1
|
Anticevic I, Otten C, Popovic M. Tyrosyl-DNA phosphodiesterase 2 (Tdp2) repairs DNA-protein crosslinks and protects against double strand breaks in vivo. Front Cell Dev Biol 2024; 12:1394531. [PMID: 39228401 PMCID: PMC11369425 DOI: 10.3389/fcell.2024.1394531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/06/2024] [Indexed: 09/05/2024] Open
Abstract
DNA-protein crosslinks pose a significant challenge to genome stability and cell viability. Efficient repair of DPCs is crucial for preserving genomic integrity and preventing the accumulation of DNA damage. Despite recent advances in our understanding of DPC repair, many aspects of this process, especially at the organismal level, remain elusive. In this study, we used zebrafish as a model organism to investigate the role of TDP2 (Tyrosyl-DNA phosphodiesterase 2) in DPC repair. We characterized the two tdp2 orthologs in zebrafish using phylogenetic, syntenic and expression analysis and investigated the phenotypic consequences of tdp2 silencing in zebrafish embryos. We then quantified the effects of tdp2a and tdp2b silencing on cellular DPC levels and DSB accumulation in zebrafish embryos. Our findings revealed that tdp2b is the main ortholog during embryonic development, while both orthologs are ubiquitously present in adult tissues. Notably, the tdp2b ortholog is phylogenetically closer to human TDP2. Silencing of tdp2b, but not tdp2a, resulted in the loss of Tdp2 activity in zebrafish embryos, accompanied by the accumulation of DPCs and DSBs. Our findings contribute to a more comprehensive understanding of DPC repair at the organismal level and underscore the significance of TDP2 in maintaining genome stability.
Collapse
Affiliation(s)
| | | | - Marta Popovic
- DNA Damage Group, Laboratory for Molecular Ecotoxicology, Department for Marine and Environmental Research, Institute Ruder Boskovic, Zagreb, Croatia
| |
Collapse
|
2
|
Schellenberg MJ, Appel CD, Riccio AA, Butler LR, Krahn JM, Liebermann JA, Cortés-Ledesma F, Williams RS. Ubiquitin stimulated reversal of topoisomerase 2 DNA-protein crosslinks by TDP2. Nucleic Acids Res 2020; 48:6310-6325. [PMID: 32356875 DOI: 10.1093/nar/gkaa318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/30/2020] [Accepted: 04/20/2020] [Indexed: 11/12/2022] Open
Abstract
Tyrosyl-DNA phosphodiesterase 2 (TDP2) reverses Topoisomerase 2 DNA-protein crosslinks (TOP2-DPCs) in a direct-reversal pathway licensed by ZATTZNF451 SUMO2 E3 ligase and SUMOylation of TOP2. TDP2 also binds ubiquitin (Ub), but how Ub regulates TDP2 functions is unknown. Here, we show that TDP2 co-purifies with K63 and K27 poly-Ubiquitinated cellular proteins independently of, and separately from SUMOylated TOP2 complexes. Poly-ubiquitin chains of ≥ Ub3 stimulate TDP2 catalytic activity in nuclear extracts and enhance TDP2 binding of DNA-protein crosslinks in vitro. X-ray crystal structures and small-angle X-ray scattering analysis of TDP2-Ub complexes reveal that the TDP2 UBA domain binds K63-Ub3 in a 1:1 stoichiometric complex that relieves a UBA-regulated autoinhibitory state of TDP2. Our data indicates that that poly-Ub regulates TDP2-catalyzed TOP2-DPC removal, and TDP2 single nucleotide polymorphisms can disrupt the TDP2-Ubiquitin interface.
