1
|
Muduli S, Karmakar S, Mishra S. The coordinated action of the enzymes in the L-lysine biosynthetic pathway and how to inhibit it for antibiotic targets. Biochim Biophys Acta Gen Subj 2023; 1867:130320. [PMID: 36813209 DOI: 10.1016/j.bbagen.2023.130320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Antimicrobial resistance is a global health issue that requires immediate attention in terms of new antibiotics and new antibiotic targets. The l-lysine biosynthesis pathway (LBP) is a promising avenue for drug discovery as it is essential for bacterial growth and survival and is not required by human beings. SCOPE OF REVIEW The LBP involves a coordinated action of fourteen different enzymes distributed over four distinct sub-pathways. The enzymes involved in this pathway belong to different classes, such as aspartokinase, dehydrogenase, aminotransferase, epimerase, etc. This review provides a comprehensive account of the secondary and tertiary structure, conformational dynamics, active site architecture, mechanism of catalytic action, and inhibitors of all enzymes involved in LBP of different bacterial species. MAJOR CONCLUSIONS LBP offers a wide scope for novel antibiotic targets. The enzymology of a majority of the LBP enzymes is well understood, although these enzymes are less widely studied in the critical pathogens (according to the 2017 WHO report) that require immediate attention. In particular, the enzymes in the acetylase pathway, DapAT, DapDH, and Aspartokinase in critical pathogens have received little attention. High throughput screening for inhibitor design against the enzymes of lysine biosynthetic pathway is rather limited, both in number and in the extent of success. GENERAL SIGNIFICANCE This review can serve as a guide for the enzymology of LBP and help in identifying new drug targets and designing potential inhibitors.
Collapse
Affiliation(s)
- Sunita Muduli
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Soumyajit Karmakar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
2
|
Mitsakos V. Colorimetric ortho-aminobenzaldehyde assay developed for the high-throughput chemical screening of inhibitors against dihydrodipicolinate synthase from pathogenic bacteria. Heliyon 2023; 9:e14304. [PMID: 36967940 PMCID: PMC10036502 DOI: 10.1016/j.heliyon.2023.e14304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
In search of a new class of antibacterial agents, compounds that target the essential bacterial enzyme, dihydrodipicolinate synthase (DHDPS), are of interest to drug discovery efforts. DHDPS catalyzes the first committed step in the diaminopimelate (DAP) pathway to the biosynthesis of lysine in bacteria and plants. The ortho-aminobenzaldehyde (o-ABA) assay is typically used as a qualitative tool for identifying fractions containing DHDPS during purification. This report is about the development of a high-throughput o-ABA assay format for the quantification of DHDPS enzyme activity using multi-well plates. The colorimetric assay is suitable for determining enzymatic parameters (K M and Vmax) and identifying inhibitors of DHDPS in a high-throughput screen.
Collapse
|
3
|
Nakagawa T, Iwaki Y, Wu D, Hane M, Sato C, Kitajima K. Identification and characterization of a deaminoneuraminic acid (Kdn)-specific aldolase from Sphingobacterium species. Glycobiology 2023; 33:47-56. [PMID: 36036828 DOI: 10.1093/glycob/cwac053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 01/12/2023] Open
Abstract
Sialic acid (Sia) is a group of acidic sugars with a 9-carbon backbone, and classified into 3 species based on the substituent group at C5 position: N-acetylneuraminic acid (Neu5Ac), N-glycolylneuraminic acid (Neu5Gc), and deaminoneuraminic acid (Kdn). In Escherichia coli, the sialate aldolase or N-acetylneuraminate aldolase (NanA) is known to catabolize these Sia species into pyruvate and the corresponding 6-carbon mannose derivatives. However, in bacteria, very little is known about the catabolism of Kdn, compared with Neu5Ac. In this study, we found a novel Kdn-specific aldolase (Kdn-aldolase), which can exclusively degrade Kdn, but not Neu5Ac or Neu5Gc, from Sphingobacterium sp., which was previously isolated from a Kdn-assimilating bacterium. Kdn-aldolase had the optimal pH and temperature at 7.0-8.0 and 50 °C, respectively. It also had the synthetic activity of Kdn from pyruvate and mannose. Site-specific mutagenesis revealed that N50 residue was important for the Kdn-specific reaction. Existence of the Kdn-aldolase suggests that Kdn-specific metabolism may play a specialized role in some bacteria.
