1
|
Nader N, Assaf L, Zarif L, Halama A, Yadav S, Dib M, Attarwala N, Chen Q, Suhre K, Gross S, Machaca K. Progesterone induces meiosis through two obligate co-receptors with PLA2 activity. eLife 2025; 13:RP92635. [PMID: 39873665 PMCID: PMC11774516 DOI: 10.7554/elife.92635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
The steroid hormone progesterone (P4) regulates multiple aspects of reproductive and metabolic physiology. Classical P4 signaling operates through nuclear receptors that regulate transcription. In addition, P4 signals through membrane P4 receptors (mPRs) in a rapid nongenomic modality. Despite the established physiological importance of P4 nongenomic signaling, the details of its signal transduction cascade remain elusive. Here, using Xenopus oocyte maturation as a well-established physiological readout of nongenomic P4 signaling, we identify the lipid hydrolase ABHD2 (α/β hydrolase domain-containing protein 2) as an essential mPRβ co-receptor to trigger meiosis. We show using functional assays coupled to unbiased and targeted cell-based lipidomics that ABHD2 possesses a phospholipase A2 (PLA2) activity that requires mPRβ. This PLA2 activity bifurcates P4 signaling by inducing clathrin-dependent endocytosis of mPRβ, resulting in the production of lipid messengers that are G-protein coupled receptor agonists. Therefore, P4 drives meiosis by inducing an ABHD2 PLA2 activity that requires both mPRβ and ABHD2 as obligate co-receptors.
Collapse
Affiliation(s)
- Nancy Nader
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
| | - Lama Assaf
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
- College of Health and Life Science, Hamad bin Khalifa UniversityDohaQatar
| | - Lubna Zarif
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
| | - Anna Halama
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
- Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
| | - Sharan Yadav
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
- Medical program, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
| | - Maya Dib
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
| | - Nabeel Attarwala
- Department of Pharmacology, Weill Cornell MedicineNew YorkUnited States
- Biological Sciences division, University of ChicagoChicagoUnited States
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell MedicineNew YorkUnited States
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
- Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
| | - Steven Gross
- Department of Pharmacology, Weill Cornell MedicineNew YorkUnited States
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
| |
Collapse
|
2
|
Nader N, Assaf L, Zarif L, Halama A, Yadav S, Dib M, Attarwala N, Chen Q, Suhre K, Gross SS, Machaca K. Progesterone induces meiosis through two obligate co-receptors with PLA2 activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.09.556646. [PMID: 37905030 PMCID: PMC10614741 DOI: 10.1101/2023.09.09.556646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The steroid hormone progesterone (P4) regulates multiple aspects of reproductive and metabolic physiology. Classical P4 signaling operates through nuclear receptors that regulate transcription. In addition, P4 signals through membrane P4 receptors (mPRs) in a rapid nongenomic modality. Despite the established physiological importance of P4 nongenomic signaling, the details of its signal transduction cascade remain elusive. Here, using Xenopus oocyte maturation as a well-established physiological readout of nongenomic P4 signaling, we identify the lipid hydrolase ABHD2 (α/β hydrolase domain-containing protein 2) as an essential mPRβ co-receptor to trigger meiosis. We show using functional assays coupled to unbiased and targeted cell-based lipidomics that ABHD2 possesses a phospholipase A2 (PLA2) activity that requires mPRβ. This PLA2 activity bifurcates P4 signaling by inducing clathrin-dependent endocytosis of mPRβ, resulting in the production of lipid messengers that are G-protein coupled receptors agonists. Therefore, P4 drives meiosis by inducing an ABHD2 PLA2 activity that requires both mPRβ and ABHD2 as obligate co-receptors.
Collapse
Affiliation(s)
- Nancy Nader
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Lama Assaf
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Lubna Zarif
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Anna Halama
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Sharan Yadav
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Medical program, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Maya Dib
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Nabeel Attarwala
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Biological Sciences division, University of Chicago, Chicago, IL, USA
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Steven S. Gross
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Lv MY, Jin LL, Sang XQ, Shi WC, Qiang LX, Lin QY, Jin SD. Abhd2, a Candidate Gene Regulating Airway Remodeling in COPD via TGF-β. Int J Chron Obstruct Pulmon Dis 2024; 19:33-50. [PMID: 38197032 PMCID: PMC10775803 DOI: 10.2147/copd.s440200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024] Open
Abstract
Purpose The typical characteristic of COPD is airway remodeling, affected by environmental and genetic factors. However, genetic studies on COPD have been limited. Currently, the Abhd2 gene is found to play a critical role in maintaining alveolar architecture and stability. The research aims to investigate the predictive value of Abhd2 for airway remodeling in COPD and its effect on TGF-β regulation. Methods In humans, Abhd2 protein was obtained from peripheral blood monocytes. Peripheral blood TGF-β, pulmonary surfactant proteins (SPs), metalloproteinases, inflammatory indicators (WBC, NEU, NLR, EOS, CRP, PCT, D-Dimer), chest CT (airway diameter and airway wall thickness), pulmonary function, and blood gas analysis were used to assess airway remodeling. In animals, Abhd2 deficient mice (Abhd2Gt/Gt) using gene trapping and C57BL6 mice were injected intraperitoneally with CSE to construct COPD models. HE staining, Masson staining and immunohistochemistry were used to observe the pathological changes of airway in mice, and RT-PCR, WB, ELISA and immunofluorescence were used to detect the expression of secreted proteins and EMT markers. Results COPD patients with worse pulmonary function and higher airway remodeling-related inflammatory factors had lower Abhd2 protein expression. Moreover, indicators followed the same trend for COPD patients grouped by prognosis (Group A vs Group B). Serum TGF-β was negatively correlated with Abhd2 protein expression, FEV1/FVC, FEV1, and FEV1% PRED. In mice, Abhd2 depletion promoted deposition of TGF-β, leading to more pronounced emphysema, airway thickening, increased alveolar macrophage infiltration, decreased AECII number and SPs, and EMT phenomenon. Conclusion Downregulation of Abhd2 can promote airway remodeling in COPD by modulating repair after injury and EMT via TGF-β. This study suggests that Abhd2 may serve as a biomarker for assessing airway remodeling and guiding prognosis in COPD.
