1
|
Li Y, Liu F, Chen D, Tian Y, Liu C, Li F. MICU1 alleviates hypobaric hypoxia-induced myocardial injury through regulating Ca 2+ uptake to inhibit mitochondria-dependent apoptosis. Cell Signal 2024; 125:111524. [PMID: 39586522 DOI: 10.1016/j.cellsig.2024.111524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
AIM High-altitude cardiac injury is a prevalent form of tissue damage resulting from hypobaric hypoxia (HH). MICU1 is a critical modulator of mitochondrial calcium uptake, with significant implications for the regulation of mitochondrial redox homeostasis. This study sought to examine the impact of MICU1 and elucidate the underlying mechanism in myocardial exposed to HH. METHODS Loss-and gain-of-function approaches were used to investigate the role of MICU1 in cardiac response to HH. In vitro, the function of MICU1 in the primary neonatal rat cardiomyocytes under hypoxia was examined. RESULTS We observed that MICU1 was downregulated in hearts exposed to HH, contributing to myocardial apoptosis. In vitro experiments demonstrated that MICU1 knockdown exacerbated hypoxic cardiomyocyte injury, as evidenced by an increase in apoptotic cells and a decrease in mitochondrial membrane potential. Conversely, overexpression of MICU1 in mice significantly mitigated myocardial injury, leading to enhanced cardiac function and reduced myocardial hypertrophy and fibrosis in hypobaric hypoxic mice, consistent with the in vitro findings. Further investigations revealed that overexpression of MICU1 inhibited apoptosis by augmenting mitochondrial Ca2+ uptake and subsequently enhancing the activity of tricarboxylic acid cycle (TCA) related enzymes. Lastly, our results suggest that hypoxia-induced downregulation of MICU1 is mediated by the reduction of MAZ expression in primary neonatal rat cardiomyocytes. CONCLUSION Our results suggest that MICU1 plays an important role in myocardial protection subjected to HH, suggesting that enhancing the expression or activity of MICU1 may be a potential pharmacological target to ameliorate myocardial injury at high altitude.
Collapse
Affiliation(s)
- Yao Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Fengzhou Liu
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China; Department of Aviation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dongbo Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yiyuan Tian
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Chao Liu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Fei Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
2
|
Ballester Roig MN, Roy PG, Hannou L, Delignat-Lavaud B, Sully Guerrier TA, Bélanger-Nelson E, Dufort-Gervais J, Mongrain V. Transcriptional regulation of the mouse EphA4, Ephrin-B2 and Ephrin-A3 genes by the circadian clock machinery. Chronobiol Int 2023; 40:983-1003. [PMID: 37551686 DOI: 10.1080/07420528.2023.2237580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023]
Abstract
Circadian rhythms originate from molecular feedback loops. In mammals, the transcription factors CLOCK and BMAL1 act on regulatory elements (i.e. E-boxes) to shape biological functions in a rhythmic manner. The EPHA4 receptor and its ligands Ephrins (EFN) are cell adhesion molecules regulating neurotransmission and neuronal morphology. Previous studies showed the presence of E-boxes in the genes of EphA4 and specific Ephrins, and that EphA4 knockout mice have an altered circadian rhythm of locomotor activity. We thus hypothesized that the core clock machinery regulates the gene expression of EphA4, EfnB2 and EfnA3. CLOCK and BMAL1 (or NPAS2 and BMAL2) were found to have transcriptional activity on distal and proximal regions of EphA4, EfnB2 and EfnA3 putative promoters. A constitutively active form of glycogen synthase kinase 3β (GSK3β; a negative regulator of CLOCK and BMAL1) blocked the transcriptional induction. Mutating the E-boxes of EphA4 distal promoter sequence reduced transcriptional induction. EPHA4 and EFNB2 protein levels did not show circadian variations in the mouse suprachiasmatic nucleus or prefrontal cortex. The findings uncover that core circadian transcription factors can regulate the gene expression of elements of the Eph/Ephrin system, which might contribute to circadian rhythmicity in biological processes in the brain or peripheral tissues.
