1
|
Gao Y, Li S, Liu X, Si D, Chen W, Yang F, Sun H, Yang P. RyR2 Stabilizer Attenuates Cardiac Hypertrophy by Downregulating TNF-α/NF-κB/NLRP3 Signaling Pathway through Inhibiting Calcineurin. J Cardiovasc Transl Res 2024; 17:481-495. [PMID: 38652413 DOI: 10.1007/s12265-023-10376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/13/2023] [Indexed: 04/25/2024]
Abstract
The effect of Ryanodine receptor2 (RyR2) and its stabilizer on cardiac hypertrophy is not well known. C57/BL6 mice underwent transverse aortic contraction (TAC) or sham surgery were administered dantrolene, the RyR2 stabilizer, or control drug. Dantrolene significantly alleviated TAC-induced cardiac hypertrophy in mice, and RNA sequencing was performed implying calcineurin/NFAT3 and TNF-α/NF-κB/NLRP3 as critical signaling pathways. Further expression analysis and Western blot with heart tissue as well as neonatal rat cardiomyocyte (NRCM) model confirmed dantrolene decreases the activation of calcineurin/NFAT3 signaling pathway and TNF-α/NF-κB/NLRP3 signaling pathway, which was similar to FK506 and might be attenuated by calcineurin overexpression. The present study shows for the first time that RyR2 stabilizer dantrolene attenuates cardiac hypertrophy by inhibiting the calcineurin, therefore downregulating the TNF-α/NF-κB/NLRP3 pathway.
Collapse
MESH Headings
- Animals
- Signal Transduction/drug effects
- Tumor Necrosis Factor-alpha/metabolism
- Ryanodine Receptor Calcium Release Channel/metabolism
- Ryanodine Receptor Calcium Release Channel/genetics
- Ryanodine Receptor Calcium Release Channel/drug effects
- Calcineurin/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Mice, Inbred C57BL
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Disease Models, Animal
- NF-kappa B/metabolism
- Down-Regulation
- Dantrolene/pharmacology
- Male
- Calcineurin Inhibitors/pharmacology
- NFATC Transcription Factors/metabolism
- Cells, Cultured
- Cardiomegaly/metabolism
- Cardiomegaly/prevention & control
- Cardiomegaly/pathology
- Cardiomegaly/drug therapy
- Rats, Sprague-Dawley
- Rats
- Hypertrophy, Left Ventricular/prevention & control
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
Collapse
Affiliation(s)
- Yi Gao
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial International Joint Research Center of Cardiovascular Disease Precision Medicine, Changchun, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, China
| | - Shuai Li
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xueyan Liu
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial International Joint Research Center of Cardiovascular Disease Precision Medicine, Changchun, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, China
| | - Daoyuan Si
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial International Joint Research Center of Cardiovascular Disease Precision Medicine, Changchun, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, China
| | - Weiwei Chen
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial International Joint Research Center of Cardiovascular Disease Precision Medicine, Changchun, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, China
| | - Fenghua Yang
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Huan Sun
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China.
- Jilin Provincial International Joint Research Center of Cardiovascular Disease Precision Medicine, Changchun, China.
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, China.
| | - Ping Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China.
- Jilin Provincial International Joint Research Center of Cardiovascular Disease Precision Medicine, Changchun, China.
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, China.
| |
Collapse
|
2
|
Svensson B, Nitu FR, Rebbeck RT, McGurran LM, Oda T, Thomas DD, Bers DM, Cornea RL. Molecular Mechanism of a FRET Biosensor for the Cardiac Ryanodine Receptor Pathologically Leaky State. Int J Mol Sci 2023; 24:12547. [PMID: 37628726 PMCID: PMC10454150 DOI: 10.3390/ijms241612547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Ca2+ leak from cardiomyocyte sarcoplasmic reticulum (SR) via hyperactive resting cardiac ryanodine receptor channels (RyR2) is pro-arrhythmic. An exogenous peptide (DPc10) binding promotes leaky RyR2 in cardiomyocytes and reports on that endogenous state. Conversely, calmodulin (CaM) binding inhibits RyR2 leak and low CaM affinity is diagnostic of leaky RyR2. These observations have led to designing a FRET biosensor for drug discovery targeting RyR2. We used FRET to clarify the molecular mechanism driving the DPc10-CaM interdependence when binding RyR2 in SR vesicles. We used donor-FKBP12.6 (D-FKBP) to resolve RyR2 binding of acceptor-CaM (A-CaM). In low nanomolar Ca2+, DPc10 decreased both FRETmax (under saturating [A-CaM]) and the CaM/RyR2 binding affinity. In micromolar Ca2+, DPc10 decreased FRETmax without affecting CaM/RyR2 binding affinity. This correlates with the analysis of fluorescence-lifetime-detected FRET, indicating that DPc10 lowers occupancy of the RyR2 CaM-binding sites in nanomolar (not micromolar) Ca2+ and lengthens D-FKBP/A-CaM distances independent of [Ca2+]. To observe DPc10/RyR2 binding, we used acceptor-DPc10 (A-DPc10). CaM weakens A-DPc10/RyR2 binding, with this effect being larger in micromolar versus nanomolar Ca2+. Moreover, A-DPc10/RyR2 binding is cooperative in a CaM- and FKBP-dependent manner, suggesting that both endogenous modulators promote concerted structural changes between RyR2 protomers for channel regulation. Aided by the analysis of cryo-EM structures, these insights inform further development of the DPc10-CaM paradigm for therapeutic discovery targeting RyR2.
