1
|
Cai H, Men H, Cao P, Zheng Y. Mechanism and prevention strategy of a bidirectional relationship between heart failure and cancer (Review). Exp Ther Med 2021; 22:1463. [PMID: 34737803 PMCID: PMC8561773 DOI: 10.3892/etm.2021.10898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/16/2021] [Indexed: 12/11/2022] Open
Abstract
The relationship between cancer and heart failure has been extensively studied in the last decade. These studies have focused on describing heart injury caused by certain cancer treatments, including radiotherapy, chemotherapy and targeted therapy. Previous studies have demonstrated a higher incidence of cancer in patients with heart failure. Heart failure enhances an over-activation of the sympathetic nervous system and the renin-angiotensin-aldosterone system, and subsequently promotes cancer development. Other studies have found that heart failure and cancer both have a common pathological origin, flanked by chronic inflammation in certain organs. The present review aims to summarize and describe the recent discoveries, suggested mechanisms and relationships between heart failure and cancer. The current review provides more ideas on clinical prevention strategies according to the pathological mechanism involved.
Collapse
Affiliation(s)
- He Cai
- Cardiovascular Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongbo Men
- Cardiovascular Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Pengyu Cao
- Cardiovascular Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Zheng
- Cardiovascular Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
2
|
Flores J, Takvorian PM, Weiss LM, Cali A, Gao N. Human microsporidian pathogen Encephalitozoon intestinalis impinges on enterocyte membrane trafficking and signaling. J Cell Sci 2021; 134:jcs253757. [PMID: 33589497 PMCID: PMC7938802 DOI: 10.1242/jcs.253757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/01/2021] [Indexed: 12/23/2022] Open
Abstract
Microsporidia are a large phylum of obligate intracellular parasites. Approximately a dozen species of microsporidia infect humans, where they are responsible for a variety of diseases and occasionally death, especially in immunocompromised individuals. To better understand the impact of microsporidia on human cells, we infected human colonic Caco2 cells with Encephalitozoon intestinalis, and showed that these enterocyte cultures can be used to recapitulate the life cycle of the parasite, including the spread of infection with infective spores. Using transmission electron microscopy, we describe this lifecycle and demonstrate nuclear, mitochondrial and microvillar alterations by this pathogen. We also analyzed the transcriptome of infected cells to reveal host cell signaling alterations upon infection. These high-resolution imaging and transcriptional profiling analysis shed light on the impact of the microsporidial infection on its primary human target cell type.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Juan Flores
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102, USA
| | - Peter M Takvorian
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102, USA
- Departments of Medicine and Pathology, Albert Einstein College of Medicine Bronx, New York 10461, USA
| | - Louis M Weiss
- Departments of Medicine and Pathology, Albert Einstein College of Medicine Bronx, New York 10461, USA
| | - Ann Cali
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102, USA
| |
Collapse
|
3
|
Anusewicz D, Orzechowska M, Bednarek AK. Notch Signaling Pathway in Cancer-Review with Bioinformatic Analysis. Cancers (Basel) 2021; 13:cancers13040768. [PMID: 33673145 PMCID: PMC7918426 DOI: 10.3390/cancers13040768] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 01/19/2023] Open
Abstract
Simple Summary The Notch signaling pathway, which controls multiple cell differentiation processes during the embryonic stage and adult life, is associated with carcinogenesis and disease progression. The aim of the present study was to highlight cancer heterogeneity with respect to the Notch pathway. Our analysis concerns the effects of the Notch signaling at different levels, including core components and downstream target genes. We also demonstrate overall and disease-free survival results, pointing out the characteristics of particular Notch components. Depending on tissue context, Notch members can be either oncogenic or suppressive. We observed different expression profile core components and target genes that could be associated with distinct survival of patients. Advances in our understanding of the Notch signaling in cancer are very promising for the development of new treatment strategies for the benefit of patients. Abstract Notch signaling is an evolutionarily conserved pathway regulating normal embryonic development and homeostasis in a wide variety of tissues. It is also critically involved in carcinogenesis, as well as cancer progression. Activation of the Notch pathway members can be either oncogenic or suppressive, depending on tissue context. The present study is a comprehensive overview, extended with a bioinformatics analysis of TCGA cohorts, including breast, bladder, cervical, colon, kidney, lung, ovary, prostate and rectum carcinomas. We performed global expression profiling of the Notch pathway core components and downstream targets. For this purpose, we implemented the Uniform Manifold Approximation and Projection algorithm to reduce the dimensions. Furthermore, we determined the optimal cutpoint using Evaluate Cutpoint software to established disease-free and overall survival with respect to particular Notch members. Our results demonstrated separation between tumors and their corresponding normal tissue, as well as between tumors in general. The differentiation of the Notch pathway, at its various stages, in terms of expression and survival resulted in distinct profiles of biological processes such as proliferation, adhesion, apoptosis and epithelial to mesenchymal transition. In conclusion, whether oncogenic or suppressive, Notch signaling is proven to be associated with various types of malignancies, and thus may be of interest as a potential therapeutic target.