Collapse
Affiliation(s)
- Mei-Yu Lv
- Department of Respiratory Medicine, Harbin Medical University Cancer Hospital, Harbin, 150001, People’s Republic of China
- Department of Respiratory Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Ling-Ling Jin
- Department of Respiratory Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
- Department of Critical Care medicine, the Second Affiliated Hospital of Xi ‘an Jiaotong University, Xi’an, Shaanxi, China
| | - Xi-Qiao Sang
- Department of Respiratory Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Wen-Chao Shi
- Department of Respiratory Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Li-Xia Qiang
- Department of Respiratory Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Qing-Yan Lin
- Department of Respiratory Medicine, Heilongjiang Provincial Hospital, Harbin, 150001, People’s Republic of China
| | - Shou-De Jin
- Department of Respiratory Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| |
Collapse
|
4
|
Price TR, Stapleton DS, Schueler KL, Norris MK, Parks BW, Yandell BS, Churchill GA, Holland WL, Keller MP, Attie AD. Lipidomic QTL in Diversity Outbred mice identifies a novel function for α/β hydrolase domain 2 (Abhd2) as an enzyme that metabolizes phosphatidylcholine and cardiolipin. PLoS Genet 2023; 19:e1010713. [PMID: 37523383 PMCID: PMC10414554 DOI: 10.1371/journal.pgen.1010713] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/10/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023] Open
Abstract
We and others have previously shown that genetic association can be used to make causal connections between gene loci and small molecules measured by mass spectrometry in the bloodstream and in tissues. We identified a locus on mouse chromosome 7 where several phospholipids in liver showed strong genetic association to distinct gene loci. In this study, we integrated gene expression data with genetic association data to identify a single gene at the chromosome 7 locus as the driver of the phospholipid phenotypes. The gene encodes α/β-hydrolase domain 2 (Abhd2), one of 23 members of the ABHD gene family. We validated this observation by measuring lipids in a mouse with a whole-body deletion of Abhd2. The Abhd2KO mice had a significant increase in liver levels of phosphatidylcholine and phosphatidylethanolamine. Unexpectedly, we also found a decrease in two key mitochondrial lipids, cardiolipin and phosphatidylglycerol, in male Abhd2KO mice. These data suggest that Abhd2 plays a role in the synthesis, turnover, or remodeling of liver phospholipids.
Collapse
Affiliation(s)
- Tara R. Price
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Donnie S. Stapleton
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kathryn L. Schueler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Marie K. Norris
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States of America
| | - Brian W. Parks
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Brian S. Yandell
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | | | - William L. Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States of America
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
5
|
Price TR, Stapleton DS, Schueler KL, Norris MK, Parks BW, Yandell BS, Churchill GA, Holland WL, Keller MP, Attie AD. Lipidomic QTL in Diversity Outbred mice identifies a novel function for α/β hydrolase domain 2 ( Abhd2 ) as an enzyme that metabolizes phosphatidylcholine and cardiolipin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533902. [PMID: 36993241 PMCID: PMC10055419 DOI: 10.1101/2023.03.23.533902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We and others have previously shown that genetic association can be used to make causal connections between gene loci and small molecules measured by mass spectrometry in the bloodstream and in tissues. We identified a locus on mouse chromosome 7 where several phospholipids in liver showed strong genetic association to distinct gene loci. In this study, we integrated gene expression data with genetic association data to identify a single gene at the chromosome 7 locus as the driver of the phospholipid phenotypes. The gene encodes α/β-hydrolase domain 2 ( Abhd2 ), one of 23 members of the ABHD gene family. We validated this observation by measuring lipids in a mouse with a whole-body deletion of Abhd2 . The Abhd2 KO mice had a significant increase in liver levels of phosphatidylcholine and phosphatidylethanolamine. Unexpectedly, we also found a decrease in two key mitochondrial lipids, cardiolipin and phosphatidylglycerol, in male Abhd2 KO mice. These data suggest that Abhd2 plays a role in the synthesis, turnover, or remodeling of liver phospholipids.
Collapse
Affiliation(s)
- Tara R Price
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
| | - Donnie S Stapleton
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
| | - Kathryn L Schueler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
| | - Marie K Norris
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Brian W Parks
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | - Brian S Yandell
- Department of Statistics, University of Wisconsin-Madison, Madison, WI
| | | | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
6
|
Wendler A, Wehling M. Many or too many progesterone membrane receptors? Clinical implications. Trends Endocrinol Metab 2022; 33:850-868. [PMID: 36384863 DOI: 10.1016/j.tem.2022.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022]
Abstract
Several receptors for nongenomically initiated actions of progesterone (P4) exist, namely membrane-associated P4 receptors (MAPRs), membrane progestin receptors (mPRs), receptors for neurosteroids [GABAA receptor (GABAAR), NMDA receptor, sigma-1 and -2 receptors (S1R/S2R)], the classical genomic P4 receptor (PGR), and α/β hydrolase domain-containing protein 2 (ABHD2). Two drugs related to this field have been approved: brexanolone (Zulresso™) for the treatment of postpartum depression, and ganaxolone (Ztalmy™) for the treatment of CDKL5 deficiency disorder. Both are derivatives of P4 and target the GABAAR. Several other indications are in clinical testing. CT1812 (Elayta™) is also being tested for the treatment of Alzheimer's disease (AD) in Phase 2 clinical trials, targeting the P4 receptor membrane component 1 (PGRMC1)/S2R complex. In this Review, we highlight emerging knowledge on the mechanisms of nongenomically initiated actions of P4 and its derivatives.
