1
|
Ezaddoustdar A, Kalina D, Bielohuby M, Boehm M, Wygrecka M. dEREGulated pathways: unraveling the role of epiregulin in skin, kidney, and lung fibrosis. Am J Physiol Cell Physiol 2025; 328:C617-C626. [PMID: 39750963 DOI: 10.1152/ajpcell.00813.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
The epidermal growth factor receptor (EGFR) signaling pathway is an evolutionary conserved mechanism to control cell behavior during tissue development and homeostasis. Deregulation of this pathway has been associated with abnormal cell behavior, including hyperproliferation, senescence, and an inflammatory cell phenotype, thereby contributing to pathologies across a variety of organs, including the kidneys, skin, and lungs. To date, there are seven distinct EGFR ligands described. Although binding of these ligands to the receptor is cell type-specific and spatio-temporally controlled with distinct affinities and kinetics, epiregulin (EREG) stands out as a long-acting EGFR ligand that emerges under pathological conditions, particularly in tissue fibrosis. Although EREG has been extensively studied in cancer, its contribution to the maladaptive remodeling of tissue is elusive. The aim of this review is to highlight the role of EREG in skin, kidney, and lung fibrosis and to discuss opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Aysan Ezaddoustdar
- Center for Infection and Genomics of the Lung, Faculty of Medicine, Justus Liebig University, Member of the German Center for Lung Research, Giessen, Germany
| | | | | | | | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung, Faculty of Medicine, Justus Liebig University, Member of the German Center for Lung Research, Giessen, Germany
- CSL Innovation GmbH, Marburg, Germany
- Institute for Lung Health, Justus Liebig University, Giessen, Germany
| |
Collapse
|
2
|
Kubo T, Nishimura N, Kaji K, Tomooka F, Shibamoto A, Iwai S, Suzuki J, Kawaratani H, Namisaki T, Akahane T, Yoshiji H. Role of Epiregulin on Lipopolysaccharide-Induced Hepatocarcinogenesis as a Mediator via EGFR Signaling in the Cancer Microenvironment. Int J Mol Sci 2024; 25:4405. [PMID: 38673992 PMCID: PMC11050651 DOI: 10.3390/ijms25084405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/06/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Lipopolysaccharides (LPSs) have been reported to be important factors in promoting the progression of hepatocellular carcinoma (HCC), but the corresponding molecular mechanisms remain to be elucidated. We hypothesize that epiregulin (EREG), an epidermal growth factor (EGF) family member derived from hepatic stellate cells (HSCs) and activated by LPS stimulation, is a crucial mediator of HCC progression with epidermal growth factor receptor (EGFR) expression in the tumor microenvironment. We used a mouse xenograft model of Huh7 cells mixed with half the number of LX-2 cells, with/without intraperitoneal LPS injection, to elucidate the role of EREG in LPS-induced HCC. In the mouse model, LPS administration significantly enlarged the size of xenografted tumors and elevated the expression of EREG in tumor tissues compared with those in negative controls. Moreover, CD34 immunostaining and the gene expressions of angiogenic markers by a reverse transcription polymerase chain reaction revealed higher vascularization, with increased interleukin-8 (IL-8) expression in the tumors of the mice group treated with LPS compared to those without LPS. Our data collectively suggested that EREG plays an important role in the cancer microenvironment under the influence of LPS to increase not only the tumor cell growth and migration/invasion of EGFR-positive HCC cells but also tumor neovascularization via IL-8 signaling.
Collapse
Affiliation(s)
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, 840, Shijo-cho, Kashihara 634-8522, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Sunaga N, Miura Y, Masuda T, Sakurai R. Role of Epiregulin in Lung Tumorigenesis and Therapeutic Resistance. Cancers (Basel) 2024; 16:710. [PMID: 38398101 PMCID: PMC10886815 DOI: 10.3390/cancers16040710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Epidermal growth factor (EGF) signaling regulates multiple cellular processes and plays an essential role in tumorigenesis. Epiregulin (EREG), a member of the EGF family, binds to the epidermal growth factor receptor (EGFR) and ErbB4, and it stimulates EGFR-related downstream pathways. Increasing evidence indicates that both the aberrant expression and oncogenic function of EREG play pivotal roles in tumor development in many human cancers, including non-small cell lung cancer (NSCLC). EREG overexpression is induced by activating mutations in the EGFR, KRAS, and BRAF and contributes to the aggressive phenotypes of NSCLC with oncogenic drivers. Recent studies have elucidated the roles of EREG in a tumor microenvironment, including the epithelial-mesenchymal transition, angiogenesis, immune evasion, and resistance to anticancer therapy. In this review, we summarized the current understanding of EREG as an oncogene and discussed its oncogenic role in lung tumorigenesis and therapeutic resistance.
Collapse
Affiliation(s)
- Noriaki Sunaga
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan; (Y.M.); (T.M.)
| | - Yosuke Miura
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan; (Y.M.); (T.M.)
| | - Tomomi Masuda
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan; (Y.M.); (T.M.)
| | - Reiko Sakurai
- Oncology Center, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan;
| |
Collapse
|
4
|
Siurana A, Cánovas A, Casellas J, Calsamiglia S. Transcriptome Profile in Dairy Cows Resistant or Sensitive to Milk Fat Depression. Animals (Basel) 2023; 13:ani13071199. [PMID: 37048455 PMCID: PMC10093643 DOI: 10.3390/ani13071199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
Feeding linseed to dairy cows results in milk fat depression (MFD), but there is a wide range of sensitivity among cows. The objectives of this study were to identify target genes containing SNP that may play a key role in the regulation of milk fat synthesis in cows resistant or sensitive to MFD. Four cows were selected from a dairy farm after a switch from a control diet to a linseed-rich diet; two were resistant to MFD with a high milk fat content in the control (4.06%) and linseed-rich (3.90%) diets; and two were sensitive to MFD with the milk fat content decreasing after the change from the control (3.87%) to linseed-rich (2.52%) diets. Transcriptome and SNP discovery analyses were performed using RNA-sequencing technology. There was a large number of differentially expressed genes in the control (n = 1316) and linseed-rich (n = 1888) diets. Of these, 15 genes were detected as key gene regulators and harboring SNP in the linseed-rich diet. The selected genes MTOR, PDPK1, EREG, NOTCH1, ZNF217 and TGFB3 may form a network with a principal axis PI3K/Akt/MTOR/SREBP1 involved in milk fat synthesis and in the response to diets that induced MFD. These 15 genes are novel candidate genes to be involved in the resistance or sensitivity of dairy cows to milk fat depression.
