1
|
André-Lévigne D, Pignel R, Boet S, Jaquet V, Kalbermatten DF, Madduri S. Role of Oxygen and Its Radicals in Peripheral Nerve Regeneration: From Hypoxia to Physoxia to Hyperoxia. Int J Mol Sci 2024; 25:2030. [PMID: 38396709 PMCID: PMC10888612 DOI: 10.3390/ijms25042030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Oxygen is compulsory for mitochondrial function and energy supply, but it has numerous more nuanced roles. The different roles of oxygen in peripheral nerve regeneration range from energy supply, inflammation, phagocytosis, and oxidative cell destruction in the context of reperfusion injury to crucial redox signaling cascades that are necessary for effective axonal outgrowth. A fine balance between reactive oxygen species production and antioxidant activity draws the line between physiological and pathological nerve regeneration. There is compelling evidence that redox signaling mediated by the Nox family of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases plays an important role in peripheral nerve regeneration. Further research is needed to better characterize the role of Nox in physiological and pathological circumstances, but the available data suggest that the modulation of Nox activity fosters great therapeutic potential. One of the promising approaches to enhance nerve regeneration by modulating the redox environment is hyperbaric oxygen therapy. In this review, we highlight the influence of various oxygenation states, i.e., hypoxia, physoxia, and hyperoxia, on peripheral nerve repair and regeneration. We summarize the currently available data and knowledge on the effectiveness of using hyperbaric oxygen therapy to treat nerve injuries and discuss future directions.
Collapse
Affiliation(s)
- Dominik André-Lévigne
- Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Rodrigue Pignel
- Subaquatic and Hyperbaric Medicine Unit, Division of Emergency Medicine, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Sylvain Boet
- Subaquatic and Hyperbaric Medicine Unit, Division of Emergency Medicine, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
- Ottawa Hospital Research Institute, Clinical Epidemiology Program, Department of Innovation in Medical Education, University of Ottawa, Ottawa, ON K1H 8L6, Canada
- Institut du Savoir Montfort, Ottawa, ON K1K 0T2, Canada
| | - Vincent Jaquet
- Department of Cell Physiology and Metabolism, University of Geneva, 1205 Geneva, Switzerland
- READS Unit, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Daniel F. Kalbermatten
- Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
- Bioengineering and Neuroregeneration Laboratory, Department of Surgery, University of Geneva, 1205 Geneva, Switzerland
| | - Srinivas Madduri
- Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
- Bioengineering and Neuroregeneration Laboratory, Department of Surgery, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
2
|
Collin J, Hasoon MSR, Zerti D, Hammadi S, Dorgau B, Clarke L, Steel D, Hussain R, Coxhead J, Lisgo S, Queen R, Lako M. Single-cell RNA sequencing reveals transcriptional changes of human choroidal and retinal pigment epithelium cells during fetal development, in healthy adult and intermediate age-related macular degeneration. Hum Mol Genet 2023; 32:1698-1710. [PMID: 36645183 PMCID: PMC10162434 DOI: 10.1093/hmg/ddad007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Age-related macular degeneration (AMD) is the most prevalent cause of blindness in the developed world. Vision loss in the advanced stages of the disease is caused by atrophy of retinal photoreceptors, overlying retinal pigment epithelium (RPE) and choroidal endothelial cells. The molecular events that underline the development of these cell types from in utero to adult as well as the progression to intermediate and advanced stages AMD are not yet fully understood. We performed single-cell RNA-sequencing (RNA-Seq) of human fetal and adult RPE-choroidal tissues, profiling in detail all the cell types and elucidating cell type-specific proliferation, differentiation and immunomodulation events that occur up to midgestation. Our data demonstrate that progression from the fetal to adult state is characterized by an increase in expression of genes involved in the oxidative stress response and detoxification from heavy metals, suggesting a better defence against oxidative stress in the adult RPE-choroid tissue. Single-cell comparative transcriptional analysis between a patient with intermediate AMD and an unaffected subject revealed a reduction in the number of RPE cells and melanocytes in the macular region of the AMD patient. Together these findings may suggest a macular loss of RPE cells and melanocytes in the AMD patients, but given the complex processing of tissues required for single-cell RNA-Seq that is prone to technical artefacts, these findings need to be validated by additional techniques in a larger number of AMD patients and controls.