Collapse
Affiliation(s)
- Takahiro Nakagawa
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan.,Bioscience and Biotechnology Center, and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yuya Iwaki
- Bioscience and Biotechnology Center, and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Di Wu
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan.,Bioscience and Biotechnology Center, and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Masaya Hane
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan.,Bioscience and Biotechnology Center, and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Chihiro Sato
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan.,Bioscience and Biotechnology Center, and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Ken Kitajima
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan.,Bioscience and Biotechnology Center, and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
4
|
Zhao C, Zheng T, Feng Y, Wang X, Zhang L, Hu Q, Chen J, Wu F, Chen GQ. Engineered Halomonas spp. for production of l-Lysine and cadaverine. BIORESOURCE TECHNOLOGY 2022; 349:126865. [PMID: 35183730 DOI: 10.1016/j.biortech.2022.126865] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Cadaverine, a derivative of l-lysine, has been used as a monomer for the synthesis of bio-based nylon-5,6. This study engineered Halomonas bluephagenesis TD1.0 by blocking the feedback inhibition, overexpressing the key l-lysine synthesis genes, strengthening the l-lysine export system and increasing the supply of oxaloacetate for production of l-lysine in the supernatant and PHB in the cells. Subsequently, cadaverine biosynthetic pathway was constructed in H. campaniensis LC-9 to improve the efficiency of de novo cadaverine biosynthesis which combines l-lysine producing H. bluephagenesis TDL8-68-259 and cadaverine producing H. campaniensis LC-9-ldcC-lysP. When H. campaniensis LC-9-ldcC-lysP was used as a whole cell catalysis for cadaverine production, the conversion efficiency of l-lysine to cadaverine reached 100% in the presence of 0.05% Triton X-100 for cell membrane permeability enhancement, resulting in 118 g L-1 cadaverine formed in the fermentor. Thus, Halomonas spp. have been successfully constructed for l-lysine and cadaverine production.
Collapse
Affiliation(s)
- Cuihuan Zhao
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, PR China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, PR China
| | - Taoran Zheng
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, PR China; Beijing PhaBuilder Biotechnology Co., LTD, Shunyi District, 101399, PR China
| | - Yinghao Feng
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Xuan Wang
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, PR China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, PR China
| | - Lizhan Zhang
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Qitiao Hu
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Jinchun Chen
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Fuqing Wu
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, PR China; MOE Key Lab of Industrial Biocatalysts, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, PR China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, PR China; MOE Key Lab of Industrial Biocatalysts, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
5
|
Schmitz RA, Dietl A, Müller M, Berben T, Op den Camp HJM, Barends TRM. Structure of the 4-hydroxy-tetrahydrodipicolinate synthase from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV and the phylogeny of the aminotransferase pathway. Acta Crystallogr F Struct Biol Commun 2020; 76:199-208. [PMID: 32356521 PMCID: PMC7193512 DOI: 10.1107/s2053230x20005294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/15/2020] [Indexed: 11/10/2022] Open
Abstract
The enzyme 4-hydroxy-tetrahydrodipicolinate synthase (DapA) is involved in the production of lysine and precursor molecules for peptidoglycan synthesis. In a multistep reaction, DapA converts pyruvate and L-aspartate-4-semialdehyde to 4-hydroxy-2,3,4,5-tetrahydrodipicolinic acid. In many organisms, lysine binds allosterically to DapA, causing negative feedback, thus making the enzyme an important regulatory component of the pathway. Here, the 2.1 Å resolution crystal structure of DapA from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV is reported. The enzyme crystallized as a contaminant of a protein preparation from native biomass. Genome analysis reveals that M. fumariolicum SolV utilizes the recently discovered aminotransferase pathway for lysine biosynthesis. Phylogenetic analyses of the genes involved in this pathway shed new light on the distribution of this pathway across the three domains of life.