Collapse
|
5
|
Li T, Feng R, Chen B, Zhou J. EREG is a risk factor for the prognosis of patients with cervical cancer. Front Med (Lausanne) 2023; 10:1161835. [PMID: 37020674 PMCID: PMC10067667 DOI: 10.3389/fmed.2023.1161835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/27/2023] [Indexed: 04/07/2023] Open
Abstract
Background Cervical cancer continues to threaten women's health worldwide. Identifying critical oncogenic molecules is important to drug development and prognosis prediction for patients with cervical cancer. Recent studies have demonstrated that epiregulin (EREG) is upregulated in various cancer types, which contributes to cancer progression by triggering the EGFR signaling pathway. However, the role of EREG is still unclear. Methods In this study, we first conducted a comprehensive biological analysis to investigate the expression of EREG in cervical cancer. Then, we investigated the correlations between EREG expression level and clinicopathological features. In addition, we validated the effects of EREG expression on the proliferation and apoptosis of cervical cancer cells. Results Based on the public database, we found that the expression of EREG was higher in advanced cervical cancer samples. Survival analysis showed that EREG was a risk factor for the prognosis of cervical cancer. In vitro experiments demonstrated that EREG knockdown undermined proliferation and promoted apoptosis in cancer cells. Conclusion EREG plays a vital role in the progression of cervical cancer, which contributes to hyperactive cell proliferation and decreased cell apoptosis. It might be a valuable target for prognosis prediction and drug development for cervical cancer in the future.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ruijing Feng
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Wuhan, China
| | - Bingxin Chen
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Jianwei Zhou
| |
Collapse
|
6
|
Cheng WL, Feng PH, Lee KY, Chen KY, Sun WL, Van Hiep N, Luo CS, Wu SM. The Role of EREG/EGFR Pathway in Tumor Progression. Int J Mol Sci 2021; 22:ijms222312828. [PMID: 34884633 PMCID: PMC8657471 DOI: 10.3390/ijms222312828] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Aberrant activation of the epidermal growth factor receptor (EGFR/ERBB1) by erythroblastic leukemia viral oncogene homolog (ERBB) ligands contributes to various tumor malignancies, including lung cancer and colorectal cancer (CRC). Epiregulin (EREG) is one of the EGFR ligands and is low expressed in most normal tissues. Elevated EREG in various cancers mainly activates EGFR signaling pathways and promotes cancer progression. Notably, a higher EREG expression level in CRC with wild-type Kirsten rat sarcoma viral oncogene homolog (KRAS) is related to better efficacy of therapeutic treatment. By contrast, the resistance of anti-EGFR therapy in CRC was driven by low EREG expression, aberrant genetic mutation and signal pathway alterations. Additionally, EREG overexpression in non-small cell lung cancer (NSCLC) is anticipated to be a therapeutic target for EGFR-tyrosine kinase inhibitor (EGFR-TKI). However, recent findings indicate that EREG derived from macrophages promotes NSCLC cell resistance to EGFR-TKI treatment. The emerging events of EREG-mediated tumor promotion signals are generated by autocrine and paracrine loops that arise from tumor epithelial cells, fibroblasts, and macrophages in the tumor microenvironment (TME). The TME is a crucial element for the development of various cancer types and drug resistance. The regulation of EREG/EGFR pathways depends on distinct oncogenic driver mutations and cell contexts that allows specific pharmacological targeting alone or combinational treatment for tailored therapy. Novel strategies targeting EREG/EGFR, tumor-associated macrophages, and alternative activation oncoproteins are under development or undergoing clinical trials. In this review, we summarize the clinical outcomes of EREG expression and the interaction of this ligand in the TME. The EREG/EGFR pathway may be a potential target and may be combined with other driver mutation targets to combat specific cancers.
Collapse
Affiliation(s)
- Wan-Li Cheng
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan;
- Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Lun Sun
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Nguyen Van Hiep
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Shan Luo
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|
7
|
Choi HI, An GY, Baek M, Yoo E, Chai JC, Lee YS, Jung KH, Chai YG. BET inhibitor suppresses migration of human hepatocellular carcinoma by inhibiting SMARCA4. Sci Rep 2021; 11:11799. [PMID: 34083693 PMCID: PMC8175750 DOI: 10.1038/s41598-021-91284-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and poorly responsive cancers worldwide. Bromodomain and extraterminal (BET) inhibitors, such as JQ1 and OTX-015, inhibit BET protein binding to acetylated residues in histones. However, the physiological mechanisms and regulatory processes of BET inhibition in HCC remain unclear. To explore BET inhibitors’ potential role in the molecular mechanisms underlying their anticancer effects in HCC, we analyzed BET inhibitor-treated HCC cells’ gene expression profiles with RNA-seq and bioinformatics analysis. BET inhibitor treatment significantly downregulated genes related to bromodomain-containing proteins 4 (BRD4), such as ACSL5, SLC38A5, and ICAM2. Importantly, some cell migration-related genes, including AOC3, CCR6, SSTR5, and SCL7A11, were significantly downregulated. Additionally, bioinformatics analysis using Ingenuity Knowledge Base Ingenuity Pathway Analysis (IPA) revealed that SMARCA4 regulated migration response molecules. Furthermore, knockdown of SMARCA4 gene expression by siRNA treatment significantly reduced cell migration and the expression of migration-related genes. In summary, our results indicated that BET inhibitor treatment in HCC cell lines reduces cell migration through the downregulation of SMARCA4.