Collapse
Affiliation(s)
- Alexandra Wendler
- Clinical Pharmacology Mannheim, Faculty of Medicine Mannheim, Ruprecht-Karls-University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Martin Wehling
- Clinical Pharmacology Mannheim, Faculty of Medicine Mannheim, Ruprecht-Karls-University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany.
| |
Collapse
|
7
|
Liu BW, Wang XY, Cao JL, Chen LL, Wang YL, Zhao BQ, Zhou J, Shen ZF. TDP-43 upregulates lipid metabolism modulator ABHD2 to suppress apoptosis in hepatocellular carcinoma. Commun Biol 2022; 5:816. [PMID: 35963893 PMCID: PMC9376094 DOI: 10.1038/s42003-022-03788-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022] Open
Abstract
TAR DNA-Binding Protein 43 (TDP-43) has been well studied in neurodegenerative diseases, but its potential role in malignance is still unclear. Here, we demonstrate that TDP-43 contributes to the suppression of apoptosis by facilitating lipid metabolism in hepatocellular carcinoma (HCC). In HCC cells, TDP-43 is able to suppress apoptosis while deletion of it markedly induces apoptosis. RNA-sequencing identifies the lipid metabolism gene abhydrolase domain containing 2 (ABHD2) as the target gene of TDP-43. Tissue microarray analysis shows the positive correlation of TDP-43 and ABHD2 in HCC. Mechanistically, TDP-43 binds with the UG-rich sequence1 of ABHD2 3’UTR to enhance the mRNA stability of ABHD2, thereby upregulating ABHD2. Afterwards, TDP-43 promotes the production of free fatty acid and fatty acid oxidation-originated reactive oxygen species (ROS) in an ABHD2-dependent manner, so as to suppress apoptosis of HCC. Our findings provide insights into the mechanism of HCC progression and reveal TDP-43/ABHD2 as potential targets for the precise treatment of HCC. TDP-43 acts as an RNA-binding protein that regulates the RNA stability of ABHD2 and affects the release of fatty acids and ROS, which in turn regulates apoptosis and affects the growth of liver tumors.
Collapse
Affiliation(s)
- Bo-Wen Liu
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China.
| | - Xiang-Yun Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Jin-Ling Cao
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Lu-Lu Chen
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Yi-Lei Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Bing-Qian Zhao
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Jia Zhou
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Zhi-Fa Shen
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China.
| |
Collapse
|
8
|
Lv MY, Qiang LX, Wang BC, Zhang YP, Li ZH, Li XS, Jin LL, Jin SD. Complex Evaluation of Surfactant Protein A and D as Biomarkers for the Severity of COPD. Int J Chron Obstruct Pulmon Dis 2022; 17:1537-1552. [PMID: 35811742 PMCID: PMC9259505 DOI: 10.2147/copd.s366988] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/25/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Pulmonary surfactant proteins A (SP-A) and D (SP-D) are lectins, involved in host defense and regulation of pulmonary inflammatory response. However, studies on the assessment of COPD progress are limited. Patients and Methods Pulmonary surfactant proteins were obtained from the COPD mouse model induced by cigarette and lipopolysaccharide, and the specimens of peripheral blood and bronchoalveolar lavage (BALF) in COPD populations. H&E staining and RT-PCR were performed to demonstrate the successfully established of the mouse model. The expression of SP-A and SP-D in mice was detected by Western Blot and immunohistochemistry, while the proteins in human samples were measured by ELISA. Pulmonary function test, inflammatory factors (CRP, WBC, NLR, PCT, EOS, PLT), dyspnea index score (mMRC and CAT), length of hospital stay, incidence of complications and ventilator use were collected to assess airway remodeling and progression of COPD. Results COPD model mice with emphysema and airway wall thickening were more prone to have decreased SP-A, SP-D and increased TNF-α, TGF-β, and NF-kb in lung tissue. In humans, SP-A and SP-D decreased in BALF, but increased in serum. The serum SP-A and SP-D were negatively correlated with FVC, FEV1, FEV1/FVC, and positively correlated with CRP, WBC, NLR, mMRC and CAT scores (P < 0.05, respectively). The lower the SP-A and SP-D in BALF, the worse the lung function and the increased probability of complications and ventilator use. Moreover, the same trend emerged in COPD patients grouped according to GOLD severity grade (Gold 1–2 group vs Gold 3–4 group). The worse the patient’s condition, the more pronounced the change. Conclusion This study suggests that SP-A and SP-D may be related to the progression and prognostic evaluation of COPD in terms of airway remodeling, inflammatory response and clinical symptoms, and emphasizes the necessity of future studies of surfactant protein markers in COPD.