Collapse
Affiliation(s)
- Joseph Collin
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Megan S R Hasoon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Darin Zerti
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
- Microscopy Centre and Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, L'aquila 67100, Italy
| | - Sarah Hammadi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Birthe Dorgau
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Lucy Clarke
- Department of Ophthalmology, Royal Victoria Infirmary and Newcastle University, Newcastle, NE1 4LP, UK
| | - David Steel
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Rafiqul Hussain
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Jonathan Coxhead
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Steven Lisgo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Rachel Queen
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Majlinda Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| |
Collapse
|
3
|
Guo S, Moore RM, Charlesworth MC, Johnson KL, Spinner RJ, Windebank AJ, Wang H. The proteome of distal nerves: implication in delayed repair and poor functional recovery. Neural Regen Res 2022; 17:1998-2006. [PMID: 35142689 PMCID: PMC8848594 DOI: 10.4103/1673-5374.335159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Chronic denervation is one of the key factors that affect nerve regeneration. Chronic axotomy deteriorates the distal nerve stump, causes protein changes, and renders the microenvironment less permissive for regeneration. Some of these factors/proteins have been individually studied. To better delineate the comprehensive protein expression profiles and identify proteins that contribute to or are associated with this detrimental effect, we carried out a proteomic analysis of the distal nerve using an established delayed rat sciatic nerve repair model. Four rats that received immediate repair after sciatic nerve transection served as control, whereas four rats in the experimental group (chronic denervation) had their sciatic nerve repaired after a 12-week delay. All the rats were sacrificed after 16 weeks to harvest the distal nerves for extracting proteins. Twenty-five micrograms of protein from each sample were fractionated in SDS-PAGE gels. NanoLC-MS/MS analysis was applied to the gels. Protein expression levels of nerves on the surgery side were compared to those on the contralateral side. Any protein with a P value of less than 0.05 and a fold change of 4 or higher was deemed differentially expressed. All the differentially expressed proteins in both groups were further stratified according to the biological processes. A PubMed search was also conducted to identify the differentially expressed proteins that have been reported to be either beneficial or detrimental to nerve regeneration. Ingenuity Pathway Analysis (IPA) software was used for pathway analysis. The results showed that 709 differentially expressed proteins were identified in the delayed repair group, with a bigger proportion of immune and inflammatory process-related proteins and a smaller proportion of proteins related to axon regeneration and lipid metabolism in comparison to the control group where 478 differentially expressed proteins were identified. The experimental group also had more beneficial proteins that were downregulated and more detrimental proteins that were upregulated. IPA revealed that protective pathways such as LXR/RXR, acute phase response, RAC, ERK/MAPK, CNTF, IL-6, and FGF signaling were inhibited in the delayed repair group, whereas three detrimental pathways, including the complement system, PTEN, and apoptosis signaling, were activated. An available database of the adult rodent sciatic nerve was used to assign protein changes to specific cell types. The poor regeneration seen in the delayed repair group could be associated with the down-regulation of beneficial proteins and up-regulation of detrimental proteins. The proteins and pathways identified in this study may offer clues for future studies to identify therapeutic targets.
Collapse
Affiliation(s)
- Song Guo
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Raymond M Moore
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | | | | | - Robert J Spinner
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Huan Wang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
4
|
Xiang Y, Dai J, Xu L, Li X, Jiang J, Xu J. Research progress in immune microenvironment regulation of muscle atrophy induced by peripheral nerve injury. Life Sci 2021; 287:120117. [PMID: 34740577 DOI: 10.1016/j.lfs.2021.120117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 09/18/2021] [Accepted: 10/28/2021] [Indexed: 01/08/2023]
Abstract
Denervated skeletal muscular atrophy is primarily characterized by loss of muscle strength and mass and an unideal functional recovery of the muscle after extended denervation. This review emphasizes the interaction between the immune system and the denervated skeletal muscle. Immune cells such as neutrophils, macrophages and T-cells are activated and migrate to denervated muscle, where they release a high concentration of cytokines and chemokines. The migration of these immune cells, the transformation of different functional immune cell subtypes, and the cytokine network in the immune microenvironment may be involved in the regulatory process of muscle atrophy or repair. However, the exact mechanisms of the interaction between these immune cells and immune molecules in skeletal muscles are unclear. In this paper, the immune microenvironment regulation of muscle atrophy induced by peripheral nerve injury is reviewed.
Collapse
Affiliation(s)
- Yaoxian Xiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Junxi Dai
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Lei Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Xiaokang Li
- Natl Res Inst Child Hlth & Dev, Div Transplantat Immunol, Tokyo, Japan
| | - Junjian Jiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China.