Collapse
Affiliation(s)
- Hae In Choi
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea
| | - Ga Yeong An
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea
| | - Mina Baek
- Institute of Natural Science and Technology, Hanyang University, Ansan, 15588, Republic of Korea.,Department of Molecular and Life Science, Hanyang University, Ansan, 15588, Republic of Korea
| | - Eunyoung Yoo
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea
| | - Jin Choul Chai
- College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Seek Lee
- College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Kyoung Hwa Jung
- Convergence Technology Campus of Korea Polytechnic II, Incheon, 21417, Republic of Korea. .,Department of Biopharmaceutical System, Gwangmyeong Convergence Technology Campus of Korea Polytechnic II, Gwangmyeong , 14222, Republic of Korea.
| | - Young Gyu Chai
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea. .,Department of Molecular and Life Science, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
8
|
Hu N, Liu J, Xue X, Li Y. The effect of emodin on liver disease -- comprehensive advances in molecular mechanisms. Eur J Pharmacol 2020; 882:173269. [PMID: 32553811 DOI: 10.1016/j.ejphar.2020.173269] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 01/30/2023]
Abstract
Liver injury could be caused by a variety of causes, including alcohol, drug poisoning, autoimmune overreaction, etc. In the period of liver injury, hepatic stellate cells (HSCs) will be activated and produce excessive extracellular matrix (ECM). If injury cannot be suppressed, liver injury will develop into fibrosis, even cirrhosis and liver cancer. It is reported that some monomer components extracted from traditional Chinese medicine have better effects on protecting liver. Emodin, an anthraquinone compound extracted from the traditional Chinese medicine RHEI RADIX ET RHIZOMA, has anti-inflammatory, antioxidant, liver protection and anti-cancer effects, and can prevent liver injury induced by a variety of factors. By searching literatures related to the liver protection of emodin in PUBMED, SINOMED, EBM and CNKI databases, it was found that emodin could inhibit the production and promote the secretion of bile acids, and have a protective effect on intrahepatic cholestasis. Also, emodin reduce collagen synthesis and anti-hepatic fibrosis by inhibiting oxidative stress, TGF-β/Smad pathway and HSCs proliferation, and promoting apoptosis of HSCs. Emodin can also regulate lipid metabolism and regulate the synthesis and oxidation of lipids and cholesterol to protect the nonalcoholic fatty liver. Besides, emodin can induce the apoptosis of hepatocellular carcinoma cells by acting on the death receptor pathway and mitochondrial apoptosis pathway, thus inhibiting the development of hepatocellular carcinoma. Moreover, emodin can modulate immunity and improve immune rejection in liver transplantation animals. In conclusion, emodin has a good effect on liver protection, but further experimental data are needed to verify it.
Collapse
Affiliation(s)
- Naihua Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Jie Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyan Xue
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| |
Collapse
|
9
|
Xia Q, Zhou Y, Yong H, Wang X, Zhao W, Ding G, Zhu J, Li X, Feng Z, Wang B. Elevated epiregulin expression predicts poor prognosis in gastric cancer. Pathol Res Pract 2019; 215:873-879. [PMID: 30738695 DOI: 10.1016/j.prp.2019.01.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/05/2019] [Accepted: 01/25/2019] [Indexed: 02/06/2023]
Abstract
Epiregulin (EREG) is a novel family member of EGF-like ligands and have elevated expression in a variety of human cancers. EREG expression promotes tumor progression and metastasis and reduces patient survival. However, the expression of EREG and its prognostic value are not clear in gastric cancer (GC). We assessed EREG mRNA and protein expression in GC tissues from Chinese patients using quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemical staining of tissue microarray, and analyzed the correlation between the level of EREG expression and patient clinical characteristics and prognosis. We found that EREG expression was significantly higher in GC tissues than in matched adjacent noncancerous tissues. High EREG protein expression in GC was significantly associated with TNM stage including tumor size, lymph node metastases and distant metastases as well as poor overall survival. These finding demonstrate that EREG is an independent prognostic biomarker for GC.
Collapse
Affiliation(s)
- Qiuyan Xia
- Department of Oncology, The Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang 215617, China
| | - Yan Zhou
- Department of Oncology, The Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang 215617, China; Jiangsu University Aoyang Institute of Oncology, Zhangjiagang 215617, China
| | - Hongmei Yong
- Department of Oncology, Huai'an Hospital Affiliated of Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an 223200, China
| | - Xudong Wang
- Clinical Biobank, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Wei Zhao
- Department of Pathology, Nanjing Medical University, Nanjing 210029, China
| | - Guipeng Ding
- Department of Pathology, Nanjing Medical University, Nanjing 210029, China
| | - Jin Zhu
- Huadong Medical Institute of Biotechniques, Nanjing 210029, China
| | - Xiaohua Li
- The Center for Pathology & Laboratory Medicine, The Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang 215617, China; School of Medicine, Jiangsu University, Zhenjiang 212013, China; The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhenqing Feng
- Department of Oncology, The Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang 215617, China; Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing 210029, China.
| | - Bing Wang
- Department of Oncology, The Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang 215617, China; Department of Oncology, Shanghai Ruijin Hospital Luwan Branch, Shanghai Jiaotong University, Shanghai 200020, China.
| |
Collapse
|
10
|
El-Din MS, Taha AM, Sayed AAA, Salem AM. Ziziphus spina-christi leaves methanolic extract alleviates diethylnitrosamine-induced hepatocellular carcinoma in rats. Biochem Cell Biol 2019; 97:437-445. [PMID: 30605366 DOI: 10.1139/bcb-2018-0318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This study evaluated the antitumor activity of a methanolic extract from the leaves of Ziziphus spina-christi (ZSCL) against diethylnitrosamine (DENA)-induced hepatocarcinoma in rats. The phytochemical constituents, in vitro antioxidant and cytotoxic activities of ZSCL extract were investigated. Male Wistar rats were distributed among 6 groups: (i) normal control; (ii) ZSCL1-treated rats (100 mg/kg body mass; "b.m."); (iii) ZSCL2-treated rats (300 mg/kg b.m.); (iv) rats with DENA-induced hepatocarcinoma; (v and vi) rats with hepatocarcinoma that were treated with either (v) ZSCL1 or (vi) ZSCL2. Serum liver function and levels of oxidative stress were assayed. The expression of hepatocyte growth factor, insulin-like growth factor-1 receptor, B cell lymphoma-2, and matrix metalloproteinase-9 oncogenes were quantified in liver samples. Histological examination of the liver tissues was performed. The ZSCL was rich in essential fatty acids, phytol, and polyphenolic flavones (luteolin and quercetin) with strong free-radical and peroxide scavenging activities and cytotoxic activity. Administration of ZSCL1 and ZSCL2 to the rats produced no toxic effects. DENA induced hepatocellular carcinoma and cholangioma by producing oxidative stress and upregulating the expression of hepatic oncogenes. Treatment of DENA-induced hepatocarcinoma with ZSCL2 ameliorated all of the abnormalities induced by DENA except for cholangioma. In conclusion, the ZSCL (300 mg/kg b.m.) displayed strong therapeutic activity against DENA-induced hepatocellular carcinoma via targeting oxidative stress and oncogenes.