Collapse
Affiliation(s)
- Matthew J Schellenberg
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - C Denise Appel
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Amanda A Riccio
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Logan R Butler
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Juno M Krahn
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Jenna A Liebermann
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla Universidad Pablo de Olavide-Junta de Andalucía, 41092 Sevilla, Spain
| | - Felipe Cortés-Ledesma
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla Universidad Pablo de Olavide-Junta de Andalucía, 41092 Sevilla, Spain.,Topology and DNA breaks Group, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
| | - R Scott Williams
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| |
Collapse
|
3
|
Effect of TDP2 on the Level of TOP2-DNA Complexes and SUMOylated TOP2-DNA Complexes. Int J Mol Sci 2018; 19:ijms19072056. [PMID: 30011940 PMCID: PMC6073685 DOI: 10.3390/ijms19072056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 11/19/2022] Open
Abstract
DNA topoisomerase II (TOP2) activity involves a normally transient double-strand break intermediate in which the enzyme is coupled to DNA via a 5′-phosphotyrosyl bond. However, etoposide and other topoisomerase drugs poison the enzyme by stabilising this enzyme-bridged break, resulting in the accumulation of TOP2-DNA covalent complexes with cytotoxic consequences. The phosphotyrosyl diesterase TDP2 appears to be required for efficient repair of this unusual type of DNA damage and can remove 5′-tyrosine adducts from a double-stranded oligonucleotide substrate. Here, we adapt the trapped in agarose DNA immunostaining (TARDIS) assay to investigate the role of TDP2 in the removal of TOP2-DNA complexes in vitro and in cells. We report that TDP2 alone does not remove TOP2-DNA complexes from genomic DNA in vitro and that depletion of TDP2 in cells does not slow the removal of TOP2-DNA complexes. Thus, if TDP2 is involved in repairing TOP2 adducts, there must be one or more prior steps in which the protein-DNA complex is processed before TDP2 removes the remaining 5′ tyrosine DNA adducts. While this is partly achieved through the degradation of TOP2 adducts by the proteasome, a proteasome-independent mechanism has also been described involving the SUMOylation of TOP2 by the ZATT E3 SUMO ligase. The TARDIS assay was also adapted to measure the effect of TDP2 knockdown on levels of SUMOylated TOP2-DNA complexes, which together with levels of double strand breaks were unaffected in K562 cells following etoposide exposure and proteasomal inhibition.
Collapse
|
4
|
Engelman AN, Singh PK. Cellular and molecular mechanisms of HIV-1 integration targeting. Cell Mol Life Sci 2018; 75:2491-2507. [PMID: 29417178 PMCID: PMC6004233 DOI: 10.1007/s00018-018-2772-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/23/2018] [Accepted: 02/01/2018] [Indexed: 12/21/2022]
Abstract
Integration is central to HIV-1 replication and helps mold the reservoir of cells that persists in AIDS patients. HIV-1 interacts with specific cellular factors to target integration to interior regions of transcriptionally active genes within gene-dense regions of chromatin. The viral capsid interacts with several proteins that are additionally implicated in virus nuclear import, including cleavage and polyadenylation specificity factor 6, to suppress integration into heterochromatin. The viral integrase protein interacts with transcriptional co-activator lens epithelium-derived growth factor p75 to principally position integration within gene bodies. The integrase additionally senses target DNA distortion and nucleotide sequence to help fine-tune the specific phosphodiester bonds that are cleaved at integration sites. Research into virus-host interactions that underlie HIV-1 integration targeting has aided the development of a novel class of integrase inhibitors and may help to improve the safety of viral-based gene therapy vectors.
Collapse
Affiliation(s)
- Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, 450 Brookline Avenue, CLS-1010, Boston, MA, 02215, USA.
- Department of Medicine, Harvard Medical School, A-111, 25 Shattuck Street, Boston, MA, 02115, USA.