Collapse
Affiliation(s)
- Maria Neus Ballester Roig
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Recherche CIUSSS-NIM, Montreal, Quebec, Canada
| | - Pierre-Gabriel Roy
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
- Recherche CIUSSS-NIM, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | - Valérie Mongrain
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Recherche CIUSSS-NIM, Montreal, Quebec, Canada
| |
Collapse
|
3
|
DeVallance ER, Dustin CM, de Jesus DS, Ghouleh IA, Sembrat JC, Cifuentes-Pagano E, Pagano PJ. Specificity Protein 1-Mediated Promotion of CXCL12 Advances Endothelial Cell Metabolism and Proliferation in Pulmonary Hypertension. Antioxidants (Basel) 2022; 12:71. [PMID: 36670936 PMCID: PMC9854820 DOI: 10.3390/antiox12010071] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare yet devastating and incurable disease with few treatment options. The underlying mechanisms of PAH appear to involve substantial cellular proliferation and vascular remodeling, causing right ventricular overload and eventual heart failure. Recent evidence suggests a significant seminal role of the pulmonary endothelium in the initiation and promotion of PAH. Our previous work identified elevated reactive oxygen species (ROS)-producing enzyme NADPH oxidase 1 (NOX1) in human pulmonary artery endothelial cells (HPAECs) of PAH patients promoting endothelial cell proliferation in vitro. In this study, we interrogated chemokine CXCL12's (aka SDF-1) role in EC proliferation under the control of NOX1 and specificity protein 1 (Sp1). We report here that NOX1 can drive hypoxia-induced endothelial CXCL12 expression via the transcription factor Sp1 leading to HPAEC proliferation and migration. Indeed, NOX1 drove hypoxia-induced Sp1 activation, along with an increased capacity of Sp1 to bind cognate promoter regions in the CXCL12 promoter. Sp1 activation induced elevated expression of CXCL12 in hypoxic HPAECs, supporting downstream induction of expression at the CXCL12 promoter via NOX1 activity. Pathological levels of CXCL12 mimicking those reported in human PAH patient serum restored EC proliferation impeded by specific NOX1 inhibitor. The translational relevance of our findings is highlighted by elevated NOX1 activity, Sp1 activation, and CXCL12 expression in explanted lung samples from PAH patients compared to non-PAH controls. Analysis of phosphofructokinase, glucose-6-phosphate dehydrogenase, and glutaminase activity revealed that CXCL12 induces glutamine and glucose metabolism, which are foundational to EC cell proliferation. Indeed, in explanted human PAH lungs, demonstrably higher glutaminase activity was detected compared to healthy controls. Finally, infusion of recombinant CXCL12 into healthy mice amplified pulmonary arterial pressure, right ventricle remodeling, and elevated glucose and glutamine metabolism. Together these data suggest a central role for a novel NOX1-Sp1-CXCL12 pathway in mediating PAH phenotype in the lung endothelium.
Collapse
Affiliation(s)
- Evan R. DeVallance
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Christopher M. Dustin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daniel Simoes de Jesus
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Imad Al Ghouleh
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - John C. Sembrat
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Eugenia Cifuentes-Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Patrick J. Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
4
|
Signaling Pathways Associated with Chronic Wound Progression: A Systems Biology Approach. Antioxidants (Basel) 2022; 11:antiox11081506. [PMID: 36009225 PMCID: PMC9404828 DOI: 10.3390/antiox11081506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Previously we have shown that several oxidative stress-driven pathways in cutaneous chronic wounds are dysregulated in the first 48 h post-wounding. Here, we performed an RNASeq analysis of tissues collected up to day 20 after wounding, when we have determined full chronicity is established. Weighted Gene Correlation Network Analysis was performed in R segregating the genes into 14 modules. Genes in the modules significantly correlated (p < 0.05) to early and full chronicity were used for pathway analysis using pathfindR. In early chronicity, we observed enrichment of several pathways. Dysregulation of Ephrin/Eph signaling leads to growth cone collapse and impairs neuronal regeneration. Adra2b and Adra2a overexpression in early and full chronicity, respectively, decreased cAMP production and impaired re-epithelialization and granulation tissue formation. Several pathways involving a Smooth-muscle-actin (Acta1) were also enriched with Acta1 overexpression contributing to impaired angiogenesis. During full chronicity, the ‘JAK-STAT’ pathway was suppressed undermining host defenses against infection. Wnt signaling was also suppressed, impairing re-epithelialization and granulation tissue formation. Biomarkers of cancer such as overexpression of SDC1 and constitutive activation of ErbB2/HER2 were also identified. In conclusion, we show that during progression to full chronicity, numerous signaling pathways are dysregulated, including some related to carcinogenesis, suggesting that chronic wounds behave much like cancer. Experimental verification in vivo could identify candidates for treatment of chronic wounds.