Collapse
Affiliation(s)
- Mei-Yu Lv
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Li-Xia Qiang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Bao-Cai Wang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Yue-Peng Zhang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Zhi-Heng Li
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Xiang-Shun Li
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Ling-Ling Jin
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Shou-De Jin
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
- Correspondence: Shou-De Jin, Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001, People’s Republic of China, Tel/Fax +86 0451-85939123, Email
| |
Collapse
|
9
|
Bredemeyer AL, Amrute JM, Koenig AL, Idol RA, He L, Luff SA, Dege C, Leid JM, Schilling JD, Hinson JT, Dinauer MC, Sturgeon CM, Lavine KJ. Derivation of extra-embryonic and intra-embryonic macrophage lineages from human pluripotent stem cells. Development 2022; 149:dev200016. [PMID: 35178561 PMCID: PMC9124573 DOI: 10.1242/dev.200016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022]
Abstract
Tissue-resident macrophages are increasingly recognized as important determinants of organ homeostasis, tissue repair, remodeling and regeneration. Although the ontogeny and function of tissue-resident macrophages has been identified as distinct from postnatal hematopoiesis, the inability to specify, in vitro, similar populations that recapitulate these developmental waves has limited our ability to study their function and potential for regenerative applications. We took advantage of the concept that tissue-resident macrophages and monocyte-derived macrophages originate from distinct extra-embryonic and definitive hematopoietic lineages to devise a system to generate pure cultures of macrophages that resemble tissue-resident or monocyte-derived subsets. We demonstrate that human pluripotent stem cell-derived extra-embryonic-like and intra-embryonic-like hematopoietic progenitors differentiate into morphologically, transcriptionally and functionally distinct macrophage populations. Single-cell RNA sequencing of developing and mature cultures uncovered distinct developmental trajectories and gene expression programs of macrophages derived from extra-embryonic-like and intra-embryonic-like hematopoietic progenitors. These findings establish a resource for the generation of human tissue resident-like macrophages to study their specification and function under defined conditions and to explore their potential use in tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Andrea L. Bredemeyer
- Center for Cardiovascular Research, Departmental of Medicine, Cardiovascular Division, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Junedh M. Amrute
- Center for Cardiovascular Research, Departmental of Medicine, Cardiovascular Division, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Andrew L. Koenig
- Center for Cardiovascular Research, Departmental of Medicine, Cardiovascular Division, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Rachel A. Idol
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Li He
- Center for Cardiovascular Research, Departmental of Medicine, Cardiovascular Division, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Stephanie A. Luff
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Carissa Dege
- Department of Medicine, Division of Hematology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jamison M. Leid
- Center for Cardiovascular Research, Departmental of Medicine, Cardiovascular Division, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Joel D. Schilling
- Center for Cardiovascular Research, Departmental of Medicine, Cardiovascular Division, Washington University School of Medicine, St Louis, MO 63110, USA
| | - J. Travis Hinson
- Departments of Cardiology, Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Mary C. Dinauer
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Christopher M. Sturgeon
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai School of Medicine, New York, NY 10029, USA
- Department of Medicine, Division of Hematology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Kory J. Lavine
- Center for Cardiovascular Research, Departmental of Medicine, Cardiovascular Division, Washington University School of Medicine, St Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
10
|
Bononi G, Tuccinardi T, Rizzolio F, Granchi C. α/β-Hydrolase Domain (ABHD) Inhibitors as New Potential Therapeutic Options against Lipid-Related Diseases. J Med Chem 2021; 64:9759-9785. [PMID: 34213320 PMCID: PMC8389839 DOI: 10.1021/acs.jmedchem.1c00624] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Much of the experimental evidence in the literature has linked altered lipid metabolism to severe diseases such as cancer, obesity, cardiovascular pathologies, diabetes, and neurodegenerative diseases. Therefore, targeting key effectors of the dysregulated lipid metabolism may represent an effective strategy to counteract these pathological conditions. In this context, α/β-hydrolase domain (ABHD) enzymes represent an important and diversified family of proteins, which are involved in the complex environment of lipid signaling, metabolism, and regulation. Moreover, some members of the ABHD family play an important role in the endocannabinoid system, being designated to terminate the signaling of the key endocannabinoid regulator 2-arachidonoylglycerol. This Perspective summarizes the research progress in the development of ABHD inhibitors and modulators: design strategies, structure-activity relationships, action mechanisms, and biological studies of the main ABHD ligands will be highlighted.
Collapse
Affiliation(s)
- Giulia Bononi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.,Department of Molecular Sciences and Nanosystems, Ca' Foscari University, 30123 Venezia, Italy
| | - Carlotta Granchi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
11
|
Bai S, Zhao L. Imbalance Between Injury and Defense in the COPD Emphysematous Phenotype. Front Med (Lausanne) 2021; 8:653332. [PMID: 34026786 PMCID: PMC8131650 DOI: 10.3389/fmed.2021.653332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/10/2021] [Indexed: 11/15/2022] Open
Abstract
The chronic obstructive pulmonary disease (COPD) emphysematous phenotype is characterized by destruction of lung tissue structure. Patients with this phenotype usually present with typical emphysema-like changes on chest computed Tomography CT, experience higher mortality and poorer prognosis, and are insensitive to routine pharmacological COPD therapy. However, the pathogenesis for the COPD emphysematous phenotype remains unclear, resulting in diagnostic and therapeutic challenges. The imbalance between injury and defense mechanisms is essential in the progression of many pulmonary diseases. Thus, in this review, we focus on the pathogenesis of the COPD emphysematous phenotype and discuss the pathophysiological processes involved in disease progression, from the perspective of injury and defense imbalance.