Collapse
|
4
|
Kuno R, Ito G, Kawamoto A, Hiraguri Y, Sugihara HY, Takeoka S, Nagata S, Takahashi J, Tsuchiya M, Anzai S, Mizutani T, Shimizu H, Yui S, Oshima S, Tsuchiya K, Watanabe M, Okamoto R. Notch and TNF-α signaling promote cytoplasmic accumulation of OLFM4 in intestinal epithelium cells and exhibit a cell protective role in the inflamed mucosa of IBD patients. Biochem Biophys Rep 2021; 25:100906. [PMID: 33490652 PMCID: PMC7808948 DOI: 10.1016/j.bbrep.2020.100906] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
Notch signaling is activated in the intestinal epithelial cells (IECs) of patients with inflammatory bowel disease (IBD), and contributes to mucosal regeneration. Our previous study indicated that TNF-α and Notch signaling may synergistically promote the expression of the intestinal stem cell (ISC) marker OLFM4 in human IECs. In the present study, we investigated the gene regulation and function of OLFM4 in human IEC lines. We confirmed that TNF-α and Notch synergistically upregulate the mRNA expression of OLFM4. Luciferase reporter assay showed that OLFM4 transcription is regulated by the synergy of TNF-α and Notch. At the protein level, synergy between TNF-α and Notch promoted cytoplasmic accumulation of OLFM4, which has potential anti-apoptotic properties in human IECs. Analysis of patient-derived tissues and organoids consistently showed cytoplasmic accumulation of OLFM4 in response to NF-κB and Notch activation. Cytoplasmic accumulation of OLFM4 in human IECs is tightly regulated by Notch and TNF-α in synergy. Such cytoplasmic accumulation of OLFM4 may have a cell-protective role in the inflamed mucosa of patients with IBD. Notch and TNF-α signaling is important in IECs of patients with IBD. Notch and TNF-α signaling promotes the cytoplasmic accumulation of OLFM4. OLFM4 accumulation may have anti-apoptotic properties. OLFM4 could protect against mucosal inflammation in IBD.
Collapse
Key Words
- CD, Crohn's disease
- ChIP, chromatin immunoprecipitation
- DBZ, intestinal epithelial cells
- Dox, doxycycline
- IBD, inflammatory bowel disease
- IEC, dibenzazepine
- NICD, Notch intracellular domain
- Notch pathway
- OLFM4
- TNF-α, tumour necrosis factor α
- Tumour necrosis factor-α (TNF-α)
- UC, ulcerative colitis
- qRT-PCR, quantitative reverse transcription-polymerase chain reaction analysis
Collapse
Affiliation(s)
- Reiko Kuno
- Department of Gastroenterology and Hepatology, Japan
| | - Go Ito
- Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ami Kawamoto
- Department of Gastroenterology and Hepatology, Japan
| | - Yui Hiraguri
- Department of Gastroenterology and Hepatology, Japan
| | | | | | - Sayaka Nagata
- Department of Gastroenterology and Hepatology, Japan
| | | | - Mao Tsuchiya
- Department of Gastroenterology and Hepatology, Japan
| | - Sho Anzai
- Department of Gastroenterology and Hepatology, Japan
| | | | - Hiromichi Shimizu
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shiro Yui
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | | | | - Mamoru Watanabe
- Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Japan.,Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
5
|
Golub R. The Notch signaling pathway involvement in innate lymphoid cell biology. Biomed J 2020; 44:133-143. [PMID: 33863682 PMCID: PMC8178581 DOI: 10.1016/j.bj.2020.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/30/2022] Open
Abstract
The role of Notch in the immune system was first described in the late 90s. Reports revealed that Notch is one of the most conserved developmental pathways involved in diverse biological processes such as the development, differentiation, survival and functions of many immune populations. Here, we provide an extended view of the pleiotropic effects of the Notch signaling on the innate lymphoid cell (ILC) biology. We review the current knowledge on Notch signaling in the regulation of ILC differentiation, plasticity and functions in diverse tissue types and at both the fetal and adult developmental stages. ILCs are early responder cells that secrete a large panel of cytokines after stimulation. By controlling the abundance of ILCs and the specificity of their release, the Notch pathway is also implicated in the regulation of their functions. The Notch pathway is therefore an important player in both ILC cell fate decision and ILC immune response.
