1
|
Buchanan CM, Lee KL, Shepherd PR. For Better or Worse: The Potential for Dose Limiting the On-Target Toxicity of PI 3-Kinase Inhibitors. Biomolecules 2019; 9:biom9090402. [PMID: 31443495 PMCID: PMC6770514 DOI: 10.3390/biom9090402] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
The hyper-activation of the phosphoinositide (PI) 3-kinase signaling pathway is a hallmark of many cancers and overgrowth syndromes, and as a result, there has been intense interest in the development of drugs that target the various isoforms of PI 3-kinase. Given the key role PI 3-kinases play in many normal cell functions, there is significant potential for the disruption of essential cellular functions by PI 3-kinase inhibitors in normal tissues; so-called on-target drug toxicity. It is, therefore, no surprise that progress within the clinical development of PI 3-kinase inhibitors as single-agent anti-cancer therapies has been slowed by the difficulty of identifying a therapeutic window. The aim of this review is to place the cellular, tissue and whole-body effects of PI 3-kinase inhibition in the context of understanding the potential for dose limiting on-target toxicities and to introduce possible strategies to overcome these.
Collapse
Affiliation(s)
- Christina M Buchanan
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kate L Lee
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
2
|
Yeon JT, Kim KJ, Son YJ, Park SJ, Kim SH. Idelalisib inhibits osteoclast differentiation and pre-osteoclast migration by blocking the PI3Kδ-Akt-c-Fos/NFATc1 signaling cascade. Arch Pharm Res 2019; 42:712-721. [PMID: 31161369 DOI: 10.1007/s12272-019-01163-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
Abstract
Since increased number of osteoclasts could lead to impaired bone structure and low bone mass, which are common characteristics of bone disorders including osteoporosis, the pharmacological inhibition of osteoclast differentiation is one of therapeutic strategies for preventing and/or treating bone disorders and related facture. However, little data are available regarding the functional relevance of phosphoinositide 3-kinase (PI3K) isoforms in the osteoclast differentiation process. To elucidate the functional involvement of PI3Kδ in osteoclastogenesis, here we investigated how osteoclast differentiation was influenced by idelalisib (also called CAL-101), which is p110δ-selective inhibitor approved for the treatment of specific human B cell malignancies. Here, we found that receptor activator of nuclear factor kappa B ligand (RANKL) induced PI3Kδ protein expression, and idelalisib inhibited RANKL-induced osteoclast differentiation. Next, the inhibitory effect of idelalisib on RANKL-induced activation of the Akt-c-Fos/NFATc1 signaling cascade was confirmed by western blot analysis and real-time PCR. Finally, idelalisib inhibited pre-osteoclast migration in the last stage of osteoclast differentiation through down-regulation of the Akt-c-Fos/NFATc1 signaling cascade. It may be possible to expand the clinical use of idelalisib for controlling osteoclast differentiation. Together, the present results contribute to our understanding of the clinical value of PI3Kδ as a druggable target and the efficacy of related therapeutics including osteoclastogenesis.
Collapse
Affiliation(s)
- Jeong-Tae Yeon
- Research Institute of Basic Science, Sunchon National University, Suncheon, Republic of Korea
| | - Kwang-Jin Kim
- Department of Pharmacy, Sunchon National University, Suncheon, Republic of Korea
| | - Young-Jin Son
- Department of Pharmacy, Sunchon National University, Suncheon, Republic of Korea
| | - Sang-Joon Park
- Department of Histology, College of Veterinary Medicine, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.
| | - Seong Hwan Kim
- Innovative Target Research Center, Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 334114, Republic of Korea.
| |
Collapse
|
3
|
Maternal and fetal genomes interplay through phosphoinositol 3-kinase(PI3K)-p110α signaling to modify placental resource allocation. Proc Natl Acad Sci U S A 2016; 113:11255-11260. [PMID: 27621448 DOI: 10.1073/pnas.1602012113] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pregnancy success and life-long health depend on a cooperative interaction between the mother and the fetus in the allocation of resources. As the site of materno-fetal nutrient transfer, the placenta is central to this interplay; however, the relative importance of the maternal versus fetal genotypes in modifying the allocation of resources to the fetus is unknown. Using genetic inactivation of the growth and metabolism regulator, Pik3ca (encoding PIK3CA also known as p110α, α/+), we examined the interplay between the maternal genome and the fetal genome on placental phenotype in litters of mixed genotype generated through reciprocal crosses of WT and α/+ mice. We demonstrate that placental growth and structure were impaired and associated with reduced growth of α/+ fetuses. Despite its defective development, the α/+ placenta adapted functionally to increase the supply of maternal glucose and amino acid to the fetus. The specific nature of these changes, however, depended on whether the mother was α/+ or WT and related to alterations in endocrine and metabolic profile induced by maternal p110α deficiency. Our findings thus show that the maternal genotype and environment programs placental growth and function and identify the placenta as critical in integrating both intrinsic and extrinsic signals governing materno-fetal resource allocation.