Collapse
|
5
|
OUP accepted manuscript. Brain 2022; 145:3179-3186. [DOI: 10.1093/brain/awac107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/25/2022] [Accepted: 03/13/2022] [Indexed: 11/15/2022] Open
|
6
|
Rodriguez D, Watts D, Gaete D, Sormendi S, Wielockx B. Hypoxia Pathway Proteins and Their Impact on the Blood Vasculature. Int J Mol Sci 2021; 22:ijms22179191. [PMID: 34502102 PMCID: PMC8431527 DOI: 10.3390/ijms22179191] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/12/2022] Open
Abstract
Every cell in the body requires oxygen for its functioning, in virtually every animal, and a tightly regulated system that balances oxygen supply and demand is therefore fundamental. The vascular network is one of the first systems to sense oxygen, and deprived oxygen (hypoxia) conditions automatically lead to a cascade of cellular signals that serve to circumvent the negative effects of hypoxia, such as angiogenesis associated with inflammation, tumor development, or vascular disorders. This vascular signaling is driven by central transcription factors, namely the hypoxia inducible factors (HIFs), which determine the expression of a growing number of genes in endothelial cells and pericytes. HIF functions are tightly regulated by oxygen sensors known as the HIF-prolyl hydroxylase domain proteins (PHDs), which are enzymes that hydroxylate HIFs for eventual proteasomal degradation. HIFs, as well as PHDs, represent attractive therapeutic targets under various pathological settings, including those involving vascular (dys)function. We focus on the characteristics and mechanisms by which vascular cells respond to hypoxia under a variety of conditions.
Collapse
|
7
|
Dou Y, Jiang D. [Research Progress of Small Molecule Anti-angiogenic Drugs
in Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 24:56-62. [PMID: 33478192 PMCID: PMC7849040 DOI: 10.3779/j.issn.1009-3419.2021.102.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
肺癌是世界上发病率最高的癌症之一,且尚无二线进展后的标准治疗方案,而肿瘤血管生成目前已被确定为恶性肿瘤的重要治疗靶点,小分子多靶点血管激酶抑制剂可通过抑制血管生成相关信号通路,抑制肿瘤血管的生成。目前已开展多项小分子抗血管生成药物治疗非小细胞肺癌的临床试验,且已有部分血管内皮生长因子受体酪氨酸激酶抑制剂(vascular endothelial growth factor receptor-tyrosine kinase inhibitors, VEGFR-TKIs)获批治疗晚期非小细胞肺癌,本文基于国内外多项小分子抗血管生成药物治疗非小细胞肺癌的发展现状,归纳了多个VEGFR-TKIs及成纤维细胞生长因子受体(fibroblast growth factor receptor, FGFR)-TKI单药或联合[包括分别与化疗、表皮生长因子受体(epidermal growth factor receptor, EGFR)-TKIs、免疫治疗、放疗等联合)]治疗非小细胞肺癌的疗效与安全性研究,同时探讨了VEGFR-TKIs可能存在的耐药机制及疗效预测指标等,并对未来抗血管治疗非小细胞肺癌的发展趋势以及存在的潜在问题进行展望,同时为肺癌后续的精准治疗及个体化治疗提供新的思路。
Collapse
Affiliation(s)
- Yan Dou
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Da Jiang
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| |
Collapse
|
8
|
Medina-Martinez O, Haller M, Rosenfeld JA, O'Neill MA, Lamb DJ, Jamrich M. The transcription factor Maz is essential for normal eye development. Dis Model Mech 2020; 13:dmm044412. [PMID: 32571845 PMCID: PMC7449797 DOI: 10.1242/dmm.044412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/10/2020] [Indexed: 12/19/2022] Open
Abstract
Wnt/β-catenin signaling has an essential role in eye development. Faulty regulation of this pathway results in ocular malformations, owing to defects in cell-fate determination and differentiation. Herein, we show that disruption of Maz, the gene encoding Myc-associated zinc-finger transcription factor, produces developmental eye defects in mice and humans. Expression of key genes involved in the Wnt cascade, Sfrp2, Wnt2b and Fzd4, was significantly increased in mice with targeted inactivation of Maz, resulting in abnormal peripheral eye formation with reduced proliferation of the progenitor cells in the region. Paradoxically, the Wnt reporter TCF-Lef1 displayed a significant downregulation in Maz-deficient eyes. Molecular analysis indicates that Maz is necessary for the activation of the Wnt/β-catenin pathway and participates in the network controlling ciliary margin patterning. Copy-number variations and single-nucleotide variants of MAZ were identified in humans that result in abnormal ocular development. The data support MAZ as a key contributor to the eye comorbidities associated with chromosome 16p11.2 copy-number variants and as a transcriptional regulator of ocular development.