Collapse
Affiliation(s)
- Manar Salah El-Din
- a Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | | - Ahmed Abdel-Aziz Sayed
- a Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.,b Children's Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Ahmed Mohamed Salem
- a Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
11
|
Morimoto A, Kannari M, Tsuchida Y, Sasaki S, Saito C, Matsuta T, Maeda T, Akiyama M, Nakamura T, Sakaguchi M, Nameki N, Gonzalez FJ, Inoue Y. An HNF4α-microRNA-194/192 signaling axis maintains hepatic cell function. J Biol Chem 2017; 292:10574-10585. [PMID: 28465351 DOI: 10.1074/jbc.m117.785592] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/28/2017] [Indexed: 12/14/2022] Open
Abstract
Hepatocyte nuclear factor 4α (HNF4α) controls the expression of liver-specific protein-coding genes. However, some microRNAs are also modulated by HNF4α, and it is not known whether they are direct targets of HNF4α and whether they influence hepatic function. In this study, we found that HNF4α regulates microRNAs, indicated by marked down-regulation of miR-194 and miR-192 (miR-194/192) in liver-specific Hnf4a-null (Hnf4aΔH) mice. Transactivation of the shared miR-194/192 promoter was dependent on HNF4α expression, indicating that miR-194/192 is a target gene of HNF4α. Screening of potential mRNAs targeted by miR-194/192 revealed that expression of genes involved in glucose metabolism (glycogenin 1 (Gyg1)), cell adhesion and migration (activated leukocyte cell adhesion molecule (Alcam)), tumorigenesis and tumor progression (Rap2b and epiregulin (Ereg)), protein SUMOylation (Sumo2), epigenetic regulation (Setd5 and Cullin 4B (Cln4b)), and the epithelial-mesenchymal transition (moesin (Msn)) was up-regulated in Hnf4aΔH mice. Moreover, we also found that miR-194/192 binds the 3'-UTR of these mRNAs. siRNA knockdown of HNF4α suppressed miR-194/192 expression in human hepatocellular carcinoma (HCC) cells and resulted in up-regulation of their mRNA targets. Inhibition and overexpression experiments with miR-194/192 revealed that Gyg1, Setd5, Sumo2, Cln4b, and Rap2b are miR-194 targets, whereas Ereg, Alcam, and Msn are miR-192 targets. These findings reveal a novel HNF4α network controlled by miR-194/192 that may play a critical role in maintaining the hepatocyte-differentiated state by inhibiting expression of genes involved in dedifferentiation and tumorigenesis. These insights may contribute to the development of diagnostic markers for early HCC detection, and targeting of the miR-194/192 pathway could be useful for managing HCC.
Collapse
Affiliation(s)
- Aoi Morimoto
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Mana Kannari
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Yuichi Tsuchida
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Shota Sasaki
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Chinatsu Saito
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Tsuyoshi Matsuta
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Tsukasa Maeda
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Megumi Akiyama
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Takahiro Nakamura
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Masakiyo Sakaguchi
- the Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama 700-8558, Japan, and
| | - Nobukazu Nameki
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Frank J Gonzalez
- the Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20852
| | - Yusuke Inoue
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan,
| |
Collapse
|
12
|
Affo S, Yu LX, Schwabe RF. The Role of Cancer-Associated Fibroblasts and Fibrosis in Liver Cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 12:153-186. [PMID: 27959632 DOI: 10.1146/annurev-pathol-052016-100322] [Citation(s) in RCA: 496] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Liver cancer is the second leading cause of cancer mortality worldwide, causing more than 700,000 deaths annually. Because of the wide landscape of genomic alterations and limited therapeutic success of targeting tumor cells, a recent focus has been on better understanding and possibly targeting the microenvironment in which liver tumors develop. A unique feature of liver cancer is its close association with liver fibrosis. More than 80% of hepatocellular carcinomas (HCCs) develop in fibrotic or cirrhotic livers, suggesting an important role of liver fibrosis in the premalignant environment (PME) of the liver. Cholangiocarcinoma (CCA), in contrast, is characterized by a strong desmoplasia that typically occurs in response to the tumor, suggesting a key role of cancer-associated fibroblasts (CAFs) and fibrosis in its tumor microenvironment (TME). Here, we discuss the functional contributions of myofibroblasts, CAFs, and fibrosis to the development of HCC and CCA in the hepatic PME and TME, focusing on myofibroblast- and extracellular matrix-associated growth factors, fibrosis-associated immunosuppressive pathways, as well as mechanosensitive signaling cascades that are activated by increased tissue stiffness. Better understanding of the role of myofibroblasts in HCC and CCA development and progression may provide the basis to target these cells for tumor prevention or therapy.