Collapse
Affiliation(s)
- Rachel Golub
- Unit of Lymphocytes and Immunity, Department of Immunology, Institut Pasteur, Paris, France.
| |
Collapse
|
6
|
Song S, Li X, Geng C, Li Y, Wang C. Somatostatin stimulates colonic MUC2 expression through SSTR5-Notch-Hes1 signaling pathway. Biochem Biophys Res Commun 2019; 521:1070-1076. [PMID: 31733832 DOI: 10.1016/j.bbrc.2019.11.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/05/2019] [Indexed: 02/05/2023]
Abstract
Colonic mucus barrier is regarded as the first defense line against bacteria and antigens from directly attaching to the epithelium, which would further lead to intestinal inflammation activation and pathological conditions. As MUC2 mucin is the predominant component of the mucus, understanding the regulatory mechanisms of MUC2 is important for mucus barrier protection. Somatostatin (SST) has been found to play a role in colon protection through various manners. However, whether SST involves in colonic mucus barrier regulation is still unclear. The aim of this study is to investigate the effects and potential mechanisms of SST on colonic MUC2 expression and mucus secretion. In vivo study, exogenous somatostatin (octreotide) administration effectively stimulated mice colonic MUC2 expression and mucus secretion. In human goblet-like cell LS174T cells, SST exposure also significantly stimulated MUC2 expression and mucus secretion. Further studies indicated that SST receptor 5 (SSTR5) was significantly activated by SST, whereas specific SSTR5 siRNA transfection of LS174T cells significantly blocked SST-induced increase in MUC2 expression and mucus secretion. In addition, SSTR5 agonist L817,818 also upregulated MUC2 expression and mucus secretion in LS174T cells. Mechanistic studies further demonstrated that SST/SSTR5-mediated MUC2 upregulation was dependent on Notch-Hes1 pathway suppression by detecting notch intracellular domain (NICD) and Hes1 proteins. Taken together, our findings suggested that SST could participate in colonic mucus barrier regulation through SSTR5-Notch-Hes1-MUC2 signaling pathway. These findings provide a deep insight into the role of SST on colonic mucus regulation under physiological conditions.
Collapse
Affiliation(s)
- Shuailing Song
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China; Division of Digestive Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Chong Geng
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Yanni Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunhui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Kawamoto A, Nagata S, Anzai S, Takahashi J, Kawai M, Hama M, Nogawa D, Yamamoto K, Kuno R, Suzuki K, Shimizu H, Hiraguri Y, Yui S, Oshima S, Tsuchiya K, Nakamura T, Ohtsuka K, Kitagawa M, Okamoto R, Watanabe M. Ubiquitin D is Upregulated by Synergy of Notch Signalling and TNF-α in the Inflamed Intestinal Epithelia of IBD Patients. J Crohns Colitis 2019; 13:495-509. [PMID: 30395194 DOI: 10.1093/ecco-jcc/jjy180] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS The intestinal epithelium of inflammatory bowel disease [IBD] patients is exposed to various pro-inflammatory cytokines, most notably tumour necrosis factor alpha [TNF-α]. We have previously shown that the Notch signalling pathway is also upregulated in such an epithelium, contributing to intestinal epithelial cell [IEC] proliferation and regeneration. We aimed to reproduce such environment in vitro and explore the gene regulation involved. METHODS Human IEC cell lines or patient-derived organoids were used to analyse Notch- and TNF-α-dependent gene expression. Immunohistochemistry was performed to analyse expression of ubiquitin D [UBD] in various patient-derived intestinal tissues. RESULTS In human IEC cell lines, we found that Notch signalling and TNF-α-induced NFκB signalling are reciprocally regulated to promote expression of a specific gene subset. Global gene expression analysis identified UBD to be one of the most highly upregulated genes, due to synergy of Notch and TNF-α. The synergistic expression of UBD was regulated at the transcriptional level, whereas the UBD protein had an extremely short half-life due to post-translational, proteasomal degradation. In uninflamed intestinal tissues from IBD patients, UBD expression was limited to IECs residing at the crypt bottom. In contrast, UBD-expressing IECs were seen throughout the crypt in inflamed tissues, indicating substantial induction by the local inflammatory environment. Analysis using patient-derived organoids consistently confirmed conserved Notch- and TNF-α-dependent expression of UBD. Notably, post-infliximab [IFX] downregulation of UBD reflected favourable outcome in IBD patients. CONCLUSION We propose that UBD is a novel inflammatory-phase protein expressed in IECs, with a highly rapid responsiveness to anti-TNF-α treatment.