| | - Jianguang Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
5
|
Kim YH, Jang SY, Shin YK, Jo YR, Yoon BA, Nam SH, Choi BO, Shin HY, Kim SW, Kim SH, Kim JK, Park HT. Serum CXCL13 reflects local B-cell mediated inflammatory demyelinating peripheral neuropathy. Sci Rep 2019; 9:16535. [PMID: 31712675 PMCID: PMC6848485 DOI: 10.1038/s41598-019-52643-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/16/2019] [Indexed: 12/27/2022] Open
Abstract
Immune damages on the peripheral myelin sheath under pro-inflammatory milieu result in primary demyelination in inflammatory demyelinating neuropathy. Inflammatory cytokines implicating in the pathogenesis of inflammatory demyelinating neuropathy have been used for the development of potential biomarkers for the diagnosis of the diseases. In this study, we have found that macrophages, which induce demyelination, expressed a B-cell-recruiting factor CXC chemokine ligand 13 (CXCL13) in mouse and human inflammatory demyelinating nerves. The serum levels of CXCL13 were also higher in inflammatory demyelinating neuropathic patients but not in acute motor axonal neuropathy or a hereditary demyelinating neuropathy, Charcot-Marie-Tooth disease type 1a. In addition, CXCL13-expressing macrophages were not observed in the sciatic nerves after axonal injury, which causes the activation of innate immunity and Wallerian demyelination. Our findings indicate that the detection of serum CXCL13 will be useful to specifically recognize inflammatory demyelinating neuropathies in human.
Collapse
Affiliation(s)
- Young Hee Kim
- Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - So Young Jang
- Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Yoon Kyung Shin
- Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Young Rae Jo
- Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Byeol-A Yoon
- Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, 49201, Republic of Korea
- Department of Molecular Neuroscience, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
- Department of Neurology, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Soo Hyun Nam
- Department of Neurology, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Byung-Ok Choi
- Department of Neurology, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Ha Young Shin
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03772, Republic of Korea
| | - Seung Woo Kim
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03772, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03772, Republic of Korea
| | - Jong Kuk Kim
- Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, 49201, Republic of Korea.
- Department of Neurology, Dong-A University College of Medicine, Busan, 49201, Republic of Korea.
| | - Hwan Tae Park
- Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, 49201, Republic of Korea.
- Department of Molecular Neuroscience, Dong-A University College of Medicine, Busan, 49201, Republic of Korea.
| |
Collapse
|
6
|
Jang SY, Shin YK, Lee HY, Park JY, Suh DJ, Kim JK, Bae YS, Park HT. Local production of serum amyloid a is implicated in the induction of macrophage chemoattractants in Schwann cells during wallerian degeneration of peripheral nerves. Glia 2012; 60:1619-28. [PMID: 22777957 DOI: 10.1002/glia.22382] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 06/07/2012] [Indexed: 02/03/2023]
Abstract
The elevation of serum levels of serum amyloid A (SAA) has been regarded as an acute reactive response following inflammation and various types of injuries. SAA from the liver and extrahepatic tissues plays an immunomodulatory role in a variety of pathophysiological conditions. Inflammatory cytokines in the peripheral nerves have been implicated in the Wallerian degeneration of peripheral nerves after injury and in certain types of inflammatory neuropathies. In the present study, we found that a sciatic nerve axotomy could induce an increase of SAA1 and SAA3 mRNA expression in sciatic nerves. Immunohistochemical staining showed that Schwann cells are the primary sources of SAA production after nerve injury. In addition, interleukin-6-null mice, but not tumor necrosis factor-α-null mice showed a defect in the production of SAA1 in sciatic nerve following injury. Dexamethasone treatment enhanced the expression and secretion of SAA1 and SAA3 in sciatic nerve explants cultures, suggesting that interleukin-6 and corticosteroids might be major regulators for SAA production in Schwann cells following injury. Moreover, the stimulation of Schwann cells with SAA1 elicited the production of the macrophage chemoattractants, Ccl2 and Ccl3, in part through a G-protein coupled receptor. Our findings suggest that locally produced SAA might play an important role in Wallerian degeneration after peripheral nerve injury.
Collapse
Affiliation(s)
- So Young Jang
- Department of Physiology, Mitochondria Hub Regulation Center, College of Medicine, Dong-A University, Busan, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
7
|
TAURONE SAMANTA, BIANCHI ENRICA, ATTANASIO GIUSEPPE, DI GIOIA CIRA, IERINÓ ROCCO, CARUBBI CECILIA, GALLI DANIELA, PASTORE FRANCESCOSAVERIO, GIANGASPERO FELICE, FILIPO ROBERTO, ZANZA CHRISTIAN, ARTICO MARCO. Immunohistochemical profile of cytokines and growth factors expressed in vestibular schwannoma and in normal vestibular nerve tissue. Mol Med Rep 2012; 12:737-45. [DOI: 10.3892/mmr.2015.3415] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/21/2015] [Indexed: 11/06/2022] Open
|
8
|
Zigmond RE. gp130 cytokines are positive signals triggering changes in gene expression and axon outgrowth in peripheral neurons following injury. Front Mol Neurosci 2012; 4:62. [PMID: 22319466 PMCID: PMC3262188 DOI: 10.3389/fnmol.2011.00062] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/28/2011] [Indexed: 01/24/2023] Open
Abstract
Adult peripheral neurons, in contrast to adult central neurons, are capable of regeneration after axonal damage. Much attention has focused on the changes that accompany this regeneration in two places, the distal nerve segment (where phagocytosis of axonal debris, changes in the surface properties of Schwann cells, and induction of growth factors and cytokines occur) and the neuronal cell body (where dramatic changes in cell morphology and gene expression occur). The changes in the axotomized cell body are often referred to as the "cell body response." The focus of the current review is a family of cytokines, the glycoprotein 130 (gp130) cytokines, which produce their actions through a common gp130 signaling receptor and which function as injury signals for axotomized peripheral neurons, triggering changes in gene expression and in neurite outgrowth. These cytokines play important roles in the responses of sympathetic, sensory, and motor neurons to injury. The best studied of these cytokines in this context are leukemia inhibitory factor (LIF) and interleukin (IL)-6, but experiments with conditional gp130 knockout animals suggest that other members of this family, not yet determined, are also involved. The primary gp130 signaling pathway shown to be involved is the activation of Janus kinase (JAK) and the transcription factors Signal Transducers and Activators of Transcription (STAT), though other downstream pathways such as mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) may also play a role. gp130 signaling may involve paracrine, retrograde, and autocrine actions of these cytokines. Recent studies suggest that manipulation of this cytokine system can also stimulate regeneration by injured central neurons.