Collapse
Affiliation(s)
- Olga Medina-Martinez
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meade Haller
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics Laboratories, Houston, TX 77021, USA
| | - Marisol A O'Neill
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dolores J Lamb
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- James Buchanan Brady Foundation Department of Urology, Weill Cornell Medical College, New York City, NY 10065, USA
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York City, NY 10065, USA
- Center for Reproductive Genomics, Weill Cornell Medical College, New York City, NY 10065, USA
| | - Milan Jamrich
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
9
|
Shang T, Li S, Zhang Y, Lu L, Cui L, Guo FF. Hypoxia promotes differentiation of adipose-derived stem cells into endothelial cells through demethylation of ephrinB2. Stem Cell Res Ther 2019; 10:133. [PMID: 31109374 PMCID: PMC6528245 DOI: 10.1186/s13287-019-1233-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/06/2019] [Accepted: 04/10/2019] [Indexed: 01/22/2023] Open
Abstract
Background Delivery of endothelial cells into the ischemic tissue is emerging as an alternative approach in revascularization of injured tissues by means of angiogenesis to restore organ function. Adipose-derived stem cells (ASCs) are a readily accessible source of the mesenchymal stem cell with rapid expansion and multidifferentiation potential. The view has emerged that endothelial cells (ECs) differentiated from ASCs is a step forward for adult vascular repair in regenerative medicine and construction of the blood vessel by tissue engineering approach. Methods In this study, differentiation of human ASCs (hASCs) into vascular EC lineage was induced by combined treatment of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-4 (BMP4) under hypoxia condition. The expression of CD31, VEGF-R2, and VE-cadherin was determined by immunofluorescent staining, real-time PCR, and western blot analysis. These differentiated cells acquired functional characteristics of mature ECs as determined by their tube formation ability, DiI-ac-LDL uptake, and nitric oxide secretion in vitro. The methylation status in the proximal promoter CpGs was determined by bisulfite sequencing. Results hASCs expressed endothelial cell markers including CD31, VEGF-R2, and VE-cadherin by combined treatment of VEGF and BMP4 under hypoxia condition. These differentiated cells exhibited the angiogenesis potential in vitro, and injection of these differentiated cells enhanced angiogenesis in the ischemic hindlimb of diabetic mice. Furthermore, it was found that hypoxia increased significantly EphrinB2 expression EC differentiation, which is greatly downregulated with EphrinB2 blockage. The methylation status in the proximal promoter CpG results showed that methylation of EphrinB2 promoter decreased in hASCs with exposure to hypoxia. Conclusion Our data demonstrate that hASCs can be efficiently induced to differentiate into vascular EC lineages which are mediated by demethylation of ephrinB2 under hypoxia condition.
Collapse
Affiliation(s)
- Ting Shang
- Department of Plastic Surgery, Beijing Shijitan Hospital affiliated to Capital Medical University, 10 Tieyi Road, Beijing, China
| | - Shuaijun Li
- Department of Plastic Surgery, Beijing Shijitan Hospital affiliated to Capital Medical University, 10 Tieyi Road, Beijing, China
| | - Yun Zhang
- Department of Plastic Surgery, Beijing Shijitan Hospital affiliated to Capital Medical University, 10 Tieyi Road, Beijing, China
| | - Laiya Lu
- Department of Orthopedics, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, China
| | - Lei Cui
- Department of Plastic Surgery, Beijing Shijitan Hospital affiliated to Capital Medical University, 10 Tieyi Road, Beijing, China. .,Department of Orthopedics, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, China.
| | - Fang Fang Guo
- Department of Plastic and Reconstructive surgery, Zhongda Hospital, Southeast University, 87 Dingjiaqiao street, Nanjing, Jiangsu Province, China.