Collapse
Affiliation(s)
- Ami Kawamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayaka Nagata
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sho Anzai
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junichi Takahashi
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mao Kawai
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Minami Hama
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daichi Nogawa
- Department of Comprehensive Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Reiko Kuno
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohei Suzuki
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromichi Shimizu
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yui Hiraguri
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shiro Yui
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeru Oshima
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Nakamura
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Advanced Therapeutics in GI Diseases, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuo Ohtsuka
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
8
|
Bile acids induce Delta-like 1 expression via Cdx2-dependent pathway in the development of Barrett's esophagus. J Transl Med 2016; 96:325-37. [PMID: 26568294 DOI: 10.1038/labinvest.2015.137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/22/2015] [Accepted: 10/10/2015] [Indexed: 02/06/2023] Open
Abstract
Crosstalk between the Notch signaling pathway and Caudal-related homeobox 2 (Cdx2) has important roles in the development of Barrett's esophagus (BE). We investigated the expression and function of the Notch signaling ligand Delta-like 1 (Dll1) during the development of BE. We determined the expression levels of Dll1 and intracellular signaling molecules related to Notch signaling ((Notch1, Hairy/enhancer of split 1 (Hes1), and Atonal homolog 1 (ATOH1)) in human esophageal squamous and Barrett's epithelium samples. Next, those expression levels in esophageal squamous cells (Het-1A) and Barrett's esophageal cells (CP-A and BAR-T) following stimulation with either bile acids or gamma-secretase inhibitor were investigated. Finally, changes in those expression levels following transfection of a Cdx2 or Dll1 expression vector into Het-1A cells were examined. In addition, changes in those expression levels following knockdown of Cdx2 or Dll1 in CP-A cells were also examined. Dll1 was found to be upregulated and localized in the cell membrane and cytoplasm in BE. Bile acids enhanced cytoplasmic expression of Dll1 in CP-A cells, while cleaved Notch1 expression did not change, suggesting lack of a Dll1 agonistic effect on Notch signaling. Cells transfected with Cdx2 revealed significantly enhanced Dll1, while forced expression of Dll1 enhanced ATOH1, Cdx2, and MUC2 expression levels. Nevertheless, enhanced Dll1 did not induce Hes1 expression, suggesting that Dll1 may primarily function as an intracellular signaling molecule and not a Notch agonistic ligand in the canonical pathway. In addition, knockdown of Cdx2 completely abrogated any increase in Dll1 expression upon treatment with bile acids. Our results revealed a novel function of Dll1: facilitation of intestinal metaplasia in conjunction with Cdx2 expression. Furthermore, they suggest that intracellular induction of Dll1 expression in esophageal epithelial cells due to Cdx2 induction in response to bile acids has important roles in BE development.
