1
|
Askmyr D, Abolhalaj M, Gomez Jimenez D, Greiff L, Lindstedt M, Lundberg K. Pattern recognition receptor expression and maturation profile of dendritic cell subtypes in human tonsils and lymph nodes. Hum Immunol 2021; 82:976-981. [PMID: 34511272 DOI: 10.1016/j.humimm.2021.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/18/2021] [Accepted: 08/10/2021] [Indexed: 01/02/2023]
Abstract
Dendritic cells (DCs) with capacity of antigen cross-presentation are of key interest for immunotherapy against cancer as they can induce antigen-specific cytotoxic T lymphocyte (CTL) responses. This study describes frequencies of DC subtypes in human tonsils and lymph nodes, and phenotypic aspects that may be targeted by adjuvant measures. From human tonsils and neck lymph nodes, DCs were identified through flow cytometry, and subsets of plasmacytoid DCs (pDCs) and myeloid DCs (mDCs) were investigated. Maturity status was assessed and surface receptors with CTL-promoting potentials were studied. CD123+ pDCs as well as CD1c+, CD141+, and CD1c-CD141- mDCs were detected in tonsils and lymph nodes. Both sites featured a similar presence of DC subsets, with CD123+ pDC being dominant and CD141+ mDCs least frequent. Based on CD80/CD86 expression, all DC subtypes featured a low degree of maturation. Expression of pattern recognition receptors (PRRs) CD206, CD207, DC-SIGN, TLR2, and TLR4, as well as the chemokine receptor XCR1, indicated DC subset-specific receptor profiles. We conclude that tonsils and lymph nodes share common features in terms of DC subset frequency and maturation as well as PRR and XCR1 expression pattern. Our work suggests that both sites may be considered for vaccine deposition in DC-mediated immunotherapy.
Collapse
Affiliation(s)
- David Askmyr
- Department of ORL, Head & Neck Surgery, Skåne University Hospital, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Milad Abolhalaj
- Department of Immunotechnology, Lund University, Lund, Sweden.
| | | | - Lennart Greiff
- Department of ORL, Head & Neck Surgery, Skåne University Hospital, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden.
| | | |
Collapse
|
2
|
Lee SJ, Kim HJ, Byun NR, Park CG. Donor-Specific Regulatory T Cell-Mediated Immune Tolerance in an Intrahepatic Murine Allogeneic Islet Transplantation Model with Short-Term Anti-CD154 mAb Single Treatment. Cell Transplant 2021; 29:963689720913876. [PMID: 32216448 PMCID: PMC7586274 DOI: 10.1177/0963689720913876] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Anti-CD154 blockade-based regimens remain unequaled in prolonging graft survival in various organ transplantation models. Several studies have focused on transplantation tolerance with the anti-CD154 blockade, but none of these studies has investigated the mechanisms associated with its use as the sole treatment in animal models, delaying our understanding of anti-CD154 blockade-mediated immune tolerance. The purpose of this study was to investigate the mechanism underlying the anti-CD154 monoclonal antibody (mAb) blockade in inducing immune tolerance using an intrahepatic murine allogeneic islet transplantation model. Allogeneic BALB/c AnHsd (BALB/c) islets were infused into the liver of diabetic C57BL/6 (B6) mice via the cecal vein. Anti-CD154 mAb (MR1) was administered on -1, 0, 1, 3, 5, and 7 d posttransplantation at 0.5 mg per mouse. We showed that short-term MR1 monotherapy could prolong the allogeneic islet grafts to more than 250 d in the murine intrahepatic islet transplantation model. The second islet grafts transplanted under the kidney capsule of the recipients were protected from rejection. We also found that rejection of same-donor skin grafts transplanted to the tolerant mice was modestly delayed. Using a DEREG mouse model, FoxP3+ regulatory T (Treg) cells were shown to play important roles in transplantation tolerance. In mixed lymphocyte reactions, Treg cells from the tolerant mice showed more potency in suppressing BALB/c splenocyte-stimulated Teff cell proliferation than those from naïve mice. In this study, we demonstrated for the first time that a short-term anti-CD154 mAb single treatment could induce FoxP3+ Treg cell-mediated immune tolerance in the intrahepatic murine allogeneic islet transplantation model.