| | - Parmit K Singh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, 450 Brookline Avenue, CLS-1010, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, A-111, 25 Shattuck Street, Boston, MA, 02115, USA
| |
Collapse
|
5
|
Maciejewski S, Nguyen JHC, Gómez-Herreros F, Cortés-Ledesma F, Caldecott KW, Semler BL. Divergent Requirement for a DNA Repair Enzyme during Enterovirus Infections. mBio 2015; 7:e01931-15. [PMID: 26715620 PMCID: PMC4725011 DOI: 10.1128/mbio.01931-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED Viruses of the Enterovirus genus of picornaviruses, including poliovirus, coxsackievirus B3 (CVB3), and human rhinovirus, commandeer the functions of host cell proteins to aid in the replication of their small viral genomic RNAs during infection. One of these host proteins is a cellular DNA repair enzyme known as 5' tyrosyl-DNA phosphodiesterase 2 (TDP2). TDP2 was previously demonstrated to mediate the cleavage of a unique covalent linkage between a viral protein (VPg) and the 5' end of picornavirus RNAs. Although VPg is absent from actively translating poliovirus mRNAs, the removal of VPg is not required for the in vitro translation and replication of the RNA. However, TDP2 appears to be excluded from replication and encapsidation sites during peak times of poliovirus infection of HeLa cells, suggesting a role for TDP2 during the viral replication cycle. Using a mouse embryonic fibroblast cell line lacking TDP2, we found that TDP2 is differentially required among enteroviruses. Our single-cycle viral growth analysis shows that CVB3 replication has a greater dependency on TDP2 than does poliovirus or human rhinovirus replication. During infection, CVB3 protein accumulation is undetectable (by Western blot analysis) in the absence of TDP2, whereas poliovirus protein accumulation is reduced but still detectable. Using an infectious CVB3 RNA with a reporter, CVB3 RNA could still be replicated in the absence of TDP2 following transfection, albeit at reduced levels. Overall, these results indicate that TDP2 potentiates viral replication during enterovirus infections of cultured cells, making TDP2 a potential target for antiviral development for picornavirus infections. IMPORTANCE Picornaviruses are one of the most prevalent groups of viruses that infect humans and livestock worldwide. These viruses include the human pathogens belonging to the Enterovirus genus, such as poliovirus, coxsackievirus B3 (CVB3), and human rhinovirus. Diseases caused by enteroviruses pose a major problem for public health and have significant economic impact. Poliovirus can cause paralytic poliomyelitis. CVB3 can cause hand, foot, and mouth disease and myocarditis. Human rhinovirus is the causative agent of the common cold, which has a severe economic impact due to lost productivity and severe health consequences in individuals with respiratory dysfunction, such as asthma. By gaining a better understanding of the enterovirus replication cycle, antiviral drugs against enteroviruses may be developed. Here, we report that the absence of the cellular enzyme TDP2 can significantly decrease viral yields of poliovirus, CVB3, and human rhinovirus, making TDP2 a potential target for an antiviral against enterovirus infections.
Collapse
Affiliation(s)
- Sonia Maciejewski
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, USA
| | - Joseph H C Nguyen
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, USA
| | - Fernando Gómez-Herreros
- School of Life Sciences, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Felipe Cortés-Ledesma
- School of Life Sciences, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Keith W Caldecott
- School of Life Sciences, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, USA
| |
Collapse
|
6
|
Wei J, Zhang P, Guo M, Xu M, Li P, Chen X, Gao P, Yan Y, Wei S, Qin Q. TTRAP is a critical factor in grouper immune response to virus infection. FISH & SHELLFISH IMMUNOLOGY 2015; 46:274-284. [PMID: 26172204 DOI: 10.1016/j.fsi.2015.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 06/04/2023]
Abstract
TTRAP (TRAF and TNF receptor-associated protein) is latest identified cytosolic protein that serves as a negative regulator for TNF signaling pathway. In this study, a member of TNF superfamily, TTRAP gene (designed as EcTTRAP) was cloned from grouper, Epinephelus coioides. There was an Exo_endo_phos type domain in EcTTRAP, and it was well conserved when compared with other TTRAPs, especially the endonuclease activity related motifs. EcTTRAP exhibited prominent endonuclease activity against the genome DNA from Escherichia coli, Vibrio vulnificus and E. coli JM109. Intracellular localization revealed that EcTTRAP expression distributed in both cytoplasm and nucleus. Real-time PCR analysis indicates that EcTTRAP is expressed in all selective grouper tissues, with the higher expression level in muscle, skin and gills. EcTTRAP was identified as a remarkably (P < 0.01) up-regulated protein responding to Singapore grouper iridovirus (SGIV) infection. Overexpression of EcTTRAP inhibited NF-κB activation, meanwhile the C terminal portion of the protein was found to be responsive domain for the inhibition. Stable transfection of FHM cells with EcTTRAP inhibited apoptosis induced by SGIV. Overexpression of EcTTRAP in grouper spleen (GS) cells inhibited the replication of SGIV. The present results provided new evidences for the potential roles of such molecule in E. coioides, and further confirmed the existence of TTRAP modulated TNF signaling pathway in grouper.