Collapse
Affiliation(s)
- Silvia Affo
- Department of Medicine, Columbia University, New York, NY 10032;
| | - Le-Xing Yu
- Department of Medicine, Columbia University, New York, NY 10032;
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, NY 10032;
| |
Collapse
|
13
|
Maleimide-Functionalized PEI600 Grafted Polyurethane: Synthesis, Nano-Complex Formation with DNA and Thiol-Conjugation of the Complexes for Dual DNA Transfection. Polymers (Basel) 2015. [DOI: 10.3390/polym7101503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
14
|
Sunaga N, Kaira K. Epiregulin as a therapeutic target in non-small-cell lung cancer. LUNG CANCER-TARGETS AND THERAPY 2015; 6:91-98. [PMID: 28210154 PMCID: PMC5217521 DOI: 10.2147/lctt.s60427] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Epiregulin (EREG) belongs to the ErbB family of ligands. EREG binds to EGFR and ErbB4 receptor and stimulates homodimers of EGFR and ErbB4 in addition to all possible heterodimeric ErbB complexes, resulting in the activation of downstream signaling pathways. EREG is overexpressed in various human cancers and has been implicated in tumor progression and metastasis. Oncogenic activation of the MEK/ERK pathway plays a central role in the regulation of EREG expression. Non-small-cell lung cancers (NSCLCs) harboring KRAS, BRAF, or EGFR mutations overexpress EREG, and abrogation of such mutations or inhibition of MEK or ERK downregulates the expression of EREG. Elevated EREG expression in NSCLC is associated with aggressive tumor phenotypes and unfavorable prognosis, especially in oncogenic KRAS-driven lung adenocarcinomas. The finding that attenuation of EREG inhibits cell growth and induces apoptosis in KRAS-mutant and EREG-overexpressing NSCLC cell lines suggests that targeting EREG might be a treatment option for KRAS-mutant NSCLC, although further studies are necessary to elucidate its therapeutic value. These observations suggest that oncogenic mutations in the EGFR, KRAS, or BRAF genes induce EREG upregulation through the activation of MEK/ERK pathway in NSCLC cells, whereas overproduced EREG stimulates the EGFR/ErbB receptors and activates multiple downstream signaling pathways, leading to tumor progression and metastasis of these oncogene-driven NSCLCs. This paper reviews the current understanding of the oncogenic role of EREG and highlights its potential as a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Noriaki Sunaga
- Oncology Center, Gunma University Hospital; Department of Medicine and Molecular Science
| | - Kyoichi Kaira
- Department of Medicine and Molecular Science; Department of Oncology Clinical Development, Gunma University Graduate School of Medicine, Gunma, Japan
| |
Collapse
|
15
|
Chen C, Wang G. Mechanisms of hepatocellular carcinoma and challenges and opportunities for molecular targeted therapy. World J Hepatol 2015; 7:1964-1970. [PMID: 26244070 PMCID: PMC4517155 DOI: 10.4254/wjh.v7.i15.1964] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 06/01/2015] [Accepted: 07/17/2015] [Indexed: 02/06/2023] Open
Abstract
The incidence and mortality of hepatocellular carcinoma (HCC) have fallen dramatically in China and elsewhere over the past several decades. Nonetheless, HCC remains a major public health issue as one of the most common malignant tumors worldwide and one of the leading causes of death caused by cancer in China. Hepatocarcinogenesis is a very complex biological process associated with many environmental risk factors and factors in heredity, including abnormal activation of cellular and molecular signaling pathways such as Wnt/β-catenin, hedgehog, MAPK, AKT, and ERK signaling pathways, and the balance between the activation and inactivation of the proto-oncogenes and anti-oncogenes, and the differentiation of liver cancer stem cells. Molecule-targeted therapy, a new approach for the treatment of liver cancer, blocks the growth of cancer cells by interfering with the molecules required for carcinogenesis and tumor growth, making it both specific and selective. However, there is no one drug completely designed for liver cancer, and further development in the research of liver cancer targeted drugs is now almost stagnant. The purpose of this review is to discuss recent advances in our understanding of the molecular mechanisms underlying the development of HCC and in the development of novel strategies for cancer therapeutics.
Collapse
|
16
|
Li T, Wu M, Zhu YY, Chen J, Chen L. Development of RNA Interference–Based Therapeutics and Application of Multi-Target Small Interfering RNAs. Nucleic Acid Ther 2014; 24:302-12. [DOI: 10.1089/nat.2014.0480] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Tiejun Li
- Department of Pathological Anatomy, Nantong University, Nantong, China
- Small RNA Technology and Application Institute, Nantong University, Nantong, China
- Department of Life Science Center, Biomics Biotechnologies Co., Ltd., Nantong, China
| | - Meihua Wu
- Department of Pathological Anatomy, Nantong University, Nantong, China
- Small RNA Technology and Application Institute, Nantong University, Nantong, China
- Department of Life Science Center, Biomics Biotechnologies Co., Ltd., Nantong, China
| | - York Yuanyuan Zhu
- Small RNA Technology and Application Institute, Nantong University, Nantong, China
- Department of Life Science Center, Biomics Biotechnologies Co., Ltd., Nantong, China
| | - Jianxin Chen
- Small RNA Technology and Application Institute, Nantong University, Nantong, China
- Department of Life Science Center, Biomics Biotechnologies Co., Ltd., Nantong, China
| | - Li Chen
- Department of Pathological Anatomy, Nantong University, Nantong, China
| |
Collapse
|
17
|
Bai Y, Xue Y, Xie X, Yu T, Zhu Y, Ge Q, Lu Z. The RNA expression signature of the HepG2 cell line as determined by the integrated analysis of miRNA and mRNA expression profiles. Gene 2014; 548:91-100. [PMID: 25014136 DOI: 10.1016/j.gene.2014.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/19/2014] [Accepted: 07/07/2014] [Indexed: 12/15/2022]
Abstract
Understanding miRNAs' regulatory networks and target genes could facilitate the development of therapies for human diseases such as cancer. Although much useful gene expression profiling data for tumor cell lines is available, microarray data for miRNAs and mRNAs in the human HepG2 cell line have only been compared with that of other cell lines separately. The relationship between miRNAs and mRNAs in integrated expression profiles for HepG2 cells is still unknown. To explore the miRNA-mRNA correlations in hepatocellular carcinoma (HCC) cells, we performed miRNA and mRNA expression profiling in HepG2 cells and normal liver HL-7702 cells at the genome scale using next-generation sequencing technology. We identified 193 miRNAs that are differentially expressed in these two cell lines. Of these, 89 miRNAs were down-regulated in HepG2 cells compared with HL-7702 cells, while 104 miRNAs were up-regulated. We also observed 3035 mRNAs that are significantly dys-regulated in HepG2 cells. We then performed an integrated analysis of the expression data for differentially expressed miRNAs and mRNAs and found several miRNA-mRNA pairs that are significantly correlated in HepG2 cells. Further analysis suggested that these differentially expressed genes were enriched in four tumorigenesis-related signaling pathways, namely, ErbB, JAK-STAT, mTOR, and WNT, which until now had not been fully reported. Our results could be helpful in understanding the mechanisms of HCC occurrence and development.