Collapse
|
9
|
Zeng C, Xing R, Liu J, Xing F. Role of CSL-dependent and independent Notch signaling pathways in cell apoptosis. Apoptosis 2015; 21:1-12. [DOI: 10.1007/s10495-015-1188-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Murano T, Okamoto R, Ito G, Nakata T, Hibiya S, Shimizu H, Fujii S, Kano Y, Mizutani T, Yui S, Akiyama-Morio J, Nemoto Y, Tsuchiya K, Nakamura T, Watanabe M. Hes1 promotes the IL-22-mediated antimicrobial response by enhancing STAT3-dependent transcription in human intestinal epithelial cells. Biochem Biophys Res Commun 2014; 443:840-6. [PMID: 24342613 DOI: 10.1016/j.bbrc.2013.12.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/10/2013] [Indexed: 01/28/2023]
Abstract
Notch signaling plays an essential role in the proliferation and differentiation of intestinal epithelial cells (IECs). We have previously shown that Notch signaling is up-regulated in the inflamed mucosa of ulcerative colitis (UC) and thereby plays an indispensable role in tissue regeneration. Here we show that in addition to Notch signaling, STAT3 signaling is highly activated in the inflamed mucosa of UC. Forced expression of the Notch target gene Hes1 dramatically enhanced the IL-22-mediated STAT3-dependent transcription in human IECs. This enhancement of STAT3-dependent transcription was achieved by the extended phosphorylation of STAT3 by Hes1. Microarray analysis revealed that Hes1-mediated enhancement of IL-22-STAT3 signaling significantly increased the induction of genes encoding antimicrobial peptides, such as REG1A, REG3A and REG3G, in human IECs. Conversely, the reduction of Hes1 protein levels with a γ-secretase inhibitor significantly down-regulated the induction of those genes in IECs, resulting in a markedly poor response to IL-22. Our present findings identify a new role for the molecular function of Hes1 in which the protein can interact with cytokine signals and regulate the immune response of IECs.
Collapse
Affiliation(s)
- Tatsuro Murano
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan; Department of Advanced GI Therapeutics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Go Ito
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toru Nakata
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuji Hibiya
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromichi Shimizu
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoru Fujii
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshihito Kano
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomohiro Mizutani
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shiro Yui
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junko Akiyama-Morio
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiro Nemoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan; Department of Advanced GI Therapeutics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Nakamura
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan; Department of Advanced GI Therapeutics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
11
|
Ito G, Okamoto R, Murano T, Shimizu H, Fujii S, Nakata T, Mizutani T, Yui S, Akiyama-Morio J, Nemoto Y, Okada E, Araki A, Ohtsuka K, Tsuchiya K, Nakamura T, Watanabe M. Lineage-specific expression of bestrophin-2 and bestrophin-4 in human intestinal epithelial cells. PLoS One 2013; 8:e79693. [PMID: 24223998 PMCID: PMC3818177 DOI: 10.1371/journal.pone.0079693] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 09/24/2013] [Indexed: 01/21/2023] Open
Abstract
Intestinal epithelial cells (IECs) regulate the absorption and secretion of anions, such as HCO3- or Cl-. Bestrophin genes represent a newly identified group of calcium-activated Cl- channels (CaCCs). Studies have suggested that, among the four human bestrophin-family genes, bestrophin-2 (BEST2) and bestrophin-4 (BEST4) might be expressed within the intestinal tissue. Consistently, a study showed that BEST2 is expressed by human colonic goblet cells. However, their precise expression pattern along the gastrointestinal tract, or the lineage specificity of the cells expressing these genes, remains largely unknown. Here, we show that BEST2 and BEST4 are expressed in vivo, each in a distinct, lineage-specific manner, in human IECs. While BEST2 was expressed exclusively in colonic goblet cells, BEST4 was expressed in the absorptive cells of both the small intestine and the colon. In addition, we found that BEST2 expression is significantly down-regulated in the active lesions of ulcerative colitis, where goblet cells were depleted, suggesting that BEST2 expression is restricted to goblet cells under both normal and pathologic conditions. Consistently, the induction of goblet cell differentiation by a Notch inhibitor, LY411575, significantly up-regulated the expression of not BEST4 but BEST2 in MUC2-positive HT-29 cells. Conversely, the induction of absorptive cell differentiation up-regulated the expression of BEST4 in villin-positive Caco-2 cells. In addition, we found that the up- or down-regulation of Notch activity leads to the preferential expression of either BEST4 or BEST2, respectively, in LS174T cells. These results collectively confirmed that BEST2 and BEST4 could be added to the lineage-specific genes of humans IECs due to their abilities to clearly identify goblet cells of colonic origin and a distinct subset of absorptive cells, respectively.