Collapse
Affiliation(s)
- Jingguang Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Ping Zhang
- Teaching Center of Biology Experiment, School of Life Sciences, Sun Yat-sen University, 135West Xingang Road, Guangzhou 510275, PR China
| | - Minglan Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Meng Xu
- State Key Laboratory Breeding Base for Sustainable Exploitation of Tropical Biotic Resources, College of Marine Science, Hainan University, Haikou 570228, PR China
| | - Pengfei Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Xiuli Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Pin Gao
- State Key Laboratory Breeding Base for Sustainable Exploitation of Tropical Biotic Resources, College of Marine Science, Hainan University, Haikou 570228, PR China
| | - Yang Yan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Shina Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China.
| |
Collapse
|
7
|
Zhou C, Shen Q, Xue J, Ji C, Chen J. Overexpression of TTRAP inhibits cell growth and induces apoptosis in osteosarcoma cells. BMB Rep 2013; 46:113-8. [PMID: 23433115 PMCID: PMC4133851 DOI: 10.5483/bmbrep.2013.46.2.150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
TTRAP is a multi-functional protein that is involved in multiple aspects of cellular functions including cell proliferation, apoptosis and the repair of DNA damage. Here, we demonstrated
that the lentivirus-mediated overexpression of TTRAP significantly inhibited cell growth and induced apoptosis in osteosarcoma cells. The ectopic TTRAP suppressed the growth and colony formation capacity of two osteosarcoma cell lines, U2OS and Saos-2. Cell apoptosis was induced in U2OS cells and the cell cycle was arrested at G2/M phase in Saos-2 cells. Exogenous expression of TTRAP in serum-starved U2OS and Saos-2 cells induced an increase in caspase-3/-7 activity and a decrease in cyclin B1 expression. In comparison with wild-type TTRAP, mutations in the 5'-tyrosyl-DNA phosphodiesterase activity of TTRAP, in particular TTRAPE152A, showed decreased inhibitory activity on cell growth. These results may aid in clarifying the physiological functions of TTRAP, especially its roles in the regulation of cell growth and tumorigenesis. [BMB Reports 2013; 46(2): 113-118]
Collapse
Affiliation(s)
- Caihong Zhou
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | |
Collapse
|
8
|
Xue YY, Wang R, Yue YB, Xue JL, Chen JZ. Role and fate of SP100 protein in response to Rep-dependent nonviral integration system. Appl Microbiol Biotechnol 2013; 97:1141-7. [PMID: 22419217 DOI: 10.1007/s00253-012-3992-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/19/2012] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
Abstract
Previously, we studied an AAVS1 site-specific non-viral integration system with a Rep-donor plasmid and a plasmid containing adeno-associated virus integration element. Our earlier study focused on the plasmid vector itself, but the cellular response to the system was still unknown. SP100 is a member of the promyelocytic leukemia nuclear bodies. It is involved in many cellular processes such as transcriptional regulation and the cellular intrinsic immune response against viral infection. In this study, we revealed that SP100 inhibited the Rep-dependent nonviral integration. Conversely, transient expression of Rep78 increased the degradation of SP100. This degradation was inhibited by treatment with MG132, an inhibitor of the ubiquitin proteasome. SP100 and Rep78 are both located in the nucleolus, which provides the spatial possibility for their interaction. Rep78 was coimmunoprecipitated with the enhanced green fluorescent protein (EGFP)-SP100 fusion protein but not EGFP, which verified the interaction between Rep78 and SP100. These results have enriched our knowledge about the cellular protein SP100 and Rep-dependent nonviral integration. It may lead to an improvement in the application of Rep-related transgene integration method and in the selection of target cells.