| |
Collapse
|
10
|
Wu B, Rockel JS, Lagares D, Kapoor M. Ephrins and Eph Receptor Signaling in Tissue Repair and Fibrosis. Curr Rheumatol Rep 2019; 21:23. [PMID: 30980212 DOI: 10.1007/s11926-019-0825-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Fibrosis is a pathological feature of many human diseases that affect multiple organs. The development of anti-fibrotic therapies has been a difficult endeavor due to the complexity of signaling pathways associated with fibrogenic processes, complicating the identification and modulation of specific targets. Evidence suggests that ephrin ligands and Eph receptors are crucial signaling molecules that contribute to physiological wound repair and the development of tissue fibrosis. Here, we discuss recent advances in the understanding of ephrin and Eph signaling in tissue repair and fibrosis. RECENT FINDINGS Ephrin-B2 is implicated in fibrosis of multiple organs. Intercepting its signaling may help counteract fibrosis. Ephrins and Eph receptors are candidate mediators of fibrosis. Ephrin-B2, in particular, promotes fibrogenic processes in multiple organs. Thus, therapeutic strategies targeting Ephrin-B2 signaling could yield new ways to treat organ fibrosis.
Collapse
Affiliation(s)
- Brian Wu
- The Arthritis Program, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jason S Rockel
- The Arthritis Program, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - David Lagares
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Mohit Kapoor
- The Arthritis Program, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada. .,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Jung YH, Lee SJ, Oh SY, Lee HJ, Ryu JM, Han HJ. Oleic acid enhances the motility of umbilical cord blood derived mesenchymal stem cells through EphB2-dependent F-actin formation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1905-17. [PMID: 25962624 DOI: 10.1016/j.bbamcr.2015.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/16/2015] [Accepted: 05/05/2015] [Indexed: 01/10/2023]
Abstract
The role of unsaturated fatty acids (UFAs) is essential for determining stem cell functions. Eph/Ephrin interactions are important for regulation of stem cell fate and localization within their niche, which is significant for a wide range of stem cell behavior. Although oleic acid (OA) and Ephrin receptors (Ephs) have critical roles in the maintenance of stem cell functions, interrelation between Ephs and OA has not been explored. Therefore, the present study investigated the effect of OA-pretreated UCB-MSCs in skin wound-healing and underlying mechanism of Eph expression. OA promoted the motility of UCB-MSCs via EphB2 expression. OA-mediated GPR40 activation leads to Gαq-dependent PKCα phosphorylation. In addition, OA-induced phosphorylation of GSK3β was followed by β-catenin nuclear translocation in UCB-MSCs. Activation of β-catenin was blocked by PKC inhibitors, and OA-induced EphB2 expression was suppressed by β-cateninsiRNA transfection. Of those Rho-GTPases, Rac1 was activated in an EphB2-dependent manner. Accordingly, knocking down EphB2 suppressed F-actin expression. In vivo skin wound-healing assay revealed that OA-treated UCB-MSCs enhanced skin wound repair compared to UCB-MSCs pretreated with EphB2siRNA and OA. In conclusion, we showed that OA enhances UCB-MSC motility through EphB2-dependent F-actin formation involving PKCα/GSK3β/β-catenin and Rac1 signaling pathways.
Collapse
Affiliation(s)
- Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151-741, South Korea; BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul 151-741, South Korea
| | - Sei-Jung Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151-741, South Korea; BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul 151-741, South Korea
| | - Sang Yub Oh
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151-741, South Korea; BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul 151-741, South Korea
| | - Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151-741, South Korea; BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul 151-741, South Korea
| | - Jung Min Ryu
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151-741, South Korea; BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul 151-741, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151-741, South Korea; BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul 151-741, South Korea.