Collapse
Affiliation(s)
- Go Ito
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Advanced GI therapeutics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| | - Tatsuro Murano
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromichi Shimizu
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoru Fujii
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toru Nakata
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomohiro Mizutani
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shiro Yui
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junko Akiyama-Morio
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiro Nemoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eriko Okada
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akihiro Araki
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuo Ohtsuka
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Advanced GI therapeutics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Nakamura
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Advanced GI therapeutics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
12
|
Yeramilli VA, Knight KL. Development of CD27+ marginal zone B cells requires GALT. Eur J Immunol 2013; 43:1484-8. [PMID: 23468368 DOI: 10.1002/eji.201243205] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/31/2013] [Accepted: 03/01/2013] [Indexed: 12/31/2022]
Abstract
In species other than mouse, little is known about the origin and development of marginal zone (MZ) B cells. Using cross-reactive antibodies, we identified and characterized splenic MZ B cells in rabbits as CD27(+) CD23(-). In rabbits in which organized gut-associated lymphoid tissue (GALT) was surgically removed at birth, we found only CD23(+) follicular (FO) B cells and almost no CD27(+) MZ B cells in the spleen, indicating that GALT is required for the development of splenic MZ B cells. These findings lead us to suggest that commensal microbiota contribute to the development of MZ B cells.
Collapse
Affiliation(s)
- Venkata A Yeramilli
- Department of Microbiology and Immunology, Loyola University, Chicago, IL, USA
| | | |
Collapse
|
13
|
Hsieh EH, Lo DD. Jagged1 and Notch1 help edit M cell patterning in Peyer's patch follicle epithelium. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:306-312. [PMID: 22504165 PMCID: PMC3374009 DOI: 10.1016/j.dci.2012.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/06/2012] [Accepted: 04/07/2012] [Indexed: 05/31/2023]
Abstract
Mucosal epithelium M cells are dispersed across Peyer's patch follicle associated epithelium (PPFAE) with minimal clustering. Since Notch signaling can influence patterning in epithelia, we examined its influence on PPFAE M cell distribution. Conditional deletion of Notch1 in intestinal epithelium increased PPFAE M cells and also increased M cell clustering, implying a role for Notch in both M cell numbers and lateral inhibition. By contrast, conditional deletion of the ligand Jagged1 also increased M cell clustering, but with a paradoxical decrease in M cell density. In vitro, inhibition of Notch signaling reduced expression of an M cell associated gene CD137, consistent with cis-promoting effects on M cell development. Thus, Jagged1 may have a cis-promoting role in committed M cells, but a trans-inhibitory effect on neighboring cells. In sum, Jagged1-Notch signaling may edit the pattern of M cells across the PPFAE, which may help optimize mucosal immune surveillance.
Collapse
Affiliation(s)
- En-Hui Hsieh
- Division of Biomedical Sciences, University of California Riverside, CA 92521, United States
| | | |
Collapse
|
14
|
The role of atoh1 in mucous cell metaplasia. Int J Otolaryngol 2012; 2012:438609. [PMID: 22518155 PMCID: PMC3299318 DOI: 10.1155/2012/438609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 11/08/2011] [Indexed: 11/22/2022] Open
Abstract
A key issue in otitis media is mucous cell metaplasia which is responsible for mucous hypersecretion and persistence of the disease. However, little is known about the molecular mechanisms of mucous cell metaplasia in otitis media. Numerous studies of intestinal epithelial homeostasis have shown that Atonal homolog 1 (Atoh1), a basic helix-loop-helix (bHLH) transcription factor, is essential for the intestinal goblet cell differentiation. On the other hand, SAM-pointed domain-containing Ets transcription factor (SPDEF), a member of the “Ets” transcription factor family, has been reported to trigger the mucous cell metaplasia of pulmonary infectious diseases or athsma. Recent studies have demonstrated the relation of these factors, that is, Spdef functions downstream of Atoh1. We could take the adventages of these findings for the study of otitis media because both middle ear and pulmonary epithelia belong to the same respiratory tract. Atoh1 and SPDEF could be the therapeutic targets for otitis media associated with mucous cell metaplasia which is frequently considered “intractable” in the clinical settings.
Collapse
|
15
|
Guilmeau S. Notch signaling and intestinal cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 727:272-88. [PMID: 22399355 DOI: 10.1007/978-1-4614-0899-4_21] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, a substantial body of evidence has accumulated to support the notion that signaling pathways known to be important during embryonic development play important roles in regulating self-renewing tissues and tumorigenesis. In this context, Notch signaling is now recognized as essential for maintaining progenitor/ stem cell population as well as for regulating cell lineage differentiation in the normal intestinal mucosa. Many studies have also showed that Notch signaling is constitutively activated in colorectal cancer and its inhibition is able to suppress the cell growth and sensitize cancer cells to treatment-induced apoptosis. Therefore, discovery of the role of γ-secretase in the Notch signaling activation has prompted intensive research on the potential use of γ-secretase inhibitors in the treatment of colon cancer. This chapter reviews the current understanding and research findings of the role of Notch signaling in intestinal homeostasis and colorectal cancer and discusses the possible Notch targeting approaches as novel molecular therapy for intestinal cancer.