Collapse
Affiliation(s)
- Yuan-Yuan Xue
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| | | | | | | | | |
Collapse
|
9
|
Abstract
Topoisomerases are ubiquitous enzymes that control DNA supercoiling and entanglements. They are essential during transcription and replication, and topoisomerase inhibitors are among the most effective and most commonly used anticancer and antibacterial drugs. This review consists of two parts. In the first part ("Lessons"), it gives background information on the catalytic mechanisms of the different enzyme families (6 different genes in humans and 4 in most bacteria), describes the "interfacial inhibition" by which topoisomerase-targeted drugs act as topoisomerase poisons, and describes clinically relevant topoisomerase inhibitors. It generalizes the interfacial inhibition principle, which was discovered from the mechanism of action of topoisomerase inhibitors, and discusses how topoisomerase inhibitors kill cells by trapping topoisomerases on DNA rather than by classical enzymatic inhibition. Trapping protein-DNA complexes extends to a novel mechanism of action of PARP inhibitors and could be applied to the targeting of transcription factors. The second part of the review focuses on the challenges for discovery and precise use of topoisomerase inhibitors, including targeting topoisomerase inhibitors using chemical coupling and encapsulation for selective tumor delivery, use of pharmacodynamic biomarkers to follow drug activity, complexity of the response determinants for anticancer activity and patient selection, prospects of rational combinations with DNA repair inhibitors targeting tyrosyl-DNA-phosphodiesterases 1 and 2 (TDP1 and TDP2) and PARP, and the unmet need to develop inhibitors for type IA enzymes.
Collapse
Affiliation(s)
- Yves Pommier
- Laboratory of Molecular
Pharmacology, Center for Cancer
Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
10
|
Abstract
Retroviral infections cause a variety of cancers in animals and a number of diverse diseases in humans such as leukemia and acquired immune deficiency syndrome. Productive and efficient proviral integration is critical for retroviral function and is the key step in establishing a stable and productive infection, as well as the mechanism by which host genes are activated in leukemogenesis. Host factors are widely anticipated to be involved in all stages of the retroviral life cycle, and the identification of integrase interacting factors has the potential to increase our understanding of mechanisms by which the incoming virus might appropriate cellular proteins to target and capture host DNA sequences. Identification of MoMLV integrase interacting host factors may be key to designing efficient and benign retroviral-based gene therapy vectors; key to understanding the basic mechanism of integration; and key in designing efficient integrase inhibitors. In this review, we discuss current progress in the field of MoMLV integrase interacting proteins and possible roles for these proteins in integration.
Collapse
|
11
|
Li Z, Wu S, Wang J, Li W, Lin Y, Ji C, Xue J, Chen J. Evaluation of the interactions of HIV-1 integrase with small ubiquitin-like modifiers and their conjugation enzyme Ubc9. Int J Mol Med 2012; 30:1053-60. [PMID: 22895527 DOI: 10.3892/ijmm.2012.1088] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/18/2012] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) integrase mediates the integration of reverse-transcribed viral cDNA into the genome of the host for the stable maintenance of the viral genome and the persistence of HIV-1 infection. In this study, the relationships between HIV-1 integrase (HIV-1 IN) and three SUMO conjugation pathway proteins, as well as the effects of these associations, were investigated. The overexpression of SUMO1/SUMO2 and Ubc9 changed the intracellular localization of HIV-1 IN from a diffuse distribution to a punctate localization. SUMO1, SUMO2 and Ubc9 were shown to interact with HIV-1 IN. The SUMOylation of HIV-1 IN was verified. In addition, SUMO1, SUMO2 and Ubc9 were shown to influence the integration of both lentivirus and HIV-1. The overexpression of Ubc9 inhibited viral genome integration, and the upregulation of SUMO1 or SUMO2 enhanced the inhibitory effect of Ubc9. Knockdown of the endogenous levels of SUMO1, SUMO2 and Ubc9 increased the level of viral integration, while reverse transcription and the nuclear import of preintegration complex (PIC) were not affected. Our findings suggest that SUMO conjugation pathway proteins may act as cellular restriction factors and be detrimental to HIV-1 infection. These findings merit further investigation because of their potentially significant implications for the cellular antiviral response to HIV-1 infection.