Collapse
Affiliation(s)
- Yunfei Bai
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Ying Xue
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xueying Xie
- Research Center for Learning Science, Southeast University, Nanjing 210096, China
| | - Tong Yu
- Nanjing Decode Genomics Biotechnology Co., Ltd., Nanjing 210019, China
| | - Yihua Zhu
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China; College of Information Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qinyu Ge
- Research Center for Learning Science, Southeast University, Nanjing 210096, China
| | - Zuhong Lu
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China; Research Center for Learning Science, Southeast University, Nanjing 210096, China.
| |
Collapse
|
18
|
Epiregulin: roles in normal physiology and cancer. Semin Cell Dev Biol 2014; 28:49-56. [PMID: 24631357 DOI: 10.1016/j.semcdb.2014.03.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/24/2014] [Accepted: 03/03/2014] [Indexed: 12/13/2022]
Abstract
Epiregulin is a 46-amino acid protein that belongs to the epidermal growth factor (EGF) family of peptide hormones. Epiregulin binds to the EGF receptor (EGFR/ErbB1) and ErbB4 (HER4) and can stimulate signaling of ErbB2 (HER2/Neu) and ErbB3 (HER3) through ligand-induced heterodimerization with a cognate receptor. Epiregulin possesses a range of functions in both normal physiologic states as well as in pathologic conditions. Epiregulin contributes to inflammation, wound healing, tissue repair, and oocyte maturation by regulating angiogenesis and vascular remodeling and by stimulating cell proliferation. Deregulated epiregulin activity appears to contribute to the progression of a number of different malignancies, including cancers of the bladder, stomach, colon, breast, lung, head and neck, and liver. Therefore, epiregulin and the elements of the EGF/ErbB signaling network that lie downstream of epiregulin appear to be good targets for therapeutic intervention.
Collapse
|
19
|
Li XJ, Luo Y, Yi YF. P115 promotes growth of gastric cancer through interaction with macrophage migration inhibitory factor. World J Gastroenterol 2013; 19:8619-8629. [PMID: 24379579 PMCID: PMC3870507 DOI: 10.3748/wjg.v19.i46.8619] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/24/2013] [Accepted: 09/29/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of P115 in the proliferation of gastric cancer cells and the mechanism involved.
METHODS: The RNA and protein level of P115 and macrophage migration inhibitory factor (MIF) in gastric cancer and normal gastric tissue/cells were measured and the effect of P115 on cell proliferation was assessed. The role of P115 in cell cycle checkpoints was investigated and the related proteins and signaling pathways, such as cyclin D1, Mcm2, p53, PCNA as well as the MAPK signaling pathway were determined. The interaction between P115 and MIF and the effect of P115 on MIF secretion were examined. The data were analyzed via one-way ANOVA comparisons between groups and P < 0.05 was considered significant.
RESULTS: P115 and MIF were both specifically expressed in gastric cancer tissues compared with normal gastric mucosa (both P < 0.01). The mRNA and protein levels of P115 and MIF in gastric cancer cell lines MKN-28 and BGC-823 were higher than in the human gastric epithelial cell line GES-1 (both P < 0.01). In MKN-28 and BGC-823 cell lines, P115 promoted cell proliferation and G0-G1 to S phase transition. In addition, several cell cycle-related regulators, including cyclin D1, Mcm2, PCNA, pERK1/2 and p53 were up-regulated by P115. Furthermore, the interaction between P115 and MIF was confirmed by co-immunoprecipitation assay. ELISA showed that P115 stimulated the secretion of MIF into the culture supernatant (P < 0.01) and the compensative expression of MIF in cells was observed by Western blotting.
CONCLUSION: P115 promotes proliferation of gastric cancer cells through an interaction with MIF.
Collapse
|
20
|
Li YB, Zhao WL, Wang YX, Zhang CX, Jiang JD, Bi CW, Tang S, Chen RX, Shao RG, Song DQ. Discovery, synthesis and biological evaluation of cycloprotoberberine derivatives as potential antitumor agents. Eur J Med Chem 2013; 68:463-72. [PMID: 24012683 DOI: 10.1016/j.ejmech.2013.07.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 07/01/2013] [Accepted: 07/06/2013] [Indexed: 01/22/2023]
Abstract
A series of new 1,13-cycloprotoberberine derivatives defined through variations at the 9-position were designed, synthesized and evaluated for their cytotoxicities in human HepG2 (hepatoma), HT1080 (fibrosarcoma) and HCT116 (colon cancer) cells. The preliminary structure-activity relationship (SAR) revealed that the replacement of 9-methoxyl with an ester moiety might significantly enhance the antiproliferative activity in vitro. Notably, compound 7f demonstrated equipotent cytotoxicity activity against breast cancer MCF-7 (parent) and doxorubicin (DOX)-resistant MCF-7 (MCF-7/ADrR) cells, indicating a mode of action different from that of DOX. Further mechanism study showed that 7f significantly inhibited activity of DNA topoisomerase I (Top I) and Top II. G2/M phase arrest and tumor cell growth reduction was observed thereafter. Thus, we consider cycloprotoberberine analogues to be a new family of promising antitumor agents with an advantage of inhibiting drug-resistant cancer cells.
Collapse
Affiliation(s)
- Yang-Biao Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100050, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Myofibrillogenesis regulator-1 promotes cell adhesion and migration in human hepatoma cells. CHINESE SCIENCE BULLETIN-CHINESE 2013. [DOI: 10.1007/s11434-013-5933-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Wang G, Zhang ZM. Molecular mechanisms underlying the development of hepatocellular carcinoma and molecular targeted therapy. Shijie Huaren Xiaohua Zazhi 2013; 21:1791-1796. [DOI: 10.11569/wcjd.v21.i19.1791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma is one of the most common malignant tumors worldwide and remains one of leading causes of death from cancer in China. Hepatocarcinogenesis is a complex process associated with many environmental risk factors, including cellular and molecular signaling pathways, oncogenes and tumor suppressor genes, and the differentiation of cancer stem cells. Molecular targeted therapy is a new approach to the treatment of liver cancer. The main mechanism of therapy is a type of medication that blocks the growth of cancer cells by interfering with specific targeted molecules needed for carcinogenesis and tumor growth, which can enhance the specificity and selectivity of the treatment. In this review, we discuss recent advances in the understanding of molecular mechanisms underlying the development of HCC and in the development of novel cancer therapeutics.