Collapse
Affiliation(s)
- Bengt Svensson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (B.S.); (R.T.R.); (L.M.M.)
| | - Florentin R. Nitu
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (B.S.); (R.T.R.); (L.M.M.)
| | - Robyn T. Rebbeck
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (B.S.); (R.T.R.); (L.M.M.)
| | - Lindsey M. McGurran
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (B.S.); (R.T.R.); (L.M.M.)
| | - Tetsuro Oda
- Department of Pharmacology, University of California, Davis, CA 95616, USA
| | - David D. Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (B.S.); (R.T.R.); (L.M.M.)
| | - Donald M. Bers
- Department of Pharmacology, University of California, Davis, CA 95616, USA
| | - Razvan L. Cornea
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (B.S.); (R.T.R.); (L.M.M.)
| |
Collapse
|
3
|
Svensson B, Nitu FR, Rebbeck RT, McGurran LM, Oda T, Thomas DD, Bers DM, Cornea RL. Molecular Mechanism of a FRET Biosensor for the Cardiac Ryanodine Receptor Pathologically Leaky State. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548138. [PMID: 37461514 PMCID: PMC10350043 DOI: 10.1101/2023.07.07.548138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Ca 2+ leak from cardiomyocyte sarcoplasmic reticulum (SR) via hyperactive resting cardiac ryanodine receptor channels (RyR2) is pro-arrhythmic. An exogenous peptide, (DPc10) detects leaky RyR2 in cardiomyocytes. Conversely, calmodulin (CaM) inhibits RyR2 leak. These observations have led to designing a FRET biosensor for drug discovery targeting RyR2. Here we used FRET to understand the molecular mechanism driving the DPc10-CaM interdependence when binding RyR2 in SR vesicles. We used donor-FKBP12.6 (D-FKBP) to resolve RyR2 binding of acceptor-CaM (A-CaM). In low nanomolar Ca 2+ , DPc10 decreased both FRET max (under saturating [A-CaM]) and the CaM/RyR2 binding affinity. In micromolar Ca 2+ , DPc10 decreased FRET max without affecting CaM/RyR2 binding affinity. This correlates with analysis of fluorescence-lifetime-detected FRET indicating that DPc10 lowers occupancy of the RyR2 CaM-binding sites in nanomolar (not micromolar) Ca 2+ and lengthens D-FKBP/A-CaM distances independent of [Ca 2+ ]. To observe DPc10/RyR2 binding, we used acceptor-DPc10 (A-DPc10). CaM weakens A-DPc10/RyR2 binding, this effect being larger in micromolar vs. nanomolar Ca 2+ . Moreover, A-DPc10/RyR2 binding is cooperative in CaM- and FKBP-dependent manner, suggesting that both endogenous modulators promote concerted structural changes between RyR2 protomers for channel regulation. Aided by analysis of cryo-EM structures, these insights inform further development of the DPc10-CaM paradigm for therapeutic discovery targeting RyR2.