Collapse
Affiliation(s)
- Rob A. Schmitz
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Andreas Dietl
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Melanie Müller
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Tom Berben
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Huub J. M. Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Thomas R. M. Barends
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Ren W, Tao J, Shi D, Chen W, Chen C. Involvement of a dihydrodipicolinate synthase gene (FaDHDPS1) in fungal development, pathogenesis and stress responses in Fusarium asiaticum. BMC Microbiol 2018; 18:128. [PMID: 30290767 PMCID: PMC6173861 DOI: 10.1186/s12866-018-1268-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 09/27/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Dihydrodipicolinate synthase (DHDPS) is an allosteric enzyme, which catalyzes the first unique step of lysine biosynthesis in prokaryotes, higher plants and some fungi. To date, the biological roles of DHDPS in filamentous fungi are poorly understood. RESULTS In this study, on the basis of comparative genome resequencing, a DHDPS gene was found to be specific in Fusarium asiaticum, named FaDHDPS1, which showed high amino acid identity to that of entomopathogenic fungus. Subcellular localization of the FaDHDPS1-GFP fusion protein was mainly concentrated in the cytoplasm of conidia and dispersed in the cytoplasm during conidial germination. To reveal the biological functions, both deletion and complementation mutants of FaDHDPS1 were generated. The results showed that the FaDHDPS1 deletion mutant was defective in conidiation, virulence and DON biosynthesis. In addition, deletion of FaDHDPS1 resulted in tolerance to sodium pyruvate, lysine, low temperature and Congo red. CONCLUSION Results of this study indicate that FaDHDPS1 plays an important role in the regulation of vegetative differentiation, pathogenesis and adaption to multiple stresses in F. asiaticum.
Collapse
Affiliation(s)
- Weichao Ren
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Jiting Tao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Dongya Shi
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Wenchan Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| |
Collapse
|
7
|
Grant Pearce F, Hudson AO, Loomes K, Dobson RCJ. Dihydrodipicolinate Synthase: Structure, Dynamics, Function, and Evolution. Subcell Biochem 2017; 83:271-289. [PMID: 28271480 DOI: 10.1007/978-3-319-46503-6_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Enzymes are usually comprised of multiple subunits and more often than not they are made up of identical subunits. In this review we examine lysine biosynthesis and focus on the enzyme dihydrodipicolinate synthase in terms of its structure, function and the evolution of its varied number of subunits (quaternary structure). Dihydrodipicolinate synthase is the first committed step in the biosynthesis of lysine, which occurs naturally in plants, bacteria, archaea and fungi, but is not synthesized in mammals. In bacteria, there have been four separate pathways identified from tetrahydrodipicolinate to meso-diaminopimelate, which is the immediate precursor to lysine. Dihydrodipicolinate synthases from many bacterial and plant species have been structurally characterised and the results show considerable variability with respect to their quaternary structure, hinting at their evolution. The oligomeric state of the enzyme plays a key role, both in catalysis and in the allosteric regulation of the enzyme by lysine. While most bacteria and plants have tetrameric enzymes, where the structure of the dimeric building blocks is conserved, the arrangement of the dimers differs. We also review a key development in the field, namely the discovery of a human dihydrodipicolinate synthase-like enzyme, now known as 4-hydroxy-2-oxoglutarate aldolase . This discovery complicates the rationale underpinning drug development against bacterial dihydrodipicolinate synthases, since genetic errors in 4-hydroxy-2-oxoglutarate aldolase cause the disease Primary Hyperoxaluria Type 3 and therefore compounds that are geared towards the inhibition of bacterial dihydrodipicolinate synthase may be toxic to mammalian cells.