Collapse
Affiliation(s)
- Zhihui Li
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Gao R, Huang SYN, Marchand C, Pommier Y. Biochemical characterization of human tyrosyl-DNA phosphodiesterase 2 (TDP2/TTRAP): a Mg(2+)/Mn(2+)-dependent phosphodiesterase specific for the repair of topoisomerase cleavage complexes. J Biol Chem 2012; 287:30842-52. [PMID: 22822062 DOI: 10.1074/jbc.m112.393983] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
TDP2 is a multifunctional enzyme previously known for its role in signal transduction as TRAF and TNF receptor-associated protein (TTRAP) and ETS1-associated protein 2 (EAPII). The gene has recently been renamed TDP2 because it plays a critical role for the repair of topoisomerase II cleavage complexes (Top2cc) and encodes an enzyme that hydrolyzes 5'-tyrosine-DNA adducts that mimic abortive Top2cc. Here we further elucidate the DNA-processing activities of human recombinant TDP2 and its biochemical characteristics. The preferred substrate for TDP2 is single-stranded DNA or duplex DNA with a four-base pair overhang, which is consistent with the known structure of Top2cc or Top3cc. The k(cat)/K(m) of TDP1 and TDP2 was determined. It was found to be 4 × 10(5) s(-1)M(-1) for TDP2 using single-stranded 5'-tyrosyl-DNA. The processing of substrates as short as five nucleotides long suggests that TDP2 can directly bind DNA ends. 5'-Phosphodiesterase activity requires a phosphotyrosyl linkage and tolerates an extended group attached to the tyrosine. TDP2 requires Mg(2+) or Mn(2+) for efficient catalysis but is weakly active with Ca(2+) or Zn(2+). Titration with Ca(2+) demonstrates a two-metal binding site in TDP2. Sequence alignment suggests that TDP2 contains four conserved catalytic motifs shared by Mg(2+)-dependent endonucleases, such as APE1. Substitutions at each of the four catalytic motifs identified key residues Asn-120, Glu-152, Asp-262, and His-351, whose mutation to alanine significantly reduced or completely abolished enzymatic activity. Our study characterizes the substrate specificity and kinetic parameters of TDP2. In addition, a two-metal catalytic mechanism is proposed.
Collapse
Affiliation(s)
- Rui Gao
- Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
13
|
Okino Y, Inayoshi Y, Kojima Y, Kidani S, Kaneoka H, Honkawa A, Higuchi H, Nishijima KI, Miyake K, Iijima S. Moloney murine leukemia virus integrase and reverse transcriptase interact with PML proteins. J Biochem 2012; 152:161-9. [PMID: 22685230 DOI: 10.1093/jb/mvs063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pull-down assay and co-immunoprecipitation of cell extracts in which the integrase or reverse transcriptase of Moloney murine leukemia virus was transiently expressed showed that both enzymes interacted with PML proteins. In infected cells, interaction between the integrase and PML was also observed. Transient expression of PIASy and SUMO proteins facilitated SUMOylation of the integrase but had no apparent effects on the interaction with PML. A FLAG-tagged integrase co-localized with PML protein possibly in the PML body. Knockdown of PML by small interfering RNA resulted in reduced viral cDNA levels and integration efficiency. This suggested that PML proteins activated reverse transcription.