Collapse
|
23
|
Zhang C, He H, Zhang H, Yu D, Zhao W, Chen Y, Shao R. The blockage of Ras/ERK pathway augments the sensitivity of SphK1 inhibitor SKI II in human hepatoma HepG2 cells. Biochem Biophys Res Commun 2013; 434:35-41. [PMID: 23545258 DOI: 10.1016/j.bbrc.2013.03.070] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 03/17/2013] [Indexed: 02/06/2023]
Abstract
The treatment of hepatocellular carcinoma (HCC) remains a challenge and the future of cancer therapy will incorporate rational combinations directed to molecular targets that cooperate to drive critical pro-survival signaling. Sphingosine kinase 1 (SphK1) has been shown to regulate various processes important for cancer progression. Given the up-regulated expression of SphK1 in response to the silence of N-ras and other interactions between Ras/ERK and SphK1, it was speculated that combined inhibition of Ras/ERK and SphK1 would create enhanced antitumor effects. Experimental results showed that dual blockage of N-ras/ERK and SphK1 resulted in enhanced growth inhibitions in human hepatoma cells. Similarly, MEK1/2 Inhibitor U0126 potentiated SKI II-induced apoptosis in hepatoma HepG2 cells, consistently with the further attenuation of Akt/ERK/NF-κB signaling pathway. It was also shown that the combination of SKI II and U0126 further attenuated the migration of hepatoma HepG2 cells via FAK/MLC-2 signaling pathway. Taken together, the dual inhibition of SphK1 and Ras/ERK pathway resulted in enhanced effects, which might be an effective therapeutic approach for the treatment of HCC.
Collapse
Affiliation(s)
- Caixia Zhang
- Department of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# Tiantan Xili, Beijing 100050, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Li CD, Ge M, Luo MY, Chen DJ. SiRNA-mediated silencing of the RPL31 gene inhibits proliferation of human pancreatic cancer PANC-1 cells. Shijie Huaren Xiaohua Zazhi 2012; 20:2895-2901. [DOI: 10.11569/wcjd.v20.i30.2895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the impact of small interfering RNA (siRNA)-mediated RPL31 gene silencing on biological behavior of human pancreatic cancer PANC-1 cells, and to explore the feasibility of using the human RPL31 gene as a therapeutic target for pancreatic cancer.
METHODS: Three RPL31-specific siRNAs were designed and transfected into PANC-1 cells using LipofectamineTM 2000. Blank control and negative control groups were run at the same time. After PANC-1 cells were transfected with RPL31-specific siRNA, the levels of RPL31 mRNA and protein were detected by quantitative real-time PCR (qRT-PCR) and Western blot, respectively. Cell proliferation was detected by MTT assay. Cell cycle progression was determined by flow cytometry. Cell migration was determined by Transwell chamber assay. Vascular endothelial growth factor (VEGF) expression in cells was detected by ELISA.
RESULTS: All three RPL31-specific siRNAs could silence the expression of RPL31 at the mRNA and protein levels 48 hours after transfection. MTT assay showed that cell proliferation was significantly inhibited. Flow cytometry analysis revealed that PANC-1 cells transfected with RPL31 siRNA had a more significant cell cycle arrest (G0/G1 phase: 59.85% ± 5.47% vs 45.71% ± 3.44%; S phase: 28.63% ± 4.52% vs 45.13% ± 2.64%, both P < 0.05). RPL31 knockdown significantly suppressed VEGF expression (1563.45 ± 24.95 pg/106 cells/24 h vs 2804.6 ± 40.46 pg/106 cells/24 h, 2791.5 ± 44.77 pg/106 cells/24 h, both P < 0.05) and the migration of PANC-1 cells (178.6 ± 30.3 vs 470.5 ± 22.8, 474.2 ± 20.4, both P < 0.05) compared to the blank control and negative control groups.
CONCLUSION: Transfection of RPL31-specific siRNAs could effectively inhibit RPL31 expression, significantly suppress cell proliferation, and reduce cell migration and VEGF expression. RPL31 might serve as a target for gene therapy of pancreatic cancer.
Collapse
|
25
|
Oncogenic KRAS-induced epiregulin overexpression contributes to aggressive phenotype and is a promising therapeutic target in non-small-cell lung cancer. Oncogene 2012; 32:4034-42. [PMID: 22964644 DOI: 10.1038/onc.2012.402] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 07/06/2012] [Accepted: 07/17/2012] [Indexed: 12/13/2022]
Abstract
KRAS mutations are one of the most common driver mutations in non-small-cell lung cancer (NSCLC) and finding druggable target molecules to inhibit oncogenic KRAS signaling is a significant challenge in NSCLC therapy. We recently identified epiregulin (EREG) as one of several putative transcriptional targets of oncogenic KRAS signaling in both KRAS-mutant NSCLC cells and immortalized bronchial epithelial cells expressing ectopic mutant KRAS. In the current study, we found that EREG is overexpressed in NSCLCs harboring KRAS, BRAF or EGFR mutations compared with NSCLCs with wild-type KRAS/BRAF/EGFR. Small interfering RNAs (siRNAs) targeting mutant KRAS, but not an siRNA targeting wild-type KRAS, significantly reduced EREG expression in KRAS-mutant and EREG-overexpressing NSCLC cell lines. In these cell lines, EREG expression was downregulated by MEK and ERK inhibitors. Importantly, EREG expression significantly correlated with KRAS expression or KRAS copy number in KRAS-mutant NSCLC cell lines. Further expression analysis using 89 NSCLC specimens showed that EREG was predominantly expressed in NSCLCs with pleural involvement, lymphatic permeation or vascular invasion and in KRAS-mutant adenocarcinomas. In addition, multivariate analysis revealed that EREG expression is an independent prognostic marker and EREG overexpression in combination with KRAS mutations was associated with an unfavorable prognosis for lung adenocarcinoma patients. In KRAS-mutant and EREG overexpressing NSCLC cells, siRNA-mediated EREG silencing inhibited anchorage-dependent and -independent growth and induced apoptosis. Our findings suggest that oncogenic KRAS-induced EREG overexpression contributes to an aggressive phenotype and could be a promising therapeutic target in oncogenic KRAS-driven NSCLC.