Collapse
Affiliation(s)
- F Grant Pearce
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8041, New Zealand
| | - André O Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Kerry Loomes
- School of Biological Sciences & Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8041, New Zealand.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC, 3010, Australia.
| |
Collapse
|
8
|
Xu J, Han M, Ren X, Zhang W. Modification of aspartokinase III and dihydrodipicolinate synthetase increases the production of l-lysine in Escherichia coli. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.06.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Cao TP, Kim JS, Woo MH, Choi JM, Jun Y, Lee KH, Lee SH. Structural insight for substrate tolerance to 2-deoxyribose-5-phosphate aldolase from the pathogen Streptococcus suis. J Microbiol 2016; 54:311-21. [PMID: 27033207 DOI: 10.1007/s12275-016-6029-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 10/22/2022]
Abstract
2-deoxyribose-5-phosphate aldolase (DERA) is a class I aldolase that catalyzes aldol condensation of two aldehydes in the active site, which is particularly germane in drug manufacture. Structural and biochemical studies have shown that the active site of DERA is typically loosely packed and displays broader substrate specificity despite sharing conserved folding architecture with other aldolases. The most distinctive structural feature of DERA compared to other aldolases is short and flexible C-terminal region. This region is also responsible for substrate recognition. Therefore, substrate tolerance may be related to the C-terminal structural features of DERA. Here, we determined the crystal structures of full length and C-terminal truncated DERA from Streptococcus suis (SsDERA). In common, both contained the typical (α/β)8 TIM-barrel fold of class I aldolases. Surprisingly, C-terminal truncation resulting in missing the last α9 and β8 secondary elements, allowed DERA to maintain activity comparable to the fulllength enzyme. Specifically, Arg186 and Ser205 residues at the C-terminus appeared mutually supplemental or less indispensible for substrate phosphate moiety recognition. Our results suggest that DERA might adopt a shorter C-terminal region than conventional aldolases during evolution pathway, resulting in a broader range of substrate tolerance through active site flexibility.
Collapse
Affiliation(s)
- Thinh-Phat Cao
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, 501-759, Republic of Korea.,National Research Center for Dementia, Chosun University, Gwangju, 61452, Republic of Korea
| | - Joong-Su Kim
- Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 580-185, Republic of Korea
| | - Mi-Hee Woo
- Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 580-185, Republic of Korea
| | - Jin Myung Choi
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, 501-759, Republic of Korea.,School of Life Sciences and Silver Health Bio Research Center, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Youngsoo Jun
- School of Life Sciences and Silver Health Bio Research Center, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.,School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Kun Ho Lee
- National Research Center for Dementia, Chosun University, Gwangju, 61452, Republic of Korea.,Department of Biomedical Science, Chosun University, Gwangju, 61452, Republic of Korea
| | - Sung Haeng Lee
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, 501-759, Republic of Korea.
| |
Collapse
|
10
|
Jones-Held S, Ambrozevicius LP, Campbell M, Drumheller B, Harrington E, Leustek T. Two Arabidopsis thaliana dihydrodipicolinate synthases, DHDPS1 and DHDPS2, are unequally redundant. FUNCTIONAL PLANT BIOLOGY : FPB 2012; 39:1058-1067. [PMID: 32480855 DOI: 10.1071/fp12169] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/14/2012] [Indexed: 06/11/2023]
Abstract
In Arabidopsis thalinana (L.) Heynh., DHDPS1 and DHDPS2 encode orthologous dihydrodipicolinate synthases (DHDPS), the first enzyme of the lysine (Lys) biosynthesis pathway. A TDNA insertion mutant of dhdps2 was previously reported to be viable and to accumulate free threonine (Thr). Analysis of additional TDNA insertion lines showed that dhdps1 and dhdps2 mutants are both viable and that whereas dhdps2 mutants accumulate Thr, dhdps1 plants do not. Thr-accumulation was complemented by heterologous expression of Escherichia coli DapA, indicating that the phenotype is due to reduced DHDPS activity in dhdps2. DHDPS1 contributes ~30% towards the total DHDPS activity in leaves of young plants and DHDPS2 contributes 70%; therefore, the threshold of activity resulting in Thr accumulation lies within this narrow range. dhdps1-dhdps2 double mutants could not be isolated, even after exogenous feeding with Lys. Segregation analysis indicated that gametes lacking functional DHDPS genes are defective, as are embryos. Plants carrying only a single DHDPS2 gene do not accumulate Thr, but they show a gametophytic defect that is partially rescued by Lys application. Despite the accumulation of Thr, dhdps2 seedlings are no more sensitive than wild-type plants to growth inhibition by Lys or the Lys precursor diaminopimelate. They also are not rescued by methionine at growth-inhibitory Lys concentrations. Exogenous application of Lys and methionine to dhdps2 mutants did not reduce the accumulation of Thr.