| |
Collapse
|
12
|
Yuan C, Wang P, Zhu L, Dissanayaka WL, Green DW, Tong EHY, Jin L, Zhang C. Coculture of stem cells from apical papilla and human umbilical vein endothelial cell under hypoxia increases the formation of three-dimensional vessel-like structures in vitro. Tissue Eng Part A 2014; 21:1163-72. [PMID: 25380198 DOI: 10.1089/ten.tea.2014.0058] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The success of bioengineered dental pulp depends on two principles, (1) whether the transplanted tissue can develop its own vascular endothelial tubule network and (2) whether the host vasculature can be induced to penetrate the bioengineered pulp replacement and conjoin. Major inductive molecules that participate in laying down blood vessels include vascular endothelial growth factor (VEGF), ephrinB2, and hypoxia-inducible factor 1α (HIF-1α). Being able to modulate the genes encoding these angiogenic molecules is a therapeutic target in pulp regeneration for endogenous blood vessel formation, prevention of graft rejection, and exclusion of infection. Once implanted inside the root canal, bioengineered pulp is subjected to severe hypoxia that causes tissue degeneration. However, short-term hypoxia is known to stimulate angiogenesis. Thus, it may be feasible to prime dental cells for angiogenic activity before implantation. Stem cells from apical papilla (SCAP) are arguably one of the most potent and versatile dental stem cell populations for bioengineering pulp in vitro. Our study aimed to investigate whether coculture of SCAP and human umbilical vein endothelial cells (HUVECs) under hypoxia promotes the formation of endothelial tubules and a blood vessel network. In addition, we clarified the interplay between the genes that orchestrate these important angiogenic molecules in SCAP under hypoxic conditions. We found that SCAP cocultured with HUVEC at a 1:5 ratio increased the number of endothelial tubules, tubule lengths, and branching points. Fluorescence staining showed that HUVEC formed the trunk of tubular structures, whereas SCAP located adjacent to the endothelial cell line, resembling the pericyte location. When we used CoCl2 (0.5 mM) to induce hypoxic environment, the expression of proteins, HIF-1α and VEGF, and transcript of ephrinB2 in SCAP was upregulated. However, minimal VEGF levels in supernatants of HUVEC and coculture Petri dishes were detected, suggesting that VEGF secreted by SCAP might be used by HUVEC to accelerate the formation of vessel-like structures. Taken together, we revealed that artificial hypoxia stimulates angiogenic responses in SCAP for possible use in engineering dental pulp replacements. Our results may help to delineate the optimal therapeutic target to promote angiogenesis so that future bioengineered pulp replacements integrate faster and permanently within the host.
Collapse
Affiliation(s)
- Changyong Yuan
- 1 Comprehensive Dental Care, Endodontics, Faculty of Dentistry, The University of Hong Kong , Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Experimental hypoxia does not influence gene expression and protein synthesis of Eph receptors and ephrin ligands in human melanoma cells in vitro. Melanoma Res 2014; 23:85-95. [PMID: 23358429 DOI: 10.1097/cmr.0b013e32835e58f3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Eph receptor tyrosine kinases and their ephrin ligands are considered to play important roles in melanoma progression and metastasis. Moreover, hypoxia is known to contribute to melanoma metastasis. In this study, the influence of experimental hypoxia on the expression and synthesis of EphA2 and EphB4, and their corresponding ligands ephrinA1, ephrinA5, and ephrinB2 was studied systematically in four human melanoma cell lines in vitro. Melanoma cell monolayer and spheroid cultures were used as both extrinsic and intrinsic hypoxia models. Hypoxic conditions were confirmed by analyzing hypoxia-inducible factors 1α or 2α expression, vascular endothelial growth factor expression, and cellular uptake of [F]fluoromisonidazole. In normoxia, EphA2, EphB4, ephrinA1, ephrinA5, and ephrinB2 expression was detectable in all cell lines to varying extents. Considerable protein synthesis of EphA2 was detected in all cell lines. However, no effect of experimental hypoxia on both Eph/ephrin expression and protein synthesis was observed. This contributes critically to the debate on the hypothesis that hypoxia regulates the Eph/ephrin system in melanoma.
Collapse
|
14
|
Sundelin JP, Lidberg U, Nik AM, Carlsson P, Borén J. Hypoxia-induced regulation of the very low density lipoprotein receptor. Biochem Biophys Res Commun 2013; 437:274-9. [PMID: 23811271 DOI: 10.1016/j.bbrc.2013.06.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 11/18/2022]
Abstract
The very low density lipoprotein receptor (VLDLr) is highly upregulated during hypoxia in mouse cardiomyocytes and in human and mouse ischemic hearts causing a detrimental lipid accumulation. To know how the gene is regulated is important for future studies. In this study, we have thoroughly mapped the 5'-flanking region of the mouse VLDLr promoter and show that the hypoxia-mediated increase in VLDLr expression is dependent on Hif-1α binding to a hypoxia responsive element (HRE) located at -162 to -158bp 5'of translation start. We show that classical HRE sites and the previously described PPARγ and Sp1 binding are not involved in the hypoxia-induced regulation of the VLDLr promoter. Using a chromatin immunoprecipitation (ChIP) assay, we show that Hif-1α specifically binds and activates the mouse VLDLr promoter at the previously described non-classical HRE in HL-1 cells. We also show that the same HRE is present and active in response to hypoxia in human cardiomyocytes, however at a different location (-812bp from translation start). These results conclude that in the hypoxic hearts of mice and men, the VLDLr gene is regulated by a direct binding of Hif-1α to the VLDLr promoter.