Collapse
|
4
|
Gámez B, Rodríguez-Carballo E, Graupera M, Rosa JL, Ventura F. Class I PI-3-Kinase Signaling Is Critical for Bone Formation Through Regulation of SMAD1 Activity in Osteoblasts. J Bone Miner Res 2016; 31:1617-30. [PMID: 26896753 DOI: 10.1002/jbmr.2819] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 12/21/2022]
Abstract
Bone formation and homeostasis is carried out by osteoblasts, whose differentiation and activity are regulated by osteogenic signaling networks. A central mediator of these inputs is the lipid kinase phosphatidylinositol 3-kinase (PI3K). However, at present, there are no data on the specific role of distinct class IA PI3K isoforms in bone biology. Here, we performed osteoblast-specific deletion in mice to show that both p110α and p110β isoforms are required for survival and differentiation and function of osteoblasts and thereby control bone formation and postnatal homeostasis. Impaired osteogenesis arises from increased GSK3 activity and a depletion of SMAD1 protein levels in PI3K-deficient osteoblasts. Accordingly, pharmacological inhibition of GSK3 activity or ectopic expression of SMAD1 or SMAD5 normalizes bone morphogenetic protein (BMP) transduction and osteoblast differentiation. Together, these results identify the PI3K-GSK3-SMAD1 axis as a central node integrating multiple signaling networks that govern bone formation and homeostasis. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Beatriz Gámez
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Edgardo Rodríguez-Carballo
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mariona Graupera
- Vascular Signaling Laboratory, Catalan Institute of Oncology, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - José Luis Rosa
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
5
|
Scanlon V, Soung DY, Adapala NS, Morgan E, Hansen MF, Drissi H, Sanjay A. Role of Cbl-PI3K Interaction during Skeletal Remodeling in a Murine Model of Bone Repair. PLoS One 2015; 10:e0138194. [PMID: 26393915 PMCID: PMC4578922 DOI: 10.1371/journal.pone.0138194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/27/2015] [Indexed: 11/18/2022] Open
Abstract
Mice in which Cbl is unable to bind PI3K (YF mice) display increased bone volume due to enhanced bone formation and repressed bone resorption during normal bone homeostasis. We investigated the effects of disrupted Cbl-PI3K interaction on fracture healing to determine whether this interaction has an effect on bone repair. Mid-diaphyseal femoral fractures induced in wild type (WT) and YF mice were temporally evaluated via micro-computed tomography scans, biomechanical testing, histological and histomorphometric analyses. Imaging analyses revealed no change in soft callus formation, increased bony callus formation, and delayed callus remodeling in YF mice compared to WT mice. Histomorphometric analyses showed significantly increased osteoblast surface per bone surface and osteoclast numbers in the calluses of YF fractured mice, as well as increased incorporation of dynamic bone labels. Furthermore, using laser capture micro-dissection of the fracture callus we found that cells lacking Cbl-PI3K interaction have higher expression of Osterix, TRAP, and Cathepsin K. We also found increased expression of genes involved in propagating PI3K signaling in cells isolated from the YF fracture callus, suggesting that the lack of Cbl-PI3K interaction perhaps results in enhanced PI3K signaling, leading to increased bone formation, but delayed remodeling in the healing femora.
Collapse
Affiliation(s)
- Vanessa Scanlon
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Do Yu Soung
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Naga Suresh Adapala
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Elise Morgan
- Department of Mechanical Engineering, Boston University, Boston, MA, United States of America
| | - Marc F. Hansen
- Center for Molecular Medicine, University of Connecticut Health Center, Farmington, CT, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Hicham Drissi
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States of America
- * E-mail: (AS); (HD)
| | - Archana Sanjay
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States of America
- * E-mail: (AS); (HD)
| |
Collapse
|
6
|
Győri D, Csete D, Benkő S, Kulkarni S, Mandl P, Dobó-Nagy C, Vanhaesebroeck B, Stephens L, Hawkins PT, Mócsai A. The phosphoinositide 3-kinase isoform PI3Kβ regulates osteoclast-mediated bone resorption in humans and mice. Arthritis Rheumatol 2014; 66:2210-21. [PMID: 24719382 PMCID: PMC4314683 DOI: 10.1002/art.38660] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 04/03/2014] [Indexed: 11/23/2022]
Abstract
Objective While phosphoinositide 3-kinases (PI3Ks) are involved in various intracellular signal transduction processes, the specific functions of the different PI3K isoforms are poorly understood. We have previously shown that the PI3Kβ isoform is required for arthritis development in the K/BxN serum–transfer model. Since osteoclasts play a critical role in pathologic bone loss during inflammatory arthritis and other diseases, we undertook this study to test the role of PI3Kβ in osteoclast development and function using a combined genetic and pharmacologic approach. Methods The role of PI3Kβ in primary human and murine osteoclast cultures was tested with the PI3Kβ-selective inhibitor TGX221 and by using PI3Kβ−/− mice. The trabecular bone architecture of PI3Kβ−/− mice was evaluated using micro–computed tomography and histomorphometric analyses. Results The expression of PI3Kβ was strongly and specifically up-regulated during in vitro osteoclast differentiation. In vitro development of large multinucleated osteoclasts from human or murine progenitors and their resorption capacity were strongly reduced by the PI3Kβ inhibitor TGX221 or by the genetic deficiency of PI3Kβ. This was likely due to defective cytoskeletal reorganization and vesicular trafficking, since PI3Kβ−/− mouse multinucleated cells failed to form actin rings and retained intracellular acidic vesicles and cathepsin K. In contrast, osteoclast-specific gene expression and the survival and apoptosis of osteoclasts were not affected. PI3Kβ−/− mice had significantly increased trabecular bone volume and showed abnormal osteoclast morphology with defective resorption pit formation. Conclusion PI3Kβ plays an important role in osteoclast development and function and is required for in vivo bone homeostasis.