Collapse
Affiliation(s)
- Yuuki Okino
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sim WH, Wagner J, Cameron DJ, Catto‐Smith AG, Bishop RF, Kirkwood CD. Expression profile of genes involved in pathogenesis of pediatric Crohn's disease. J Gastroenterol Hepatol 2012; 27:1083-93. [PMID: 22098497 PMCID: PMC7167032 DOI: 10.1111/j.1440-1746.2011.06973.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Expression profiling of genes specific to pediatric Crohn's Disease (CD) patients was performed to elucidate the molecular mechanisms underlying disease cause and pathogenesis at disease onset. METHODS We used suppressive subtractive hybridization (SSH) and differential screening analysis to profile the mRNA expression patterns of children with CD and age- and sex-matched controls without inflammatory bowel disease (IBD). RESULTS Sequence analysis of 1000 clones enriched by SSH identified 75 functionally annotated human genes, represented by 430 clones. The 75 genes have potential involvement in gene networks, such as antigen presentation, inflammation, infection mechanism, connective tissue development, cell cycle and cancer. Twenty-eight genes were previously described in association with CD, while 47 were new genes not previously reported in the context of IBD. Additionally, 29 of the 75 genes have been previously implicated in bacterial and viral infections. Quantitative real-time reverse transcription polymerase chain reaction performed on ileal-derived RNA from 13 CD and nine non-IBD patients confirmed the upregulation of extracellular matrix gene MMP2 (P = 0.001), and cell proliferation gene REG1A (P = 0.063) in our pediatric CD cohort. CONCLUSION The retrieval of 28 genes previously reported in association with adult CD emphasizes the importance of these genes in the pediatric setting. The observed upregulation of REG1A and MMP2, and their known impact on cell proliferation and extracellular matrix remodeling, agrees with the clinical behavior of the disease. Moreover, the expressions of bacterial- and virus-related genes in our CD-patient tissues support the concept that microbial agents are important in the etiopathogenesis of CD.
Collapse
Affiliation(s)
- Winnie H Sim
- Enteric Virus Group, Murdoch Children's Research Institute, Victoria, Australia
| | - Josef Wagner
- Enteric Virus Group, Murdoch Children's Research Institute, Victoria, Australia
| | - Donald J Cameron
- Department of Gastroenterology, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Anthony G Catto‐Smith
- Department of Gastroenterology, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Ruth F Bishop
- Enteric Virus Group, Murdoch Children's Research Institute, Victoria, Australia
| | - Carl D Kirkwood
- Enteric Virus Group, Murdoch Children's Research Institute, Victoria, Australia
| |
Collapse
|
15
|
Conidi A, Cazzola S, Beets K, Coddens K, Collart C, Cornelis F, Cox L, Joke D, Dobreva MP, Dries R, Esguerra C, Francis A, Ibrahimi A, Kroes R, Lesage F, Maas E, Moya I, Pereira PNG, Stappers E, Stryjewska A, van den Berghe V, Vermeire L, Verstappen G, Seuntjens E, Umans L, Zwijsen A, Huylebroeck D. Few Smad proteins and many Smad-interacting proteins yield multiple functions and action modes in TGFβ/BMP signaling in vivo. Cytokine Growth Factor Rev 2011; 22:287-300. [PMID: 22119658 DOI: 10.1016/j.cytogfr.2011.11.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Signaling by the many ligands of the TGFβ family strongly converges towards only five receptor-activated, intracellular Smad proteins, which fall into two classes i.e. Smad2/3 and Smad1/5/8, respectively. These Smads bind to a surprisingly high number of Smad-interacting proteins (SIPs), many of which are transcription factors (TFs) that co-operate in Smad-controlled target gene transcription in a cell type and context specific manner. A combination of functional analyses in vivo as well as in cell cultures and biochemical studies has revealed the enormous versatility of the Smad proteins. Smads and their SIPs regulate diverse molecular and cellular processes and are also directly relevant to development and disease. In this survey, we selected appropriate examples on the BMP-Smads, with emphasis on Smad1 and Smad5, and on a number of SIPs, i.e. the CPSF subunit Smicl, Ttrap (Tdp2) and Sip1 (Zeb2, Zfhx1b) from our own research carried out in three different vertebrate models.