Collapse
Affiliation(s)
- Shuang Bai
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Zhao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Human Interferon Inducible Transmembrane Protein 3 (IFITM3) Inhibits Influenza Virus A Replication and Inflammation by Interacting with ABHD16A. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6652147. [PMID: 33763481 PMCID: PMC7946484 DOI: 10.1155/2021/6652147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/11/2021] [Accepted: 02/20/2021] [Indexed: 01/08/2023]
Abstract
Studies have shown that human interferon inducible transmembrane protein (hIFITMs) family proteins have broad-spectrum antiviral capabilities. Preliminary studies in our laboratory have tentatively proved that hIFITMs have the effect of inhibiting influenza viruses. In order to further study its mechanism and role in the occurrence and development of influenza A, relevant studies have been carried out. Fluorescence quantitative polymerase chain reaction (PCR) detection technology was used to observe the effect of hIFITM3 on the replication of influenza A virus (IVA) and the interaction with hABHD16A. In HEK293 cells, overexpression of hIFITM3 protein significantly inhibited the replication of IVA at 24 h, 48 h, and 72 h; yeast two-hybrid experiment proved that hIFITM3 interacts with hABHD16A; laser confocal microscopy observations showed that hIFITM3 and hABHD16A colocalized in the cell membrane area; the expression level of inflammation-related factors in cells overexpressing hIFITM3 or hABHD16A was detected by fluorescence quantitative PCR, and the results showed that the mRNA levels of interleukin- (IL-) 1β, IL-6, IL-10, tumor necrosis factor- (TNF-) α, and cyclooxygenase 2 (COX2) were significantly increased. But when hIFITM3/hABHD16A was coexpressed, the mRNA expression levels of these cytokines were significantly reduced except COX2. When influenza virus infected cells coexpressing hIFITM3/hABHD16A, the expression level of inflammatory factors decreased compared with the control group, indicating that hIFITM3 can play an important role in regulating inflammation balance. This study confirmed that hIFITM3 has an effect of inhibiting IVA replication. Furthermore, it was found that hIFITM3 interacts with hABHD16A, following which it can better inhibit the replication of influenza virus and the inflammatory response caused by the disease process.
Collapse
|
13
|
Novel insights into wound age estimation: combined with "up, no change, or down" system and cosine similarity in python environment. Int J Legal Med 2020; 134:2177-2186. [PMID: 32909067 DOI: 10.1007/s00414-020-02411-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 08/27/2020] [Indexed: 01/23/2023]
Abstract
Wound age estimation is a complex, multifactorial issue. It is considered to have great practical significance that combining multi-biomarkers and multi-methods for injury time estimation. We optimized our earlier "up, no change, or down" model by adding data on the expression levels of mRNAs encoding ABHD2, MAD2L2, and ARID5A, and we converted the relative quantitative expression levels of seven genes into a vector rather than a color model. We used Python to derive the cosine similarity (CS) between a test set and the vector matrix; the highest similarity most accurately reflected the injury time. For the optimized model, the internal and external verifications were approximately 0.71 and 0.66, respectively. The good double-blinded results indicated that the model was stable and reliable. In summary, we used a vector matrix and cosine similarities derived by Python to mine the levels of genes expressed in contused skeletal muscle. We are the first to combine several biomarkers and methods for wound age estimation.
Collapse
|
14
|
He Y, Yang Y, Liao Y, Xu J, Liu L, Li C, Xiong X. miR-140-3p Inhibits Cutaneous Melanoma Progression by Disrupting AKT/p70S6K and JNK Pathways through ABHD2. Mol Ther Oncolytics 2020; 17:83-93. [PMID: 32322665 PMCID: PMC7163049 DOI: 10.1016/j.omto.2020.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
Abstract
Because cutaneous melanoma (CM) is one of the most lethal human tumors, major treatment advances are vital. miR-140-3p has been suggested to act as a suppressor in a range of malignant tumors, implying its possible use as a biomarker for effective antineoplastic treatment. However, the potential role of miR-140-3p in CM and the underlying mechanism remain unclear. In the present study, we identified lower levels of miR-140-3p in both CM tissues and cell lines; this downregulation was strongly associated with worse CM survival. Additionally, overexpression of miR-140-3p significantly inhibited cell proliferation, migration, and invasion in CM cells with different cell line origins. Importantly, by means of both bioinformatics analysis and luciferase reporter assay, we revealed abhydrolase domain containing 2 (ABHD2) to be a target of miR-140-3p in CM cells. Upregulation of ABHD2 reversed the tumor-suppressive effects of miR-140-3p in CM cells. Furthermore, miR-140-3p-targeted ABHD2 played a role in both activation of JNK signaling and inhibition of the AKT/p70S6K pathway in CM cells. Finally, in vivo results strongly suggested the suppressive effects of miR-140-3p on CM growth and metastasis. Collectively, our findings highlight a novel antineoplastic function for miR-140-3p in CM through ABHD2.