Collapse
Affiliation(s)
- Susan Jones-Held
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901-8520, USA
| | | | - Michael Campbell
- School of Science, Penn State Erie, The Behrend College, P-1 Prischak Building, 4205 College Drive, Erie, PA 16563-0203, USA
| | - Bradley Drumheller
- School of Science, Penn State Erie, The Behrend College, P-1 Prischak Building, 4205 College Drive, Erie, PA 16563-0203, USA
| | - Emily Harrington
- School of Science, Penn State Erie, The Behrend College, P-1 Prischak Building, 4205 College Drive, Erie, PA 16563-0203, USA
| | - Thomas Leustek
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901-8520, USA
| |
Collapse
|
11
|
Riedel TJ, Knight J, Murray MS, Milliner DS, Holmes RP, Lowther WT. 4-Hydroxy-2-oxoglutarate aldolase inactivity in primary hyperoxaluria type 3 and glyoxylate reductase inhibition. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1822:1544-52. [PMID: 22771891 PMCID: PMC3418427 DOI: 10.1016/j.bbadis.2012.06.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 01/25/2023]
Abstract
Mutations in the gene encoding for 4-hydroxy-2-oxoglutarate aldolase (HOGA) are associated with an excessive production of oxalate in Primary Hyperoxaluria type 3 (PH3). This enzyme is the final step of the hydroxyproline degradation pathway within the mitochondria and catalyzes the cleavage of 4-hydroxy-2-oxoglutarate (HOG) to pyruvate and glyoxylate. No analyses have been performed to assess the consequences of the mutations identified, particularly for those variants that produce either full-length or nearly full-length proteins. In this study, the expression, stability, and activity of nine PH3 human HOGA variants were examined. Using recombinant protein produced in Escherichia coli as well as transfected Chinese hamster ovary (CHO) cells, it was found that all nine PH3 variants are quite unstable, have a tendency to aggregate, and retain no measurable activity. A buildup of HOG was confirmed in the urine, sera and liver samples from PH3 patients. To determine how HOG is cleaved in the absence of HOGA activity, the ability of N-acetylneuraminate aldolase (NAL) to cleave HOG was evaluated. NAL showed minimal activity towards HOG. Whether the expected buildup of HOG in mitochondria could inhibit glyoxylate reductase (GR), the enzyme mutated in PH2, was also evaluated. GR was inhibited by HOG but not by 2-hydroxyglutarate or 2-oxoglutarate. Thus, one hypothetical component of the molecular basis for the excessive oxalate production in PH3 appears to be the inhibition of GR by HOG, resulting in a phenotype similar to PH2.