Collapse
Affiliation(s)
- Seok-Joo Lee
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Science, Seoul National University Graduate School, Seoul, Korea
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Oral Microbiology and Immunology, Seoul National University School of Dentistry, Seoul, Korea
| | - Hyun-Je Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Science, Seoul National University Graduate School, Seoul, Korea
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Dermatology, Samsung Medical Center, Seoul, Korea
| | - Na-ri Byun
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Science, Seoul National University Graduate School, Seoul, Korea
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
- Byun is now with the Hanmi R&D center, Hwaseong-si, Gyeonggi-do18469, Korea
| | - Chung-Gyu Park
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Science, Seoul National University Graduate School, Seoul, Korea
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Dermatology, Samsung Medical Center, Seoul, Korea
- Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Chung-Gyu Park, MD, PhD, 103 Daehak-ro, Jongno-gu, 110-799 Seoul, South Korea. Emails: ;
| |
Collapse
|
3
|
Sigal D, Przedborski M, Sivaloganathan D, Kohandel M. Mathematical modelling of cancer stem cell-targeted immunotherapy. Math Biosci 2019; 318:108269. [DOI: 10.1016/j.mbs.2019.108269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/17/2019] [Accepted: 10/05/2019] [Indexed: 12/15/2022]
|
4
|
Ara A, Ahmed KA, Xiang J. Multiple effects of CD40-CD40L axis in immunity against infection and cancer. Immunotargets Ther 2018; 7:55-61. [PMID: 29988701 PMCID: PMC6029590 DOI: 10.2147/itt.s163614] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
CD8+ cytotoxic T lymphocyte (CTL) protects against infection and cancer cells. Understanding the mechanisms involved in generation and maintenance of effective CTL responses is essential for improving disease therapy and vaccine protocols. During CTL responses, immune cells encounter several tightly regulated signaling pathways; therefore, in such a dynamic process, proper integration of critical signals is necessary to orchestrate an effective immune response. In this review, we have focused on CD40-CD40L interactions (a key signal) in the regulation of dendritic cell (DC)-T cell (CD4+ T and CD8+ T) cross-talk, rescuing CTL exhaustion, and converting DC tolerization. We have also highlighted the knowledge gap and future directions to design immunotherapies.
Collapse
Affiliation(s)
- Anjuman Ara
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada, .,Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada,
| | - Khawaja Ashfaque Ahmed
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada, .,Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada,
| | - Jim Xiang
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada, .,Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada,
| |
Collapse
|
5
|
Su E, Han X, Jiang G. The Transforming Growth Factor Beta 1/SMAD Signaling Pathway Involved in Human Chronic Myeloid Leukemia. TUMORI JOURNAL 2018; 96:659-66. [DOI: 10.1177/030089161009600503] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Transforming growth factor beta 1 (TGF-β1) is the prototypic member of a large family of structurally related pleiotropic-secretedcytokines. The TGF-β1/SMAD signaling pathway usually participates in a wide range of cellular processes such as growth, proliferation, differentiation and apoptosis. Upon binding onTGF-β1, the dimerized TGF-β type II receptors recruit and phosphorylate the TGF-β type I receptors, which phosphorylate the receptor-regulated SMAD (SMAD2 and SMAD3) presented by the SMAD anchor for receptor activation. The phosphorylated receptor-regulated SMAD form heterologous complexes with the common-mediator SMAD (SMAD4) and subsequently translocate into the nucleus, where they interact with other transcription factors to regulate the expression of target genes. This multi-functional signaling pathway modulated by various elements with complex mechanisms at different levels is also inevitably involved in cancer. We herein present data on the role of the TGF-β1/SMAD signaling pathway in human chronic myeloid leukemia and explain the potent biological effects of TGF-β1 on leukemia cells. The paper is based on a review of articles selected from Cancerline and Medline data bases. The constitutively active tyrosine kinase produced by the specific Bcr-Abl fusion gene on the Philadelphia chromosome can enhance the resistance of malignant cells to TGF-β1-induced growth inhibition and apoptosis, which contributes to enhancement of proteasomal degradation of p27. However, overexpression of the EVI1 gene, which is also caused by Bcr-Abl, can recruit the C-terminal binding protein and histone deacetylase to prevent the MH2 domain on SMAD3. The later is essential for transcription activation on target