Collapse
Affiliation(s)
- Andrea Conidi
- Laboratory of Molecular Biology (Celgen) of Center for Human Genetics, University of Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Li C, Sun SY, Khuri FR, Li R. Pleiotropic functions of EAPII/TTRAP/TDP2: cancer development, chemoresistance and beyond. Cell Cycle 2011; 10:3274-83. [PMID: 21926483 DOI: 10.4161/cc.10.19.17763] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
EAPII (also called TTRAP, TDP2), a protein identified a decade ago, has recently been shown to function as an oncogenic factor. This protein was also proven to be the first 5'- tyrosyl-DNA phosphodiesterase. EAPII has been demonstrated to have promiscuous protein associations, broad responsiveness to various extracellular signals, and pleiotropic functions in the development of human diseases including cancer and neurodegenerative disease. Emerging data suggest that EAPII is a multi-functional protein: EAPII repairs enzyme (topoisomerase)-mediated DNA damage by removing phosphotyrosine from DNA adducts; EAPII is involved in multiple signal transduction pathways such as TNF-TNFR, TGFβ and MAPK, and EAPII is responsive to immune defense, inflammatory response, virus infection and DNA toxins (chemo or radiation therapy). This review focuses on the current understanding of EAPII biology and its potential relations to many aspects of cancer development, including chromosome instability, tumorigenesis, tumor metastasis and chemoresistance, suggesting it as a potential target for intervention in cancer and other human diseases.
Collapse
Affiliation(s)
- Chunyang Li
- Winship Cancer Institute, Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA, USA
| | | | | | | |
Collapse
|
17
|
Ma QW. [Progress of φC31 integrase system in site-specific integration]. YI CHUAN = HEREDITAS 2011; 33:567-75. [PMID: 21684861 DOI: 10.3724/sp.j.1005.2011.00567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Integrase of phage fC31 catalyses the homologous recombination between Streptomyces attachment site attB and the phage attachment site attP. Meanwhile, this integrase can mediate integration of attB-containing donor plasmids into the pseudo attP sites in eukaryotic genomes by a site-specific manner and resulting long-term and robust expression of integrated genes. Nowadays, fC31 integrase system is becoming a potential tool for genome modification, gene therapy and transgenic research. Recent progress of fC31 integrase system in integration mode in mammalian genomes, efficiency improvement and researches concerned on transgenic safety were summarized in this review.
Collapse
Affiliation(s)
- Qing-Wen Ma
- Children's Hospital of Shanghai, Institute of Medical Genetics, Shanghai JiaoTong University, Shanghai 200040, China.
| |
Collapse
|
18
|
The 156KELK159 tetrapeptide of HIV-1 integrase is critical for lentiviral gene integration. Mol Biol Rep 2011; 39:343-9. [PMID: 21556766 DOI: 10.1007/s11033-011-0744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
Abstract
HIV-1 integrase (HIV-1 IN), a key element of HIV-1-derived lentiviral vectors, is crucial for the stable maintenance of the vector gene by inserting them into host genome. HIV-1 IN has been found to have functions other than integration, such as involving in virion morphology, viral DNA synthesis and viral DNA nuclear import. In our study, the yeast two-hybrid assay identified a tetrapeptide 156KELK159 in HIV-1 IN that was crucial for HIV-1 IN and Daxx interaction. To investigate the functions of the tetrapeptide 156KELK159 of the HIV-1 IN, both the wild type HIV-1 IN and a mutant without 156KELK159 were used to package the EGFP reporter gene contained lentivirus. p24 based titer assay revealed that deleting the tetrapeptide did not affect virus packaging. The result was verified by quantitative real time PCR with viral specific primers. But the 156KELK159 was crucial for lentiviral gene integration. Deleting the tetrapeptide made the percentage of cells expressing the reporter gene significantly decreased and did not affect the level of DNA entered into the cells or nucleus. Real time reverse transcription PCR and FACS were used to detect the lentiviral report gene expression in infection maintaining cells and revealed 156KELK159 did not affect lentiviral vector gene expression. Our results may shed light on the regulatory mechanism of gene integration of lentivirus.
Collapse
|