Collapse
Affiliation(s)
- Yuanmin He
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yan Yang
- Department of Public Health, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yongmei Liao
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jixiang Xu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Li Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Changqiang Li
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
15
|
Baggelaar MP, den Dulk H, Florea BI, Fazio D, Bernabò N, Raspa M, Janssen APA, Scavizzi F, Barboni B, Overkleeft HS, Maccarrone M, van der Stelt M. ABHD2 Inhibitor Identified by Activity-Based Protein Profiling Reduces Acrosome Reaction. ACS Chem Biol 2019; 14:2295-2304. [PMID: 31525885 PMCID: PMC6878212 DOI: 10.1021/acschembio.9b00640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
ABHD2 is a serine hydrolase that belongs to the subgroup of the α,β-hydrolase fold-containing proteins, which is involved in virus propagation, immune response, and fertilization. Chemical tools to selectively modulate the activity of ABHD2 in an acute setting are highly desired to investigate its biological role, but are currently lacking. Here, we report a library-versus-library screening using activity-based protein profiling (ABPP) to evaluate in parallel the selectivity and activity of a focused lipase inhibitor library against ABHD2 and a panel of closely related ABHD proteins. This screen resulted in the rapid identification of novel inhibitors for ABHD2. The selectivity of the inhibitor was further investigated in native mouse testis proteome by competitive ABPP, revealing a highly restricted off-target profile. The progesterone-induced acrosome reaction was reduced in a dose-dependent manner by the newly identified inhibitor, which provides further support for the key-role of ABHD2 in the P4-stimulated acrosome reaction. On this basis, the ABHD2 inhibitor is an excellent starting point for further optimization of ABHD2 inhibitors that can modulate sperm fertility and may lead to novel contraceptives.
Collapse
Affiliation(s)
| | | | | | - Domenico Fazio
- Unit of Basic and Applied Biosciences, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Nicola Bernabò
- Unit of Basic and Applied Biosciences, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Marcello Raspa
- National Research Council (IBCN), CNR-Campus International Development (EMMA INFRAFRONTIER-IMPC), Via E. Ramarini 32, 00015 Monterotondo Scalo, Italy
| | | | - Ferdinando Scavizzi
- National Research Council (IBCN), CNR-Campus International Development (EMMA INFRAFRONTIER-IMPC), Via E. Ramarini 32, 00015 Monterotondo Scalo, Italy
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | | | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
- European Centre for Brain Research/IRCCS Santa Lucia Foundation, via del Fosso del Fiorano 65, 00143 Rome, Italy
| | | |
Collapse
|
16
|
Baggelaar MP, Maccarrone M, van der Stelt M. 2-Arachidonoylglycerol: A signaling lipid with manifold actions in the brain. Prog Lipid Res 2018; 71:1-17. [PMID: 29751000 DOI: 10.1016/j.plipres.2018.05.002] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 11/19/2022]
Abstract
2-Arachidonoylglycerol (2-AG) is a signaling lipid in the central nervous system that is a key regulator of neurotransmitter release. 2-AG is an endocannabinoid that activates the cannabinoid CB1 receptor. It is involved in a wide array of (patho)physiological functions, such as emotion, cognition, energy balance, pain sensation and neuroinflammation. In this review, we describe the biosynthetic and metabolic pathways of 2-AG and how chemical and genetic perturbation of these pathways has led to insight in the biological role of this signaling lipid. Finally, we discuss the potential therapeutic benefits of modulating 2-AG levels in the brain.
Collapse
Affiliation(s)
- Marc P Baggelaar
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; European Centre for Brain Research/IRCCS Santa Lucia Foundation, via del Fosso del Fiorano 65, 00143 Rome, Italy
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands..
| |
Collapse
|
17
|
Suppression of ABHD2, identified through a functional genomics screen, causes anoikis resistance, chemoresistance and poor prognosis in ovarian cancer. Oncotarget 2018; 7:47620-47636. [PMID: 27323405 PMCID: PMC5216966 DOI: 10.18632/oncotarget.9951] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 05/28/2016] [Indexed: 01/06/2023] Open
Abstract
Anoikis resistance is a hallmark of cancer, and relates to malignant phenotypes, including chemoresistance, cancer stem like phenotypes and dissemination. The aim of this study was to identify key factors contributing to anoikis resistance in ovarian cancer using a functional genomics screen. A library of 81 000 shRNAs targeting 15 000 genes was transduced into OVCA420 cells, followed by incubation in soft agar and colony selection. We found shRNAs directed to ABHD2, ELAC2 and CYB5R3 caused reproducible anoikis resistance. These three genes are deleted in many serous ovarian cancers according to The Cancer Genome Atlas data. Suppression of ABHD2 in OVCA420 cells increased phosphorylated p38 and ERK, platinum resistance, and side population cells (p<0.01, respectively). Conversely, overexpression of ABHD2 decreased resistance to anoikis (p<0.05) and the amount of phosphorylated p38 and ERK in OVCA420 and SKOV3 cells. In clinical serous ovarian cancer specimens, low expression of ABHD2 was associated with platinum resistance and poor prognosis (p<0.05, respectively). In conclusion, we found three novel genes relevant to anoikis resistance in ovarian cancer using a functional genomics screen. Suppression of ABHD2 may promote a malignant phenotype and poor prognosis for women with serous ovarian cancer.
Collapse
|
18
|
Fowler CJ, Doherty P, Alexander SPH. Endocannabinoid Turnover. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 80:31-66. [PMID: 28826539 DOI: 10.1016/bs.apha.2017.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this review, we consider the biosynthetic, hydrolytic, and oxidative metabolism of the endocannabinoids anandamide and 2-arachidonoylglycerol. We describe the enzymes associated with these events and their characterization. We identify the inhibitor profile for these enzymes and the status of therapeutic exploitation, which to date has been limited to clinical trials for fatty acid amide hydrolase inhibitors. To bring the review to a close, we consider whether point block of a single enzyme is likely to be the most successful approach for therapeutic exploitation of the endocannabinoid system.