genes and leads to blockage of the TGF-β1/SMAD signaling pathway. Some studies have indicated that certain therapeutic agents applied in clinical treatment can inhibit proliferation and promote differentiation of leukemia cells by way of modulation of the TGF-β1/SMAD signal pathway. For example, arsenic trioxide can promote specific degradation of the AML1/MDS1/EVI1 oncoprotein and inhibit the proliferation of leukemia cells. However, specific histone deacetylase inhibitors can interrupt the effect of histone deacetylase to alleviate EVI1-mediated suppression of TGF-β1/SMAD signaling. The tyrosine kinase inhibitor in the target therapy of chronic myeloid leukemia can effectively inhibit the tyrosine kinase activity of Bcr-Abl and induce suppression on the TGF-β1/SMAD signaling pathway. The TGF-β1/SMAD signaling pathway plays an important role in chronic myeloid leukemia cells and leads the leukemia cells to growth inhibition, differentiation and apoptosis. The positive influence of the TGF-β1/SMAD signaling pathway in chronic myeloid leukemia is fairly significant, and its potential effects in clinical treatment will bring about definite benefits. Since it is a complex signaling pathway widely involved in many aspects of cellular activities, further study and comprehensive analysis of the TGF-β1/SMAD signaling pathway are imperative and will have a guiding significance in research and clinical applications. It is an exciting area for future research. Free full text available at www.tumorionline.it
Collapse
Affiliation(s)
- Enyu Su
- Key Laboratory for Modern Medicine and Technology of Shandong Province, Institute of Basic Medicine
| | - Xiao Han
- Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| | - Guosheng Jiang
- Key Laboratory for Modern Medicine and Technology of Shandong Province, Institute of Basic Medicine
| |
Collapse
|
6
|
Fraser CK, Brown MP, Diener KR, Hayball JD. Unravelling the complexity of cancer–immune system interplay. Expert Rev Anticancer Ther 2014; 10:917-34. [DOI: 10.1586/era.10.66] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Abstract
Progress in vector design and an increased knowledge of mechanisms underlying tumor-induced immune suppression have led to a new and promising generation of Adenovirus (Ad)-based immunotherapies, which are discussed in this review. As vaccine vehicles Ad vectors (AdVs) have been clinically evaluated and proven safe, but a major limitation of the commonly used Ad5 serotype is neutralization by preexistent or rapidly induced immune responses. Genetic modifications in the Ad capsid can reduce intrinsic immunogenicity and facilitate escape from antibody-mediated neutralization. Further modification of the Ad hexon and fiber allows for liver and scavenger detargeting and selective targeting of, for example, dendritic cells. These next-generation Ad vaccines with enhanced efficacy are now becoming available for testing as tumor vaccines. In addition, AdVs encoding immune-modulating products may be used to convert the tumor microenvironment from immune-suppressive and proinvasive to proinflammatory, thus facilitating cell-mediated effector functions that can keep tumor growth and invasion in check. Oncolytic AdVs, that selectively replicate in tumor cells and induce an immunogenic form of cell death, can also be armed with immune-activating transgenes to amplify primed antitumor immune responses. These novel immunotherapy strategies, employing highly efficacious AdVs in optimized configurations, show great promise and warrant clinical exploration.
Collapse
|
8
|
Kushwah R, Hu J. Role of dendritic cells in the induction of regulatory T cells. Cell Biosci 2011; 1:20. [PMID: 21711933 PMCID: PMC3125210 DOI: 10.1186/2045-3701-1-20] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/24/2011] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) play a key role in initiating immune responses and maintaining immune tolerance. In addition to playing a role in thymic selection, DCs play an active role in tolerance under steady state conditions through several mechanisms which are dependent on IL-10, TGF-β, retinoic acid, indoleamine-2,3,-dioxygenase along with vitamin D. Several of these mechanisms are employed by DCs in induction of regulatory T cells which are comprised of Tr1 regulatory T cells, natural and inducible foxp3+ regulatory T cells, Th3 regulatory T cells and double negative regulatory T cells. It appears that certain DC subsets are highly specialized in inducing regulatory T cell differentiation and in some tissues the local microenvironment plays a role in driving DCs towards a tolerogenic response. In this review we discuss the recent advances in our understanding of the mechanisms underlying DC driven regulatory T cell induction.
Collapse
Affiliation(s)
- Rahul Kushwah
- Physiology and Experimental Medicine Research Program, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada.
| | | |
Collapse
|