Collapse
Affiliation(s)
- Dávid Győri
- Semmelweis University School of Medicine, and MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Shugg RPP, Thomson A, Tanabe N, Kashishian A, Steiner BH, Puri KD, Pereverzev A, Lannutti BJ, Jirik FR, Dixon SJ, Sims SM. Effects of isoform-selective phosphatidylinositol 3-kinase inhibitors on osteoclasts: actions on cytoskeletal organization, survival, and resorption. J Biol Chem 2013; 288:35346-57. [PMID: 24133210 DOI: 10.1074/jbc.m113.507525] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol 3-kinases (PI3K) participate in numerous signaling pathways, and control distinct biological functions. Studies using pan-PI3K inhibitors suggest roles for PI3K in osteoclasts, but little is known about specific PI3K isoforms in these cells. Our objective was to determine effects of isoform-selective PI3K inhibitors on osteoclasts. The following inhibitors were investigated (targets in parentheses): wortmannin and LY294002 (pan-p110), PIK75 (α), GDC0941 (α, δ), TGX221 (β), AS252424 (γ), and IC87114 (δ). In addition, we characterized a new potent and selective PI3Kδ inhibitor, GS-9820, and explored roles of PI3K isoforms in regulating osteoclast function. Osteoclasts were isolated from long bones of neonatal rats and rabbits. Wortmannin, LY294002, GDC0941, IC87114, and GS-9820 induced a dramatic retraction of osteoclasts within 15-20 min to 65-75% of the initial area. In contrast, there was no significant retraction in response to vehicle, PIK75, TGX221, or AS252424. Moreover, wortmannin and GS-9820, but not PIK75 or TGX221, disrupted actin belts. We examined effects of PI3K inhibitors on osteoclast survival. Whereas PIK75, TGX221, and GS-9820 had no significant effect on basal survival, all blocked RANKL-stimulated survival. When studied on resorbable substrates, osteoclastic resorption was suppressed by wortmannin and inhibitors of PI3Kβ and PI3Kδ, but not other isoforms. These data are consistent with a critical role for PI3Kδ in regulating osteoclast cytoskeleton and resorptive activity. In contrast, multiple PI3K isoforms contribute to the control of osteoclast survival. Thus, the PI3Kδ isoform, which is predominantly expressed in cells of hematopoietic origin, is an attractive target for anti-resorptive therapeutics.
Collapse
Affiliation(s)
- Ryan P P Shugg
- From the Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Smith GC, Ong WK, Costa JL, Watson M, Cornish J, Grey A, Gamble GD, Dickinson M, Leung S, Rewcastle GW, Han W, Shepherd PR. Extended treatment with selective phosphatidylinositol 3-kinase and mTOR inhibitors has effects on metabolism, growth, behaviour and bone strength. FEBS J 2013; 280:5337-49. [PMID: 23837532 DOI: 10.1111/febs.12428] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 12/27/2022]
Abstract
The class I phosphatidylinositol 3-kinases (PtdIns3Ks) mediate the effects of many hormones and growth factors on a wide range of cellular processes, and activating mutations or gene amplifications of class I PtdIns3K isoforms are known to contribute to oncogenic processes in a range of tumours. Consequently, a number of small-molecule PtdIns3K inhibitors are under development and in clinical trial. The central signalling role of PtdIns3K in many cellular processes suggests there will be on-target side effects associated with the use of these agents. To gain insights into what these might be we investigated the effect of extended daily dosing of eight small-molecule inhibitors of class Ia PtdIns3Ks. Animals were characterized in metabolic cages to analyse food intake, oxygen consumption and movement. Insulin tolerance and body composition were analysed at the end of the experiment, the latter using EchoMRI. Bone volume and strength was assessed by micro-CT and three-point bending, respectively. Surprisingly, after sustained dosing with pan-PtdIns3K inhibitors and selective inhibitors of the p110α isoform there was a resolution of the impairments in insulin tolerance observed in drug-naïve animals treated with the same drugs. However, pan-PtdIns3K inhibitors and selective inhibitors of the p110α have deleterious effects on animal growth, animal behaviour and bone volume and strength. Together, these findings identify a range of on target effects of PtdIns3K inhibitors and suggest use of these drugs in humans may have important adverse effects on metabolism, body composition, behaviour and skeletal health.