Collapse
Affiliation(s)
| | - Patrick Doherty
- Wolfson Centre for Age-Related Disease, King's College London, London, United Kingdom
| | | |
Collapse
|
19
|
High fat diet-induced changes of mouse hepatic transcription and enhancer activity can be reversed by subsequent weight loss. Sci Rep 2017; 7:40220. [PMID: 28071704 PMCID: PMC5223143 DOI: 10.1038/srep40220] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/05/2016] [Indexed: 01/12/2023] Open
Abstract
Epigenetic factors have been suggested to play an important role in metabolic memory by trapping and maintaining initial metabolic changes within the transcriptional regulatory machinery. In this study we fed mice a high fat diet (HFD) for seven weeks followed by additional five weeks of chow, to identify HFD-mediated changes to the hepatic transcriptional program that may persist after weight loss. Mice fed a HFD displayed increased fasting insulin levels, hepatosteatosis and major changes in hepatic gene transcription associated with modulation of H3K27Ac at enhancers, but no significant changes in chromatin accessibility, indicating that HFD-regulated gene transcription is primarily controlled by modulating the activity of pre-established enhancers. After return to the same body weight as chow fed control mice, the fasting insulin, glucose, and hepatic triglyceride levels were fully restored to normal levels. Moreover, HFD-regulated H3K27Ac and mRNA levels returned to similar levels as control mice. These data demonstrates that the transcription regulatory landscape in the liver induced by HFD is highly dynamic and can be reversed by weight loss. This provides hope for efficient treatment of early obesity-associated changes to hepatic complications by simple weight loss intervention without persistent reprograming of the liver transcriptome.
Collapse
|
20
|
Molecular characterization of human ABHD2 as TAG lipase and ester hydrolase. Biosci Rep 2016; 36:BSR20160033. [PMID: 27247428 PMCID: PMC4945992 DOI: 10.1042/bsr20160033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 05/31/2016] [Indexed: 01/12/2023] Open
Abstract
Alterations in lipid metabolism have been progressively documented as a characteristic property of cancer cells. Though, human ABHD2 gene was found to be highly expressed in breast and lung cancers, its biochemical functionality is yet uncharacterized. In the present study we report, human ABHD2 as triacylglycerol (TAG) lipase along with ester hydrolysing capacity. Sequence analysis of ABHD2 revealed the presence of conserved motifs G205XS207XG209 and H120XXXXD125. Phylogenetic analysis showed homology to known lipases, Drosophila melanogaster CG3488. To evaluate the biochemical role, recombinant ABHD2 was expressed in Saccharomyces cerevisiae using pYES2/CT vector and His-tag purified protein showed TAG lipase activity. Ester hydrolase activity was confirmed with pNP acetate, butyrate and palmitate substrates respectively. Further, the ABHD2 homology model was built and the modelled protein was analysed based on the RMSD and root mean square fluctuation (RMSF) of the 100 ns simulation trajectory. Docking the acetate, butyrate and palmitate ligands with the model confirmed covalent binding of ligands with the Ser207 of the GXSXG motif. The model was validated with a mutant ABHD2 developed with alanine in place of Ser207 and the docking studies revealed loss of interaction between selected ligands and the mutant protein active site. Based on the above results, human ABHD2 was identified as a novel TAG lipase and ester hydrolase.
Collapse
|
21
|
Obinata D, Takada S, Takayama KI, Urano T, Ito A, Ashikari D, Fujiwara K, Yamada Y, Murata T, Kumagai J, Fujimura T, Ikeda K, Horie-Inoue K, Homma Y, Takahashi S, Inoue S. Abhydrolase domain containing 2, an androgen target gene, promotes prostate cancer cell proliferation and migration. Eur J Cancer 2016; 57:39-49. [PMID: 26854828 DOI: 10.1016/j.ejca.2016.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/30/2015] [Accepted: 01/04/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND The androgen receptor (AR) plays a key role in the development of prostate cancer. AR signalling mediates the expression of androgen-responsive genes, which are involved in prostate cancer development and progression. Our previous chromatin immunoprecipitation study showed that the region of abhydrolase domain containing 2 (ABHD2) includes a functional androgen receptor binding site. In this study, we demonstrated that ABHD2 is a novel androgen-responsive gene that is overexpressed in human prostate cancer tissues. METHODS The expression levels of ABHD2 in androgen-sensitive cells were evaluated by quantitative reverse transcription polymerase chain reaction and western-blot analyses. LNCaP and VCaP cells with ABHD2 overexpression or short interfering RNA (siRNA) knockdown were used for functional analyses. ABHD2 expression was examined in clinical samples of prostate cancer by immunohistochemistry. RESULTS We showed that ABHD2 expression is increased by androgen in LNCaP and VCaP cells. This androgen-induced ABHD2 expression was diminished by bicalutamide. While stable expression of ABHD2 affected the enhancement of LNCaP cell proliferation and migration, siRNA-mediated ABHD2 knockdown suppressed cell proliferation and migration. In addition, the siRNA treatment significantly repressed the tumour growth derived from LNCaP cells in athymic mice. Immunohistochemical analysis of ABHD2 expression in tumour specimens showed a positive correlation of ABHD2 immunoreactivity with high Gleason score and pathological N stage. Moreover, patients with high immunoreactivity of ABHD2 showed low cancer-specific survival rates and a resistance to docetaxel-based chemotherapy. CONCLUSION ABHD2 is a novel androgen-regulated gene that can promote prostate cancer growth and resistance to chemotherapy, and is a novel target for diagnosis and treatment of prostate cancer.