Collapse
|
26
|
Li C, Ge M, Yin Y, Luo M, Chen D. Silencing expression of ribosomal protein L26 and L29 by RNA interfering inhibits proliferation of human pancreatic cancer PANC-1 cells. Mol Cell Biochem 2012; 370:127-39. [PMID: 22868929 DOI: 10.1007/s11010-012-1404-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 07/25/2012] [Indexed: 01/24/2023]
Abstract
Oncogenic KRAS, an important target for antitumor therapy, contributes to pancreatic cancer tumorigenesis, progression and maintenance. However, intracellular compensation regulation can help cells to resist the targeted therapy. Gene knockdown method such as RNAi may help to understand this intracellular regulatory system and discover novel therapeutic approach. In this study, two stable transfected cell lines were constructed through lentivirus-mediated shRNA targeting KRAS of PANC-1 cells, to investigate cell response to the knockdown of KRAS. Human whole genome microarray was then used to compare the gene expression profile. As a result, ribosomal proteins L26 and L29 (RPL26 and RPL29) were dramatically upregulated by KRAS-shRNA specifically. To identify whether RPL26 or RPL29 was critical for PANC-1 cells, siRNAs against RPL26 and RPL29 were designed and transfected in vitro. The results showed that knockdown of RPL26 or RPL29 expression significantly suppressed cell proliferation, induced cell arrest at G0/G1 phase and enhanced cell apoptosis. Reactive oxygen species (ROS) assay indicated that silencing of RPL26 or RPL29 markedly decreased the intracellular ROS generation. Our findings imply that siRNA interference against RPL26 and RPL29 is of potential value for intervention of pancreatic cancer.
Collapse
Affiliation(s)
- Chaodong Li
- School of Biotechnology, East China University of Science and Technology, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
27
|
Li X, Zhao WL, Jiang JD, Ren KH, Du NN, Li YB, Wang YX, Bi CW, Shao RG, Song DQ. Synthesis, structure-activity relationship and biological evaluation of anticancer activity for novel N-substituted sophoridinic acid derivatives. Bioorg Med Chem Lett 2011; 21:5251-4. [PMID: 21807514 DOI: 10.1016/j.bmcl.2011.07.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/23/2011] [Accepted: 07/11/2011] [Indexed: 11/18/2022]
Abstract
Sophoridine (1), a natural anticancer drug, has been used in China for decades. A series of novel N-substituted sophoridinic acid derivatives were synthesized and evaluated for their cytotoxicity with 1 as the lead. The structure-activity relationship indicated that introduction of an aliphatic acyl on the nitrogen atom might significantly enhance the anticancer activity. Among the compounds, 6b bearing bromoacetyl side-chain afforded a potential effect against four human tumor cell lines (liver, colon, breast, and lung). The mechanism of action of 6b is to inhibit the activity of DNA topoisomerase I, followed by the S-phase arrest and then cause apoptotic cell death, similar to that of its parent 1. We consider 6b promising for further anticancer investigation.
Collapse
Affiliation(s)
- Xin Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zheng T, Wang J, Song X, Meng X, Pan S, Jiang H, Liu L. Nutlin-3 cooperates with doxorubicin to induce apoptosis of human hepatocellular carcinoma cells through p53 or p73 signaling pathways. J Cancer Res Clin Oncol 2010; 136:1597-604. [PMID: 20174822 DOI: 10.1007/s00432-010-0817-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 02/01/2010] [Indexed: 11/30/2022]
Abstract
PURPOSE Despite recent advances in chemotherapeutic agents for Hepatocellular carcinoma (HCC) treatment, the results of chemotherapy remain unsatisfactory. Doxorubicin (DOX) still represents the cornerstone in HCC chemotherapy, but resistance and toxicity to normal cells are major obstacles to successful chemotherapy. Therefore, new active agents in HCC chemotherapy and agents that increase the chemosensitivity of HCC cells to DOX are still urgently required. Nutlin-3 is a small-molecule inhibitor that acts to inhibit murine double minute-2 (MDM2) binding to p53 or p73, and subsequently activates p53- or p73-dependent apoptosis signaling pathway. This study was designed to investigate whether Nutlin-3 alters cell toxicity to HCC cells following DNA damage and to assess the suitability of DOX/Nutlin-3 as a chemotherapeutic combination in HCC chemotherapy. METHODS Four human HCC cells were analyzed using cell proliferation assay, apoptosis assay, western blotting, co-immunoprecipitation and siRNA experiments. Anti-tumoral effects of Nutlin-3/DOX targeting the p53/MDM2 and p73/MDM2 pathways were evaluated in HCC cell lines. RESULTS Nutlin-3 enhances the growth inhibition by DOX and potentates the apoptotic effect in all HCC cell lines with different p53 types. Nutlin-3 acts through the disruption of p53-MDM2 binding in HepG2, and the disruption of p73-MDM2 in Huh-7 and Hep3B cell lines with subsequent activation of the apoptotic pathway, which leads to the increase in chemosensitivity to DOX in HCC cells. CONCLUSIONS Taken together, our findings suggest that Nutlin-3 will be active in the treatment of HCC and offers new prospects for overcoming DOX resistance.
Collapse
Affiliation(s)
- Tongsen Zheng
- Department of General Surgery, First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin 150001, Heilongjiang Province, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
While the discovery of RNA interference (RNAi) has been considered one of the most significant breakthroughs in biomedicine, its prospects for novel therapeutic applications are even more exciting. The high specificity, exquisite selectivity and chemical homogeneity of small interfering RNAs (siRNA; intermediates in RNAi activity), provide unique advantages for these moieties as multi-targeted inhibitory drugs. Many such applications have demonstrated significant benefit compared with single gene-targeted siRNA inhibitors. In this article, we will review the current status of using a multi-targeted siRNA cocktail for novel therapeutic development in the treatment of cancer and viral infections. We will also propose the characteristics of various types of siRNA cocktails and their design, while recognizing the potential future impact of and challenges facing this unique therapeutic modality.
Collapse
|