Collapse
Affiliation(s)
- Richard E. Zigmond
- Department of Neurosciences, Case Western Reserve University, ClevelandOH, USA
| |
Collapse
|
9
|
Shin YK, Jang SY, Lee HK, Jung J, Suh DJ, Seo SY, Park HT. Pathological adaptive responses of Schwann cells to endoplasmic reticulum stress in bortezomib-induced peripheral neuropathy. Glia 2011; 58:1961-76. [PMID: 20830808 DOI: 10.1002/glia.21065] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bortezomib, a proteasome inhibitor, has been considered as a promising anticancer drug in the treatment of recurrent multiple myeloma and some solid tumors. The bortezomib-induced peripheral neuropathy (BIPN) is a prominent cause of dose-limiting toxicities after bortezomib treatment. In this study, we found that BIPN in a mouse model is characterized by acute but transient endoplasmic reticulum (ER) damages to Schwann cells. These damaged Schwann cells exhibit abnormal outcomes from healing processes such as the myelination of Remak bundles. A morphometric analysis of polymyelinated Remak bundles revealed that the pathological myelination was not related to the axonal parameters that regulate the normal myelination process during development. In addition, demyelinating macrophages were focally infiltrated within endoneurium of the sciatic nerve. To identify the mechanism underlying these pathologies, we applied a gene microarray analysis to bortezomib-treated primary Schwann cells and verified the changes of several gene expression in bortezomib-treated sciatic nerves. The analysis showed that bortezomib-induced ER stress was accompanied by the activation of several protective molecular chaperones and the down-regulation of myelin gene expression. ER stress inducers such as thapsigargin and bredelfin A also suppressed the mRNA expression of myelin gene P0 at transcriptional levels. In addition, the expression of chemokines such as the macrophage chemoattractants Ccl3 and Cxcl2 was significantly increased in Schwann cells in response to bortezomib and ER stress inducers. Taken together, these observations suggest that the pathological adaptive responses of Schwann cells to bortezomib-induced ER stress may, in part, participate in the development of BIPN.
Collapse
Affiliation(s)
- Yoon Kyung Shin
- Department of Physiology, Medical Science Research Institute, College of Medicine, Dong-A University, Busan, South Korea
| | | | | | | | | | | | | |
Collapse
|
10
|
Jang SY, Shin YK, Jung J, Lee SH, Seo SY, Suh DJ, Park HT. Injury-induced CRMP4 expression in adult sensory neurons; a possible target gene for ciliary neurotrophic factor. Neurosci Lett 2010; 485:37-42. [PMID: 20800647 DOI: 10.1016/j.neulet.2010.08.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 08/19/2010] [Indexed: 01/31/2023]
Abstract
Neurotrophic cytokines, such as ciliary neurotrophic factor (CNTF) play an important role in the development and regeneration of the nervous system. In the present study, we screened gene expression induced by CNTF in adult dorsal root ganglion (DRG) neurons using the Illumina microarray. We found that the expression of both short and long forms of collapsin response-mediator protein 4 (CRMP4) was increased in cultured primary sensory neurons by CNTF. In addition, sciatic nerve injury induced the expression of CRMP4 mRNA and protein in DRG neurons. Finally, the increased CRMP4 protein was transported into peripheral axons following nerve injury. These findings indicate that CRMP4 may be a target gene for CNTF in the regenerative axon growth of DRG neurons after injury.
Collapse
Affiliation(s)
- So Young Jang
- Department of Physiology, Mitochondria Hub Regulation Center, College of Medicine, Dong-A University, South Korea
| | | | | | | | | | | | | |
Collapse
|