Collapse
Affiliation(s)
- Bengt Svensson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis
| | - Florentin R. Nitu
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis
| | - Robyn T. Rebbeck
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis
| | - Lindsey M. McGurran
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis
| | - Tetsuro Oda
- Department of Pharmacology, University of California, Davis
| | - David D. Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis
| | - Donald M. Bers
- Department of Pharmacology, University of California, Davis
| | - Razvan L. Cornea
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis
| |
Collapse
|
4
|
Acsai K, Ördög B, Varró A, Nánási PP. Role of the dysfunctional ryanodine receptor - Na(+)-Ca(2+)exchanger axis in progression of cardiovascular diseases: What we can learn from pharmacological studies? Eur J Pharmacol 2016; 779:91-101. [PMID: 26970182 DOI: 10.1016/j.ejphar.2016.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/28/2022]
Abstract
Abnormal Ca(2+)homeostasis is often associated with chronic cardiovascular diseases, such as hypertension, heart failure or cardiac arrhythmias, and typically contributes to the basic ethiology of the disease. Pharmacological targeting of cardiac Ca(2+)handling has great therapeutic potential offering invaluable options for the prevention, slowing down the progression or suppression of the harmful outcomes like life threatening cardiac arrhythmias. In this review we outline the existing knowledge on the involvement of malfunction of the ryanodine receptor and the Na(+)-Ca(2+)exchanger in disturbances of Ca(2+)homeostasis and discuss important proof of concept pharmacological studies targeting these mechanisms in context of hypertension, heart failure, atrial fibrillation and ventricular arrhythmias. We emphasize the promising results of preclinical studies underpinning the potential benefits of the therapeutic strategies based on ryanodine receptor or Na(+)-Ca(2+)exchanger inhibition.
Collapse
Affiliation(s)
- Károly Acsai
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - Balázs Ördög
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Faculty of Medicine, Szeged, Hungary
| | - András Varró
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary; Department of Pharmacology and Pharmacotherapy, University of Szeged, Faculty of Medicine, Szeged, Hungary
| | - Péter P Nánási
- Department of Physiology, University of Debrecen, Debrecen, Hungary; Department of Dentistry, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
5
|
Thomas NL, Williams AJ. Pharmacology of ryanodine receptors and Ca2+-induced Ca2+ release. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/wmts.34] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Gangopadhyay JP, Ikemoto N. Aberrant interaction of calmodulin with the ryanodine receptor develops hypertrophy in the neonatal cardiomyocyte. Biochem J 2011; 438:379-87. [PMID: 21649588 PMCID: PMC3155653 DOI: 10.1042/bj20110203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have shown previously that the inter-domain interaction between the two domains of RyR (ryanodine receptor), CaMBD [CaM (calmodulin)-binding domain] and CaMLD (CaM-like domain), activates the Ca(2+) channel, and this process is called activation-link formation [Gangopadhyay and Ikemoto (2008) Biochem. J. 411, 415-423]. Thus CaM that is bound to CaMBD is expected to interfere the activation-link formation, thereby stabilizing the closed state of the channel under normal conditions. In the present paper, we report that, upon stimulation of neonatal cardiomyocytes with the pro-hypertrophy agonist ET-1 (endothelin-1), CaM dissociates from the RyR, which induces a series of intracellular events: increased frequency of Ca(2+) transients, translocation of the signalling molecules CaM, CaMKII (CaM kinase II) and the transcription factor NFAT (nuclear factor of activated T-cells) to the nucleus. These events then lead to the development of hypertrophy. Importantly, an anti-CaMBD antibody that interferes with activation-link formation prevented all of these intracellular events triggered by ET-1 and prevented the development of hypertrophy. These results indicate that the aberrant formation of the activation link between CaMBD and CaMLD of RyR is a key step in the development of hypertrophy in cultured cardiomyocytes.
Collapse
|
7
|
Gangopadhyay JP, Ikemoto N. Intracellular translocation of calmodulin and Ca2+/calmodulin-dependent protein kinase II during the development of hypertrophy in neonatal cardiomyocytes. Biochem Biophys Res Commun 2010; 396:515-21. [PMID: 20433809 PMCID: PMC2878933 DOI: 10.1016/j.bbrc.2010.04.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
Abstract
We have recently shown that stimulation of cultured neonatal cardiomyocytes with endothelin-1 (ET-1) first produces conformational disorder within the ryanodine receptor (RyR2) and diastolic Ca(2+) leak from the sarcoplasmic reticulum (SR), then develops hypertrophy (HT) in the cardiomyocytes (Hamada et al., 2009 [3]). The present paper addresses the following question. By what mechanism does crosstalk between defective operation of RyR2 and activation of the HT gene program occur? Here we show that the immuno-stain of calmodulin (CaM) is localized chiefly in the cytoplasmic area in the control cells; whereas, in the ET-1-treated/hypertrophied cells, major immuno-staining is localized in the nuclear region. In addition, fluorescently labeled CaM that has been introduced into the cardiomyocytes using the BioPORTER system moves from the cytoplasm to the nucleus with the development of HT. The immuno-confocal imaging of Ca(2+)/CaM-dependent protein kinase II (CaMKII) also shows cytoplasm-to-nucleus shift of the immuno-staining pattern in the hypertrophied cells. In an early phase of hypertrophic growth, the frequency of spontaneous Ca(2+) transients increases, which accompanies with cytoplasm-to-nucleus translocation of CaM. In a later phase of hypertrophic growth, further increase in the frequency of spontaneous Ca(2+) transients results in the appearance of trains of Ca(2+) spikes, which accompanies with nuclear translocation of CaMKII. The cardio-protective reagent dantrolene (the reagent that corrects the de-stabilized inter-domain interaction within the RyR2 to a normal mode) ameliorates aberrant intracellular Ca(2+) events and prevents nuclear translocation of both CaM and CaMKII, then prevents the development of HT. These results suggest that translocation of CaM and CaMKII from the cytoplasm to the nucleus serves as messengers to transmit the pathogenic signal elicited in the surface membrane and in the RyR2 to the nuclear transcriptional sites to activate HT program.