Collapse
Affiliation(s)
- Sandra Guilmeau
- Département d'Endocrinologie, Université Paris Descartes, Paris, France.
| |
Collapse
|
16
|
Bordonaro M, Tewari S, Atamna W, Lazarova DL. The Notch ligand Delta-like 1 integrates inputs from TGFbeta/Activin and Wnt pathways. Exp Cell Res 2011; 317:1368-81. [PMID: 21473864 PMCID: PMC3097118 DOI: 10.1016/j.yexcr.2011.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 02/25/2011] [Accepted: 03/30/2011] [Indexed: 12/31/2022]
Abstract
Unlike the well-characterized nuclear function of the Notch intracellular domain, it has been difficult to identify a nuclear role for the ligands of Notch. Here we provide evidence for the nuclear function of the Notch ligand Delta-like 1 in colon cancer (CC) cells exposed to butyrate. We demonstrate that the intracellular domain of Delta-like 1 (Dll1icd) augments the activity of Wnt signaling-dependent reporters and that of the promoter of the connective tissue growth factor (CTGF) gene. Data suggest that Dll1icd upregulates CTGF promoter activity through both direct and indirect mechanisms. The direct mechanism is supported by co-immunoprecipitation of endogenous Smad2/3 proteins and Dll1 and by chromatin immunoprecipitation analyses that revealed the occupancy of Dll1icd on CTGF promoter sequences containing a Smad binding element. The indirect upregulation of CTGF expression by Dll1 is likely due to the ability of Dll1icd to increase Wnt signaling, a pathway that targets CTGF. CTGF expression is induced in butyrate-treated CC cells and results from clonal growth assays support a role for CTGF in the cell growth-suppressive role of butyrate. In conclusion, integration of the Notch, Wnt, and TGFbeta/Activin signaling pathways is in part mediated by the interactions of Dll1 with Smad2/3 and Tcf4.
Collapse
Affiliation(s)
- Michael Bordonaro
- Department of Basic Sciences, The Commonwealth Medical College, 501 Madison Avenue, Scranton, PA 18510, USA
| | - Shruti Tewari
- Department of Basic Sciences, The Commonwealth Medical College, 501 Madison Avenue, Scranton, PA 18510, USA
| | - Wafa Atamna
- Department of Basic Sciences, The Commonwealth Medical College, 501 Madison Avenue, Scranton, PA 18510, USA
| | - Darina L. Lazarova
- Department of Basic Sciences, The Commonwealth Medical College, 501 Madison Avenue, Scranton, PA 18510, USA
| |
Collapse
|
17
|
Kazanjian A, Shroyer NF. NOTCH Signaling and ATOH1 in Colorectal Cancers. CURRENT COLORECTAL CANCER REPORTS 2011; 7:121-127. [PMID: 21980310 DOI: 10.1007/s11888-011-0090-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Notch receptor signaling pathway regulates expression of the basic helix-loop-helix transcription factor ATOH1 (Math1/Hath1) to determine cell fate in the intestine. In differentiating intestinal stem cells, high levels of Notch activity specify absorptive enterocyte/colonocyte differentiation, whereas high ATOH1 activity specifies secretory (goblet, enteroendocrine, and Paneth) cell differentiation. In colorectal cancer, ATOH1 is a tumor suppressor that is silenced in most tumors, while Notch is oncogenic and often highly active in human tumors. In other gastrointestinal malignancies with features of intestinal metaplasia, such as esophageal and gastric cancers, the Notch-ATOH1 pathway becomes activated. In cancers and preneoplastic tissues that retain the ability to activate ATOH1, therapeutic targeting of this pathway can be achieved by inhibiting Notch activity (with Notch-targeting antibodies or small-molecule inhibitors of γ-secretase). Thus, targeting the Notch-ATOH1 pathway represents a novel approach to differentiation therapy in gastrointestinal cancers.
Collapse
Affiliation(s)
- Avedis Kazanjian
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital, MLC 2010, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | | |
Collapse
|