Collapse
Affiliation(s)
- Greg C Smith
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Oikawa T, Kuroda Y, Matsuo K. Regulation of osteoclasts by membrane-derived lipid mediators. Cell Mol Life Sci 2013; 70:3341-53. [PMID: 23296124 PMCID: PMC3753467 DOI: 10.1007/s00018-012-1238-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/05/2012] [Accepted: 12/10/2012] [Indexed: 12/22/2022]
Abstract
Osteoclasts are bone-resorbing cells of monocytic origin. An imbalance between bone formation and resorption can lead to osteoporosis or osteopetrosis. Osteoclastogenesis is triggered by RANKL- and IP3-induced Ca2+ influx followed by activation of NFATc1, a master transcription factor for osteoclastogenic gene regulation. During differentiation, osteoclasts undergo cytoskeletal remodeling to migrate and attach to the bone surface. Simultaneously, they fuse with each other to form multinucleated cells. These processes require PI3-kinase-dependent cytoskeletal protein activation to initiate cytoskeletal remodeling, resulting in the formation of circumferential podosomes and fusion-competent protrusions. In multinucleated osteoclasts, circumferential podosomes mature into stabilized actin rings, which enables the formation of a ruffled border where intensive membrane trafficking is executed. Membrane lipids, especially phosphoinositides, are key signaling molecules that regulate osteoclast morphology and act as second messengers and docking sites for multiple important effectors. We examine the critical roles of phosphoinositides in the signaling cascades that regulate osteoclast functions.
Collapse
Affiliation(s)
- Tsukasa Oikawa
- Laboratory of Cell and Tissue Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | | | | |
Collapse
|
10
|
Moir LM, Trian T, Ge Q, Shepherd PR, Burgess JK, Oliver BGG, Black JL. Phosphatidylinositol 3-kinase isoform-specific effects in airway mesenchymal cell function. J Pharmacol Exp Ther 2011; 337:557-66. [PMID: 21349933 DOI: 10.1124/jpet.110.173583] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K) signal transduction pathway is implicated in the airway remodeling associated with asthma. The class IA PI3K isoforms are known to be activated by growth factors and cytokines. Because this pathway is a possible site of pharmacological intervention for treating the disease, it is important to know which isoforms contribute to this process. Therefore, we used a pharmacological approach to investigate the roles of the three class IA PI3K isoforms (p110α, p110β, and p110δ) in airway remodeling using airway smooth muscle (ASM) cells derived from asthmatic subjects and ASM cells and lung fibroblasts from nonasthmatic subjects. These studies used the inhibitors N'-[(E)-(6-bromoimidazo[1,2-a]pyridin-3-yl)methylidene]-N,2-dimethyl-5-nitrobenzenesulfonohydrazide (PIK75) (which selectively inhibits p110α), 7-methyl-2-(4-morpholinyl)-9-[1-(phenylamino)ethyl]-4H-pyrido[1,2-a]pyrimidin-4-one (TGX221) (which selectively inhibits p110β), and 2-[(6-amino-9H-purin-9-yl)methyl]-5-methyl-3-(2-methylphenyl)-4(3H)-quinazolinone (IC87114) (which selectively inhibits p110δ). Cells were stimulated with transforming growth factor-β (TGFβ) and/or 10% fetal bovine serum in the presence or absence of inhibitor or vehicle control (dimethyl sulfoxide). PIK75, but not TGX221 or IC87114, attenuated TGFβ-induced fibronectin deposition in all cell types tested. PIK75 and TGX221 each decreased secretion of vascular endothelial growth factor and interleukin-6 in nonasthmatic ASM cells and lung fibroblasts, whereas TGX221 was not as effective in asthmatic ASM cells. In addition, PIK75 decreased cell survival in TGFβ-stimulated asthmatic, but not nonasthmatic, ASM cells. In conclusion, specific PI3K isoforms may play a role in pathophysiological events relevant to airway wall remodeling.
Collapse
Affiliation(s)
- Lyn M Moir
- Woolcock Institute of Medical Research, Sydney, Australia.
| | | | | | | | | | | | | |
Collapse
|