Collapse
Affiliation(s)
- Jeanna Perman Sundelin
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
15
|
Coulthard MG, Morgan M, Woodruff TM, Arumugam TV, Taylor SM, Carpenter TC, Lackmann M, Boyd AW. Eph/Ephrin signaling in injury and inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1493-503. [PMID: 23021982 DOI: 10.1016/j.ajpath.2012.06.043] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 06/28/2012] [Indexed: 12/20/2022]
Abstract
The Eph/ephrin receptor-ligand system plays an important role in embryogenesis and adult life, principally by influencing cell behavior through signaling pathways, resulting in modification of the cell cytoskeleton and cell adhesion. There are 10 EphA receptors, and six EphB receptors, distinguished on sequence difference and binding preferences, that interact with the six glycosylphosphatidylinositol-linked ephrin-A ligands and the three transmembrane ephrin-B ligands, respectively. The Eph/ephrin proteins, originally described as developmental regulators that are expressed at low levels postembryonically, are re-expressed after injury to the optic nerve, spinal cord, and brain in fish, amphibians, rodents, and humans. In rodent spinal cord injury, the up-regulation of EphA4 prevents recovery by inhibiting axons from crossing the injury site. Eph/ephrin proteins may be partly responsible for the phenotypic changes to the vascular endothelium in inflammation, which allows fluid and inflammatory cells to pass from the vascular space into the interstitial tissues. Specifically, EphA2/ephrin-A1 signaling in the lung may be responsible for pulmonary inflammation in acute lung injury. A role in T-cell maturation and chronic inflammation (heart failure, inflammatory bowel disease, and rheumatoid arthritis) is also reported. Although there remains much to learn about Eph/ephrin signaling in human disease, and specifically in injury and inflammation, this area of research raises the exciting prospect that novel therapies will be developed that precisely target these pathways.
Collapse
Affiliation(s)
- Mark G Coulthard
- Academic Discipline of Paediatrics and Child Health, University of Queensland, Royal Children's Hospital, Herston, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Arvanitis DN, Davy A. Regulation and misregulation of Eph/ephrin expression. Cell Adh Migr 2012; 6:131-7. [PMID: 22568953 DOI: 10.4161/cam.19690] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The erythropoietin-producing hepatocellular (Eph) receptors form the largest family of receptor tyrosine kinases. Upon interaction of the Eph receptors with their ligands the ephrins, signaling cascades are initiated downstream of both receptor and ligand, a feature known as bidirectional signaling. The Eph receptors and ephrin ligands mediate important roles in embryonic development, particularly in establishing tissue organization by mediating cell adhesion or cell repulsion. In several adult tissues, at least one Eph/ephrin pair is found to play critical roles in tissue physiology and homeostasis. In recent years numerous members of this family have gained considerable attention since changes in their expression levels are a typical feature in cancer cells. Despite the fact that Eph/ephrin developmental expression profiles are well documented, little is known on transcriptional and post-transcriptional mechanisms that permits their highly specific, graded, complementary or overlapping expression patterns. Therefore understanding the transcriptional and post-transcriptional mechanisms regulating Eph/ephrin expression has far-reaching significance in biology. This review provides an overview of the mechanisms regulating Eph/ephrin expression. We highlight important emerging mechanisms of Eph/ephrin regulation or misregulation such as epigenetics and miRNAs.
Collapse
Affiliation(s)
- Dina N Arvanitis
- Centre de Biologie du Développement, CNRS, Université de Toulouse, Toulouse, France
| | | |
Collapse
|
17
|
Origin of neomuscularized vessels in mice exposed to chronic hypoxia. Respir Physiol Neurobiol 2011; 179:342-5. [PMID: 22000991 DOI: 10.1016/j.resp.2011.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 09/27/2011] [Indexed: 11/20/2022]
Abstract
Exposure of mice to chronic hypoxia is one of the most often used animal models to study pulmonary hypertension. Hypoxia exposure leads to vascular remodeling and muscularization of the small parenchymal vessels in the lung. Due to the anatomical differences between mice and humans, it is not possible to determine whether the remodeled vessels originate from the arterial or venous side of the vasculature. By applying antibodies against specific marker molecules expressed by arterial (ephrinB2) and venous (EphB4) endothelial cells, we could show that remodeled parenchymal vessels in hypoxia-exposed mice are mostly of arterial origin with slight venous involvement. Using these tools, it is possible to further characterize remodeled vessels in other small animal models, such as transgenic or knockout mice. Particularly useful applications would include selection of parenchymal vessels for laser microdissection studies.