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Japan; Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Japan
| | - Shogo Takada
- Department of Urology, Nihon University School of Medicine, Japan
| | - Ken-ichi Takayama
- Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Japan; Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Japan; Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Japan
| | - Tomohiko Urano
- Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Japan; Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Japan; Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Japan
| | - Akiko Ito
- Department of Urology, Nihon University School of Medicine, Japan
| | - Daisaku Ashikari
- Department of Urology, Nihon University School of Medicine, Japan; Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Japan
| | - Kyoko Fujiwara
- Division of General Medicine, Department of Medicine, Nihon University School of Medicine, Japan
| | - Yuta Yamada
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Taro Murata
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Jinpei Kumagai
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Tetsuya Fujimura
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Japan
| | - Kuniko Horie-Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Japan
| | - Yukio Homma
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Japan
| | - Satoshi Inoue
- Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Japan; Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Japan; Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Japan.
| |
Collapse
|
22
|
Liu L, Li X, Yuan R, Zhang H, Qiang L, Shen J, Jin S. Associations of ABHD2 genetic variations with risks for chronic obstructive pulmonary disease in a Chinese Han population. PLoS One 2015; 10:e0123929. [PMID: 25880496 PMCID: PMC4399978 DOI: 10.1371/journal.pone.0123929] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 03/09/2015] [Indexed: 11/30/2022] Open
Abstract
The human α/β hydrolase domain-containing protein 2 gene (ABHD2) plays a critical role in pulmonary emphysema, a major subset of the clinical entity known as chronic obstructive pulmonary disease (COPD). Here, we evaluated genetic variation in the ABHD2 gene in a Chinese Han population of 286 COPD patients and 326 control subjects. The rs12442260 CT/CC genotype was associated with COPD (P < 0.001) under a dominant model. In the former-smoker group, the rs12442260 TT genotype was associated with a decreased risk of developing COPD after adjusting for age, gender and pack-years (P = 0.012). Rs12442260 was also associated with pre-FEV1 (the predicted bronchodilator forced expiratory volume in the first second) in controls (P = 0.027), but with FEV1/ forced vital capacity (FVC) ratios only in COPD patients (P = 0.012) under a dominant model. Results from the current study suggest that ABHD2 gene polymorphisms contribute to COPD susceptibility in the Chinese Han population.
Collapse
Affiliation(s)
- Li Liu
- Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang Province, 150018, China
| | - Xiangshun Li
- Division of Respiratory Disease, The Fourth Hospital of Harbin Medical University, Harbin, Harbin, Heilongjiang Province, 150001, China
| | - Rui Yuan
- Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang Province, 150018, China
| | - Honghong Zhang
- Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang Province, 150018, China
| | - Lixia Qiang
- Division of Respiratory Disease, The Fourth Hospital of Harbin Medical University, Harbin, Harbin, Heilongjiang Province, 150001, China
| | - Jingling Shen
- Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang Province, 150018, China
- * E-mail: (SJ); (JS)
| | - Shoude Jin
- Division of Respiratory Disease, The Fourth Hospital of Harbin Medical University, Harbin, Harbin, Heilongjiang Province, 150001, China
- * E-mail: (SJ); (JS)
| |
Collapse
|
23
|
Lord CC, Thomas G, Brown JM. Mammalian alpha beta hydrolase domain (ABHD) proteins: Lipid metabolizing enzymes at the interface of cell signaling and energy metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:792-802. [PMID: 23328280 DOI: 10.1016/j.bbalip.2013.01.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/07/2012] [Accepted: 01/02/2013] [Indexed: 11/16/2022]
Abstract
Dysregulation of lipid metabolism underlies many chronic diseases such as obesity, diabetes, cardiovascular disease, and cancer. Therefore, understanding enzymatic mechanisms controlling lipid synthesis and degradation is imperative for successful drug discovery for these human diseases. Genes encoding α/β hydrolase fold domain (ABHD) proteins are present in virtually all reported genomes, and conserved structural motifs shared by these proteins predict common roles in lipid synthesis and degradation. However, the physiological substrates and products for these lipid metabolizing enzymes and their broader role in metabolic pathways remain largely uncharacterized. Recently, mutations in several members of the ABHD protein family have been implicated in inherited inborn errors of lipid metabolism. Furthermore, studies in cell and animal models have revealed important roles for ABHD proteins in lipid metabolism, lipid signal transduction, and metabolic disease. The purpose of this review is to provide a comprehensive summary surrounding the current state of knowledge regarding mammalian ABHD protein family members. In particular, we will discuss how ABHD proteins are ideally suited to act at the interface of lipid metabolism and signal transduction. Although, the current state of knowledge regarding mammalian ABHD proteins is still in its infancy, this review highlights the potential for the ABHD enzymes as being attractive targets for novel therapies targeting metabolic disease.
Collapse
Affiliation(s)
- Caleb C Lord
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Gwynneth Thomas
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - J Mark Brown
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
24
|
Long JZ, Cravatt BF. The metabolic serine hydrolases and their functions in mammalian physiology and disease. Chem Rev 2011; 111:6022-63. [PMID: 21696217 DOI: 10.1021/cr200075y] [Citation(s) in RCA: 321] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jonathan Z Long
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
25
|
Ding X, Yang J, Wang S. Antisense Oligonucleotides Targeting Abhydrolase Domain Containing 2 Block Human Hepatitis B Virus Propagation. Oligonucleotides 2011; 21:77-84. [DOI: 10.1089/oli.2011.0280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xiaoran Ding
- Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Jing Yang
- Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| |
Collapse
|