synaptic plasticity underlying motor learning. Although the induction of LTD and motor learning absolutely require signaling via the cytoplasmic C-terminal domain of GluD2, the mechanisms by which GluD2 regulates PF synaptogenesis have remained unclear. Here, we examined the role of the extracellular N-terminal domain (NTD) of GluD2 on PF synaptogenesis by injecting Sindbis virus carrying wild-type (GluD2(wt)) or mutant GluD2 into the subarachnoid supracerebellar space of GluD2-null mice. Remarkably, the expression of GluD2(wt), but not of a mutant GluD2 lacking the NTD (GluD2(DeltaNTD)), rapidly induced PF synapse formation and rescued gross motor dyscoordination in adult GluD2-null mice just 1 d after injection. In addition, although the kainate receptor GluR6 (GluK2) did not induce PF synaptogenesis, a chimeric GluK2 that contained the NTD of GluD2 (GluD2(NTD)-GluK2) did. Similarly, GluD2(wt) and GluD2(NTD)-GluK2, but not GluD2(DeltaNTD), induced synaptogenesis in heterologous cells in vitro. In contrast, LTD was restored in GluD2-null Purkinje cells expressing a mutant GluD2 lacking the NTD. These results indicate that the NTD of GluD2 is necessary and sufficient for the function of GluD2 in the regulation of PF-Purkinje cell synaptogenesis. Furthermore, our results suggest that GluD2 differently regulates PF synaptogenesis and cerebellar LTD through the extracellular NTD and the cytoplasmic C-terminal end, respectively.
Collapse
|
41
|
Mandolesi G, Autuori E, Cesa R, Premoselli F, Cesare P, Strata P. GluRdelta2 expression in the mature cerebellum of hotfoot mice promotes parallel fiber synaptogenesis and axonal competition. PLoS One 2009; 4:e5243. [PMID: 19370152 PMCID: PMC2666267 DOI: 10.1371/journal.pone.0005243] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 03/19/2009] [Indexed: 12/02/2022] Open
Abstract
Glutamate receptor delta 2 (GluRdelta2) is selectively expressed in the cerebellum, exclusively in the spines of the Purkinje cells (PCs) that are in contact with parallel fibers (PFs). Although its structure is similar to ionotropic glutamate receptors, it has no channel function and its ligand is unknown. The GluRdelta2-null mice, such as knockout and hotfoot have profoundly altered cerebellar circuitry, which causes ataxia and impaired motor learning. Notably, GluRdelta2 in PC-PF synapses regulates their maturation and strengthening and induces long term depression (LTD). In addition, GluRdelta2 participates in the highly territorial competition between the two excitatory inputs to the PC; the climbing fiber (CF), which innervates the proximal dendritic compartment, and the PF, which is connected to spiny distal branchlets. Recently, studies have suggested that GluRdelta2 acts as an adhesion molecule in PF synaptogenesis. Here, we provide in vivo and in vitro evidence that supports this hypothesis. Through lentiviral rescue in hotfoot mice, we noted a recovery of PC-PF contacts in the distal dendritic domain. In the proximal domain, we observed the formation of new spines that were innervated by PFs and a reduction in contact with the CF; ie, the pattern of innervation in the PC shifted to favor the PF input. Moreover, ectopic expression of GluRdelta2 in HEK293 cells that were cocultured with granule cells or in cerebellar Golgi cells in the mature brain induced the formation of new PF contacts. Collectively, our observations show that GluRdelta2 is an adhesion molecule that induces the formation of PF contacts independently of its cellular localization and promotes heterosynaptic competition in the PC proximal dendritic domain.
Collapse
|
42
|
Postsynaptic glutamate receptor delta family contributes to presynaptic terminal differentiation and establishment of synaptic transmission. Proc Natl Acad Sci U S A 2009; 106:4912-6. [PMID: 19258455 DOI: 10.1073/pnas.0900892106] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synaptic adhesion molecules such as neuroligin are involved in synapse formation, whereas ionotropic transmitter receptors mediate fast synaptic transmission. In mutant mice deficient in the glutamate receptor delta2 subunit (delta2), the number of synapses between granule neurons (GNs) and a Purkinje neuron (PN) in the cerebellum is reduced. Here, we have examined the role of delta2 in synapse formation using culture preparations. First, we found that the size and number of GN presynaptic terminals on a PN in the primary culture prepared from knockout mice were smaller than those in control culture. Next we expressed delta2 in nonneuronal human embryonic kidney (HEK) cells and cocultured them with GNs. Punctate structures expressing marker proteins for glutamatergic presynaptic terminals were accumulated around the HEK cells. Furthermore, HEK cells expressing both delta2 and GluR1, a glutamate receptor subunit forming a functional glutamate-gated ion channel, showed postsynaptic current. Deletion of the extracellular leucine/isoleucine/valine binding protein (LIVBP) domain of delta2 abolished the induction ability, and the LIVBP domain directly fused to a transmembrane sequence was sufficient to induce presynaptic differentiation. Furthermore, a mutant GluR1 whose LIVBP domain was replaced with the delta2 LIVBP domain was sufficient by itself to establish synaptic transmission. Another member of delta glutamate receptor family delta1 also induced presynaptic differentiation. Thus, the delta glutamate receptor subfamily can induce the differentiation of glutamatergic presynaptic terminals and contribute to the establishment of synaptic transmission.
Collapse
|