Collapse
|
8
|
Liu Z, Wang R, Tian X, Zhong X, Gangopadhyay J, Cole R, Ikemoto N, Chen SRW, Wagenknecht T. Dynamic, inter-subunit interactions between the N-terminal and central mutation regions of cardiac ryanodine receptor. J Cell Sci 2010; 123:1775-84. [PMID: 20427316 PMCID: PMC2864716 DOI: 10.1242/jcs.064071] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2010] [Indexed: 11/20/2022] Open
Abstract
Naturally occurring mutations in the cardiac ryanodine receptor (RyR2) have been linked to certain types of cardiac arrhythmias and sudden death. Two mutation hotspots that lie in the N-terminal and central regions of RyR2 are predicted to interact with one another and to form an important channel regulator switch. To monitor the conformational dynamics involving these regions, we generated a fluorescence resonance energy transfer (FRET) pair. A yellow fluorescent protein (YFP) was inserted into RyR2 after residue Ser437 in the N-terminal region, and a cyan fluorescent protein (CFP) was inserted after residue Ser2367 in the central region, to form a dual YFP- and CFP-labeled RyR2 (RyR2(S437-YFP/S2367-CFP)). We transfected HEK293 cells with RyR2(S437-YFP/S2367-CFP) cDNAs, and then examined them by using confocal microscopy and by measuring the FRET signal in live cells. The FRET signals are influenced by modulators of RyR2, by domain peptides that mimic the effects of disease causing RyR2 mutations, and by various drugs. Importantly, FRET signals were also readily detected in cells co-transfected with single CFP (RyR2(S437-YFP)) and single YFP (RyR2(S2367-CFP)) labeled RyR2, indicating that the interaction between the N-terminal and central mutation regions is an inter-subunit interaction. Our studies demonstrate that FRET analyses of this CFP- and YFP-labeled RyR2 can be used not only for investigating the conformational dynamics associated with RyR2 channel gating, but potentially, also for identifying drugs that are capable of stabilizing the conformations of RyR2.
Collapse
Affiliation(s)
- Zheng Liu
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Intracellular Ca2+ storage in health and disease: a dynamic equilibrium. Cell Calcium 2010; 47:297-314. [PMID: 20189643 DOI: 10.1016/j.ceca.2010.02.001] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 01/31/2010] [Accepted: 02/01/2010] [Indexed: 12/17/2022]
Abstract
Homeostatic control of the endoplasmic reticulum (ER) both as the site for protein handling (synthesis, folding, trafficking, disaggregation and degradation) and as a Ca2+ store is of crucial importance for correct functioning of the cell. Disturbance of the homeostatic control mechanisms leads to a vast array of severe pathologies. The Ca2+ content of the ER is a dynamic equilibrium between active uptake via Ca2+ pumps and Ca2+ release by a number of highly regulated Ca2+-release channels. Regulation of the Ca2+-release channels is very complex and several mechanisms are still poorly understood or controversial. There is increasing evidence that a number of unrelated proteins, either by themselves or in association with other Ca2+ channels, can provide additional Ca2+-leak pathways. The ER is a dynamic organelle and changes in its size and components have been described, either as a result of (de)differentiation processes affecting the secretory capacity of cells, or as a result of adaptation mechanisms to diverse stress conditions such as the unfolded protein response and autophagy. In this review we want to give an overview of the current knowledge of the (short-term) regulatory mechanisms that affect Ca2+-release and Ca2+-leak pathways and of the (long-term) adaptations in ER size and capacity. Understanding of the consequences of these mechanisms for cellular Ca2+ signaling could provide a huge therapeutic potential.
Collapse
|