Collapse
Affiliation(s)
- Travis J. Riedel
- Center for Structural Biology and Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - John Knight
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Michael S. Murray
- Center for Structural Biology and Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Dawn S. Milliner
- Mayo Clinic Hyperoxaluria Center, Divisions of Nephrology and Hypertension, and Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Ross P. Holmes
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - W. Todd Lowther
- Center for Structural Biology and Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
12
|
Structural and biochemical studies of human 4-hydroxy-2-oxoglutarate aldolase: implications for hydroxyproline metabolism in primary hyperoxaluria. PLoS One 2011; 6:e26021. [PMID: 21998747 PMCID: PMC3188589 DOI: 10.1371/journal.pone.0026021] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 09/15/2011] [Indexed: 11/19/2022] Open
Abstract
Background 4-hydroxy-2-oxoglutarate (HOG) aldolase is a unique enzyme in the hydroxyproline degradation pathway catalyzing the cleavage of HOG to pyruvate and glyoxylate. Mutations in this enzyme are believed to be associated with the excessive production of oxalate in primary hyperoxaluria type 3 (PH3), although no experimental data is available to support this hypothesis. Moreover, the identity, oligomeric state, enzymatic activity, and crystal structure of human HOGA have not been experimentally determined. Methodology/Principal Findings In this study human HOGA (hHOGA) was identified by mass spectrometry of the mitochondrial enzyme purified from bovine kidney. hHOGA performs a retro-aldol cleavage reaction reminiscent of the trimeric 2-keto-3-deoxy-6-phosphogluconate aldolases. Sequence comparisons, however, show that HOGA is related to the tetrameric, bacterial dihydrodipicolinate synthases, but the reaction direction is reversed. The 1.97 Å resolution crystal structure of hHOGA bound to pyruvate was determined and enabled the modeling of the HOG-Schiff base intermediate and the identification of active site residues. Kinetic analyses of site-directed mutants support the importance of Lys196 as the nucleophile, Tyr168 and Ser77 as components of a proton relay, and Asn78 and Ser198 as unique residues that facilitate substrate binding. Conclusions/Significance The biochemical and structural data presented support that hHOGA utilizes a type I aldolase reaction mechanism, but employs novel residue interactions for substrate binding. A mapping of the PH3 mutations identifies potential rearrangements in either the active site or the tetrameric assembly that would likely cause a loss in activity. Altogether, these data establish a foundation to assess mutant forms of hHOGA and how their activity could be pharmacologically restored.
Collapse
|
13
|
Pearce FG, Dobson RCJ, Jameson GB, Perugini MA, Gerrard JA. Characterization of monomeric dihydrodipicolinate synthase variant reveals the importance of substrate binding in optimizing oligomerization. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1900-9. [PMID: 21803176 DOI: 10.1016/j.bbapap.2011.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 07/14/2011] [Accepted: 07/15/2011] [Indexed: 01/15/2023]
Abstract
To gain insights into the role of quaternary structure in the TIM-barrel family of enzymes, we introduced mutations to the DHDPS enzyme of Thermotoga maritima, which we have previously shown to be a stable tetramer in solution. These mutations were aimed at reducing the number of salt bridges at one of the two tetramerization interface of the enzyme, which contains many more interactions than the well characterized equivalent interface of the mesophilic Escherichia coli DHDPS enzyme. The resulting variants had altered quaternary structure, as shown by analytical ultracentrifugation, gel filtration liquid chromatography, and small angle X-ray scattering, and X-ray crystallographic studies confirmed that one variant existed as an independent monomer, but with few changes to the secondary and tertiary structure. Reduction of higher order assembly resulted in a loss of thermal stability, as measured by a variety of methods, and impaired catalytic function. Binding of pyruvate increased the oligomeric status of the variants, with a concomitant increase in thermal stability, suggesting a role for substrate binding in optimizing stable, higher order structures. The results of this work show that the salt bridges located at the tetramerization interface of DHDPS play a significant role in maintaining higher order structures, and demonstrate the importance of quaternary structure in determining protein stability and in the optimization of enzyme catalysis.
Collapse
Affiliation(s)
- F Grant Pearce
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
14
|
Devenish SR, Gerrard JA. The quaternary structure of Escherichia coli N-acetylneuraminate lyase is essential for functional expression. Biochem Biophys Res Commun 2009; 388:107-11. [DOI: 10.1016/j.bbrc.2009.07.128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 07/24/2009] [Indexed: 12/19/2022]
|
15
|
Characterisation of dihydrodipicolinate synthase (DHDPS) from Bacillus anthracis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1510-6. [DOI: 10.1016/j.bbapap.2009.06.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 06/05/2009] [Accepted: 06/25/2009] [Indexed: 11/20/2022]
|