Collapse
|
18
|
Diercke K, Kohl A, Lux CJ, Erber R. Strain-dependent up-regulation of ephrin-B2 protein in periodontal ligament fibroblasts contributes to osteogenesis during tooth movement. J Biol Chem 2011; 286:37651-64. [PMID: 21880727 DOI: 10.1074/jbc.m110.166900] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
During orthodontic tooth movement, the application of adequate orthodontic forces allows teeth to be moved through the alveolar bone. These forces are transmitted through the periodontal ligaments (PDL) to the supporting alveolar bone and lead to deposition or resorption of bone, depending on whether the tissues are exposed to a tensile or compressive mechanical strain. Fibroblasts within the PDL (PDLF) are considered to be mechanoresponsive. The transduction mechanisms from mechanical loading of the PDLF to the initiation of bone remodeling are not clearly understood. Recently, members of the ephrin/Eph family have been shown to be involved in the regulation of bone homeostasis. For the first time, we demonstrate that PDLF exposed to tensile strain induce the expression of ephrin-B2 via a FAK-, Ras-, ERK1/2-, and SP1-dependent pathway. Osteoblasts of the alveolar bone stimulated with ephrin-B2 increased their osteoblastogenic gene expression and showed functional signs of osteoblastic differentiation. In a physiological setting, ephrin-B2-EphB4 signaling between PDLF and osteoblasts of the alveolar bone might contribute to osteogenesis at tension sites during orthodontic tooth movement.
Collapse
Affiliation(s)
- Katja Diercke
- Department of Orthodontics and Dentofacial Orthopaedics, Dental School, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
19
|
Up-regulation of glyceraldehyde-3-phosphate dehydrogenase gene expression by HIF-1 activity depending on Sp1 in hypoxic breast cancer cells. Arch Biochem Biophys 2011; 509:1-8. [DOI: 10.1016/j.abb.2011.02.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/26/2011] [Accepted: 02/13/2011] [Indexed: 11/22/2022]
|
20
|
Lahat N, Bitterman H, Engelmayer-Goren M, Rosenzweig D, Weiss-Cerem L, Rahat MA. Reduced TIMP-2 in hypoxia enhances angiogenesis. Am J Physiol Cell Physiol 2010; 300:C557-66. [PMID: 21148412 DOI: 10.1152/ajpcell.00177.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypoxia, which characterizes ischemia, trauma, inflammation, and solid tumors, recruits monocytes, immobilizes them, and alters their function, leading to an anti-inflammatory and proangiogenic phenotype. Monocyte extravasation from the circulation and their migration in tissues are partially mediated by the balance between matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). The mechanisms evoked by hypoxia that regulate monocyte migration and activation are not entirely clear. Specifically, the effect of hypoxia on TIMPs in these cells has hardly been investigated. We show that hypoxia reduces TIMP-2 secretion from human primary monocytes and from the monocyte-like cell lines U937 and THP-1 by three- to fourfold (P < 0.01), by inhibiting TIMP-2 transcription through mechanisms that involve the transcription factor SP-1. Hypoxia also lowers TIMP-2 protein secretion from human endothelial cells (by 2-fold, P < 0.05). TIMP-2 levels do not influence the reduced migration of THP-1 cells in hypoxia; however, low TIMP-2 levels enhance endothelial cell migration/proliferation, their ability to form tubelike structures in vitro, and the appearance of mature blood vessels in a Matrigel plug assay in vivo. Thus we conclude that reduced TIMP-2 levels secreted from both hypoxic monocytes and endothelial cells are proangiogenic.
Collapse
Affiliation(s)
- Nitza Lahat
- Immunology Research Unit, Carmel Medical Ctr., 7 Michal St., Haifa 34362, Israel.
| | | | | | | | | | | |
Collapse
|